Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income?
Abstract
:1. Introduction
2. Literature Review and Theoretical Hypotheses
2.1. Technical Attributes and Farm Household Revenue
2.2. Technical Attributes and Time Allocation
2.3. Time Allocation and Farm Household Revenue
3. Research Methodology and Data Sources
3.1. Research Methodology
3.1.1. Recognition of CA
3.1.2. Multiple Mediation Effect Model
3.1.3. Moderated Mediation Model
3.2. Data Sources and Descriptive Statistics
4. Empirical Results
4.1. Heterogeneity Analysis of Income Effects Based on Different Crop Cultivation Types
4.2. Parallel Mediation of Multiple Effects and Robustness Tests
4.3. Moderated Mediation Effect Test
5. Conclusions and Discussion
5.1. Conclusions
5.2. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Self-Help Method Test | Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | |
---|---|---|---|---|---|---|
Indirect effect | M1 | −0.006 | 0.002 | 0.083 | [−0.186, 0.149] | [−0.320, 0.107] |
M2 | 0.066 | 0.003 | 0.062 | [−0.034, 0.266] | [−0.013, 0.254] | |
M3 | −0.025 | −0.001 | 0.048 | [−0.134, 0.052] | [−0.175, 0.041] | |
Direct effect | 0.252 | −0.073 | 0.450 | [−0.744, 1.181] | [−0.456, 0.149] |
Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | ||
---|---|---|---|---|---|---|
Indirect effect | M2 | −0.033 | 0.023 | 0.040 | [−0.080, 0.097] | [−0.080, 0.004] |
Indirect effect | M1 | 0.061 *** | 0.023 | 0.021 | [0.035, 0.106] | [0.035, 0.106] |
Direct effect | 0.302 | 0.023 | 0.067 | [0.190, 0.453] | [0.190, 0.401] |
Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | ||
---|---|---|---|---|---|---|
Indirect effect | M3 | −0.061 | 0.070 | 0.030 | [−0.054, 0.060] | [−0.054, 0.009] |
Indirect effect | M1 | 0.080 *** | 0.004 | 0.044 | [0.017, 0.181] | [0.028, 0.133] |
Direct effect | 0.122 | 0.093 | 0.264 | [−0.115, 0.918] | [−0.115, 0.918] |
Self-Help Method Test | Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | |
---|---|---|---|---|---|---|
Indirect effect | M1 | −0.249 *** | 0.003 | 0.171 | [−0.611, 0.067] | [−0.660, 0.041] |
M2 | −0.071 *** | −0.005 | 0.135 | [−0.407, 0.121] | [−0.504, 0.073] | |
M3 | 0.278 | −0.051 | 0.701 | [−1.117, 1.963] | [−0.439, 2.443] | |
Direct effect | M1 | 3.126 | 0.291 | 1.033 | [1.182, 5.208] | [1.092, 5.136] |
M2 | 4.454 | −0.020 | 1.373 | [1.900, 7.121] | [1.900, 7.121] | |
M3 | 1.926 | −0.029 | 3.271 | [−5.071, 8.204] | [−5.515, 7.923] |
Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | |
---|---|---|---|---|---|
Mean − 1SD | 0.088 *** | −0.002 | 0.033 | [0.028, 0.154] | [0.034, 0.166] |
Mean | 0.069 *** | −0.002 | 0.026 | [0.023, 0.120] | [0.028, 0.133] |
Mean + 1SD | 0.051 ** | −0.001 | 0.021 | [0.013, 0.094] | [0.018, 0.103] |
Constant | Bias | Standard Error | 95% Confidence Interval | Bias-Corrected Confidence Interval | |
---|---|---|---|---|---|
Mean − 1SD | −0.014 | −0.009 | 0.109 | [−0.025, 0.177] | [−0.291, 0.170] |
Mean | −0.014 | −0.009 | 0.108 | [−0.260, 0.179] | [−0.278, 0.171] |
Mean + 1SD | −0.013 | −0.010 | 0.107 | [−0.266, 0.188] | [−0.269, 0.171] |
References
- Pretty, J.N.; Noble, A.D.; Bossio, D.; Dixon, J.; Hine, R.E.; de Vries, F.; Morison, J.I.L. Resource-Conserving Agriculture Increases Yields in Developing Countries. Environ. Sci. Technol. 2006, 40, 1114–1119. [Google Scholar] [CrossRef] [PubMed]
- Pittelkow, C.; Linquist, B.; Lundy, M.; Liang, X.; Groenigen, K.J.; Lee, J.; Gestel, N.; Six, J.; Venterea, R.; Kessel, C. When Does No-till Yield More? A Global Meta-Analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef]
- Lestrelin, G.; Hoa, T.Q.; Jullien, F.; Rattanatray, B.; Khamxaykhay, C.; Tivet, F. Conservation Agriculture in Laos: Diffusion and Determinants for Adoption of Direct Seeding Mulch-Based Cropping Systems in Smallholder Agriculture. Renew. Agric. Food Syst. 2012, 27, 81–92. [Google Scholar] [CrossRef]
- Kienzler, K.M.; Lamers, J.P.A.; McDonald, A.; Mirzabaev, A.; Ibragimov, N.; Egamberdiev, O.; Ruzibaev, E.; Akramkhanov, A. Conservation Agriculture in Central Asia-What Do We Know and Where Do We Go from Here? Field Crop. Res. 2012, 132, 95–105. [Google Scholar] [CrossRef]
- Ataei, P.; Sadighi, H.; Chizari, M.; Abbasi, E. Analysis of Farmers’ Social Interactions to Apply Principles of Conservation Agriculture in Iran: Application of Social Network Analysis. J. Agric. Sci. Technol. 2019, 21, 1657–1671. [Google Scholar]
- Khan, Z.; Midega, C.; Pittchar, J.; Pickett, J.; Bruce, T. Push-Pull Technology: A Conservation Agriculture Approach for Integrated Management of Insect Pests, Weeds and Soil Health in Africa UK Government’s Foresight Food and Farming Futures Project. Int. J. Agric. Sustain. 2011, 9, 162–170. [Google Scholar] [CrossRef]
- Latifi, S.; Hauser, M.; Raheli, H.; Moghaddam, S.M.; Viira, A.-H.; Ozuyar, P.G.; Azadi, H. Impacts of Organizational Arrangements on Conservation Agriculture: Insights from Interpretive Structural Modeling in Iran. Agroecol. Sustain. Food Syst. 2021, 45, 86–110. [Google Scholar] [CrossRef]
- Zhang, F.; Bei, J.; Shi, Q.; Wang, Y.; Wu, L. Research on Agricultural Machinery Services for the Purpose of Promoting Conservation Agriculture: An Evolutionary Game Analysis Involving Farmers, Agricultural Machinery Service Organizations and Governments. Agriculture 2024, 14, 1383. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Bharucha, Z.P.; Lal, R.; Pretty, J. Improving China’s Food and Environmental Security with Conservation Agriculture. Int. J. Agric. Sustain. 2016, 14, 377–391. [Google Scholar] [CrossRef]
- Jat, S.L.; Parihar, C.M.; Singh, A.K.; Nayak, H.S.; Meena, B.R.; Kumar, B.; Parihar, M.D.; Jat, M.L. Differential Response from Nitrogen Sources with and without Residue Management under Conservation Agriculture on Crop Yields, Water-Use and Economics in Maize-Based Rotations. Field Crops Res. 2019, 236, 96–110. [Google Scholar] [CrossRef]
- Borbón-Gracia, A.; Lugo-García, G.A.; Reyes-Olivas, Á.; Valenzuela-Herrera, V.; Sauceda-Acosta, C.P. Wheat, Maize and Safflower Rotation in Conservation Tillage vs. Traditional Tillage. Rev. Fitotec. Mex. 2020, 43, 371–378. [Google Scholar] [CrossRef]
- Ruzzante, S.; Labarta, R.; Bilton, A. Adoption of Agricultural Technology in the Developing World: A Meta-Analysis of the Empirical Literature. World Dev. 2021, 146, 105599. [Google Scholar] [CrossRef]
- Ramsey, S.M.; Bergtold, J.S.; Canales, E.; Williams, J.R. Effects of Farmers’ Yield-Risk Perceptions on Conservation Practice Adoption in Kansas. J. Agric. Resour. Econ. 2019, 44, 380–403. [Google Scholar]
- Liben, F.M.; Wortmann, C.S.; Tirfessa, A. Geospatial Modeling of Conservation Tillage and Nitrogen Timing Effects on Yield and Soil Properties. Agric. Syst. 2020, 177, 102720. [Google Scholar] [CrossRef]
- Zhang, H.; Hobbie, E.A.; Feng, P.; Zhou, Z.; Niu, L.; Duan, W.; Hao, J.; Hu, K. Responses of Soil Organic Carbon and Crop Yields to 33-Year Mineral Fertilizer and Straw Additions under Different Tillage Systems. Soil Tillage Res. 2021, 209, 104943. [Google Scholar] [CrossRef]
- Tambo, J.A.; Mockshell, J. Differential Impacts of Conservation Agriculture Technology Options on Household Income in Sub-Saharan Africa. Ecol. Econ. 2018, 151, 95–105. [Google Scholar] [CrossRef]
- Corbeels, M.; Naudin, K.; Whitbread, A.M.; Kühne, R.; Letourmy, P. Limits of Conservation Agriculture to Overcome Low Crop Yields in Sub-Saharan Africa. Nat. Food 2020, 1, 447–454. [Google Scholar] [CrossRef]
- Corbeels, M.; de Graaff, J.; Ndah, T.H.; Penot, E.; Baudron, F.; Naudin, K.; Andrieu, N.; Chirat, G.; Schuler, J.; Nyagumbo, I.; et al. Understanding the Impact and Adoption of Conservation Agriculture in Africa: A Multi-Scale Analysis. Agric. Ecosyst. Environ. 2014, 187, 155–170. [Google Scholar] [CrossRef]
- Ngoma, H.; Angelsen, A.; Jayne, T.S.; Chapoto, A. Understanding Adoption and Impacts of Conservation Agriculture in Eastern and Southern Africa: A Review. Front. Agron. 2021, 3, 671690. [Google Scholar] [CrossRef]
- Lalani, B.; Dorward, P.; Holloway, G. Farm-Level Economic Analysis—Is Conservation Agriculture Helping the Poor? Ecol. Econ. 2017, 141, 144–153. [Google Scholar] [CrossRef]
- Huang, K.; Cao, S.; Qing, C.; Xu, D.; Liu, S. Does Labour Migration Necessarily Promote Farmers’ Land Transfer-in?—Empirical Evidence from China’s Rural Panel Data. J. Rural. Stud. 2023, 97, 534–549. [Google Scholar] [CrossRef]
- Becker, G.S. A Theory of the Allocation of Time. Econ. J. 1965, 75, 493–517. [Google Scholar] [CrossRef]
- Mincer, J. Labor Force Participation of Married Women: A Study of Labor Supply. In Aspects of Labor Economics; Princeton University Press: Princeton, NJ, USA, 1962; pp. 63–105. [Google Scholar]
- Singh, I.; Squire, L.; Strauss, J. A Survey of Agricultural Household Models: Recent Findings and Policy Implications. World Bank Econ. Rev. 1986, 1, 149–179. [Google Scholar] [CrossRef]
- Fontes, F.P. Soil and Water Conservation Technology Adoption and Labour Allocation: Evidence from Ethiopia. World Dev. 2020, 127, 104754. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.; Hua, X.; Li, X.; Ma, D.; Ding, M. Smallholder Rice Farming Practices across Livelihood Strategies: A Case Study of the Poyang Lake Plain, China. J. Rural. Stud. 2022, 89, 199–207. [Google Scholar] [CrossRef]
- Addison, M.; Ohene-Yankyera, K.; Aidoo, R. Quantifying the Impact of Agricultural Technology Usage on Intra-Household Time Allocation: Empirical Evidence from Rice Farmers in Ghana. Technol. Soc. 2020, 63, 101434. [Google Scholar] [CrossRef]
- Su, W.; Eriksson, T.; Zhang, L.; Bai, Y. Off-Farm Employment and Time Allocation in on-Farm Work in Rural China from Gender Perspective. China Econ. Rev. 2016, 41, 34–45. [Google Scholar] [CrossRef]
- Rosales-Salas, J.; Jara-Díaz, S.R. A Time Allocation Model Considering External Providers. Transp. Res. Part B Methodol. 2017, 100, 175–195. [Google Scholar] [CrossRef]
- Cochrane, W.W. Farm Prices: Myth and Reality; University of Minnesota Press: Minneapolis, MN, USA, 1958. [Google Scholar]
- Hayami, Y.; Herdt, R.W. Market Price Effects of Technological Change on Income Distribution in Semisubsistence Agriculture. Am. J. Agric. Econ. 1977, 59, 245–256. [Google Scholar] [CrossRef]
- Schultz, T.W. Transforming Traditional Agriculture: Reply. Am. J. Agric. Econ. 1966, 48, 1015–1018. [Google Scholar] [CrossRef]
- Ngoma, H. Does Minimum Tillage Improve the Livelihood Outcomes of Smallholder Farmers in Zambia? Food Secur. 2018, 10, 381–396. [Google Scholar] [CrossRef]
- Miah, M.A.M.; Bell, R.W.; Haque, E.; Rahman, M.W.; Sarkar, M.A.R.; Rashid, M.A. Conservation Agriculture Practices Improve Crop Productivity and Farm Profitability When Adopted by Bangladeshi Smallholders in the Eastern Gangetic Plain. Outlook Agric. 2023, 52, 11–21. [Google Scholar] [CrossRef]
- Wawire, A.W.; Csorba, Á.; Tóth, J.A.; Michéli, E.; Szalai, M.; Mutuma, E.; Kovács, E. Soil Fertility Management among Smallholder Farmers in Mount Kenya East Region. Heliyon 2021, 7, e06488. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R.; Singh, P.; Hossain, A.; Timsina, J. Rice–Wheat System in the Northwest Indo-Gangetic Plains of South Asia: Issues and Technological Interventions for Increasing Productivity and Sustainability. Paddy Water Environ. 2021, 19, 345–365. [Google Scholar] [CrossRef]
- Sun, L.; Wang, S.; Zhang, Y.; Li, J.; Wang, X.; Wang, R.; Lyu, W.; Chen, N.; Wang, Q. Conservation Agriculture Based on Crop Rotation and Tillage in the Semi-Arid Loess Plateau, China: Effects on Crop Yield and Soil Water Use. Agric. Ecosyst. Environ. 2018, 251, 67–77. [Google Scholar] [CrossRef]
- Si, R.; Yao, Y.; Zhang, X.; Lu, Q.; Aziz, N. Exploring the Role of Contiguous Farmland Cultivation and Adoption of No-Tillage Technology in Improving Transferees’ Income Structure: Evidence from China. Land 2022, 11, 570. [Google Scholar] [CrossRef]
- Somasundaram, J.; Sinha, N.; Dalal, R.; Lal, R.; Mohanty, M.; Naorem, A.; Hati, K.M.; Chaudhary, R.; Biswas, A.; Patra, A.; et al. No-Till Farming and Conservation Agriculture in South Asia–Issues, Challenges, Prospects and Benefits. Crit. Rev. Plant Sci. 2020, 39, 236–279. [Google Scholar] [CrossRef]
- Gomes, O. Time Allocation, the Dynamics of Interaction, and Technology Adoption. Macroecon. Dynam. 2019, 23, 2150–2190. [Google Scholar] [CrossRef]
- Ikpi, A. Household Time Allocation-The Ultimate Determinant of Improved Agricultural Technology Adoption in Nigeria: An Empirical Activity Interphase Impact Model. In Proceedings of the Twenty-First International Conference of Agricultural Economists, Tokyo, Japan, 22–29 August 1991. [Google Scholar]
- Farnworth, C.R.; Baudron, F.; Andersson, J.A.; Misiko, M.; Badstue, L.; Stirling, C.M. Gender and Conservation Agriculture in East and Southern Africa: Towards a Research Agenda. Int. J. Agric. Sustain. 2016, 14, 142–165. [Google Scholar] [CrossRef]
- Namulondo, R.; Bashaasha, B. Labour-Saving Technologies Mitigate the Effect of Women’s Agriculture Time-Use Constraints on Stunting in Rural Uganda. Afr. J. Agric. Resour. Econ. 2022, 17, 272–285. [Google Scholar] [CrossRef]
- Brown, B.; Sharma, A.; Karki, E.S.; Chaudhary, A. ‘From Plot to People’: A Photovoice Exploration of South Asian Farmer Livelihood Diversification Strategies When Extra Time and Money Are Found through Zero Tillage Adoption. J. South. Asian Dev. 2023, 18, 193–220. [Google Scholar] [CrossRef]
- Giller, K.; Andersson, J.; Corbeels, M.; Kirkegaard, J.; Mortensen, D.; Erenstein, O.; Vanlauwe, B. Beyond Conservation Agriculture. Front. Plant Sci. 2015, 6, 870. [Google Scholar] [CrossRef]
- Mng’ong’o, M.E.; Mwaipopo, R.E.; Ojija, F.; Matimbwa, H. The Role of Conservation Agriculture in Enhancing Biodiversity and Common Beans Productivity. Soil. Adv. 2024, 2, 100018. [Google Scholar] [CrossRef]
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.R.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.T.; Cairns, J.E. Conservation Agriculture in Southern Africa: Advances in Knowledge. Renew. Agric. Food Syst. 2015, 30, 328–348. [Google Scholar] [CrossRef]
- Apps, P.F.; Rees, R. Taxation and the Household. J. Public. Econ. 1988, 35, 355–369. [Google Scholar] [CrossRef]
- Herrera, J.; Torelli, C. Domestic Work and Employment in Africa: What Is the Trade-Off for Women? In Urban Labor Markets in Sub-Saharan Africa; De Vreyer, P., Roubaud, F., Eds.; The World Bank: Washington, DC, USA, 2013; pp. 221–249. ISBN 978-0-8213-9781-7. [Google Scholar]
- Ndlovu, P.; Mohapatra, S.; Luckert, M. Income Effects on Intra-Household Time Allocation: Regression Discontinuity Evidence. J. Int. Dev. 2018, 30, 713–719. [Google Scholar] [CrossRef]
- Palermo Kuss, A.H.; Neumärker, K.J.B. Modelling the Time Allocation Effects of Basic Income. Basic. Income Stud. 2018, 13, 20180006. [Google Scholar] [CrossRef]
- Reddy, A.A.; Mittal, S.; Singha Roy, N.; Kanjilal-Bhaduri, S. Time Allocation between Paid and Unpaid Work among Men and Women: An Empirical Study of Indian Villages. Sustainability 2021, 13, 2671. [Google Scholar] [CrossRef]
- Alene, A.; Manyong, V. The Effects of Education on Agricultural Productivity under Traditional and Improved Technology in Northern Nigeria: An Endogenous Switching Regression Analysis. Empir. Econ. 2007, 32, 141–159. [Google Scholar] [CrossRef]
- Hamilton, S.F.; Richards, T.J.; Shafran, A.P.; Vasilaky, K.N. Farm Labor Productivity and the Impact of Mechanization. Am. J. Agric. Econ. 2022, 104, 1435–1459. [Google Scholar] [CrossRef]
- Charlton, D.; Kostandini, G. Can Technology Compensate for a Labor Shortage? Effects of 287(g) Immigration Policies on the U.S. Dairy Industry. Am. J. Agric. Econ. 2021, 103, 70–89. [Google Scholar] [CrossRef]
- Manser, M.; Brown, M. Marriage and Household Decision-Making: A Bargaining Analysis. Int. Econ. Rev. 1980, 21, 31. [Google Scholar] [CrossRef]
- Charlton, D.; Taylor, J.E. A Declining Farm Workforce: Analysis of Panel Data from Rural Mexico. Am. J. Agric. Econ. 2016, 98, 1158–1180. [Google Scholar] [CrossRef]
- Hill, A.E.; Ornelas, I.; Taylor, J.E. Agricultural Labor Supply. Annu. Rev. Resour. Econ. 2021, 13, 39–64. [Google Scholar] [CrossRef]
- Kimhi, A.; Rapaport, E. Time Allocation between Farm and Off-Farm Activities in Israeli Farm Households. Am. J. Agric. Econ. 2004, 86, 716–721. [Google Scholar] [CrossRef]
- Bouchakour, R.; Saad, M. Farm and Farmer Characteristics and Off-Farm Work: Evidence from Algeria. Aust. J. Agric. Resour. Econ. 2020, 64, 455–476. [Google Scholar] [CrossRef]
- Shahzad, M.A.; Fischer, C. The Decline of Part-Time Farming in Europe: An Empirical Analysis of Trends and Determinants Based on Eurostat Panel Data. Appl. Econ. 2022, 54, 4812–4824. [Google Scholar] [CrossRef]
- Rogers, E.M.; Singhal, A.; Quinlan, M.M. Diffusion of Innovations. In An Integrated Approach to Communication Theory and Research; Routledge: London, UK, 2008; ISBN 978-0-203-88701-1. [Google Scholar]
- Cawley, A.; O’Donoghue, C.; Heanue, K.; Hilliard, R.; Sheehan, M. The Impact of Extension Services on Farm-Level Income: An Instrumental Variable Approach to Combat Endogeneity Concerns. Appl. Econ. Perspect. Policy 2018, 40, 585–612. [Google Scholar] [CrossRef]
- Imai, K.; Yamamoto, T. Identification and Sensitivity Analysis for Multiple Causal Mechanisms: Revisiting Evidence from Framing Experiments. Polit. Anal. 2013, 21, 141–171. [Google Scholar] [CrossRef]
- Bartus, T. Multilevel Multiprocess Modeling with Gsem. Stata J. Promot. Commun. Stat. Stata 2017, 17, 442–461. [Google Scholar] [CrossRef]
- Muller, D.; Judd, C.M.; Yzerbyt, V.Y. When Moderation Is Mediated and Mediation Is Moderated. J. Personal. Soc. Psychol. 2005, 89, 852–863. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Ridier, A.; Ben El Ghali, M.; Nguyen, G.; Kephaliacos, C. The Role of Risk Aversion and Labor Constraints in the Adoption of Low Input Practices Supported by the CAP Green Payments in Cash Crop Farms. Rev. Agric. Environ. Stud. 2013, 94, 195–219. [Google Scholar]
- Liu, H.; Wu, M.; Ma, X.; Liu, X.; Gao, J.; Wu, Y. Research on influencing factors of farmers’ adoption behavior of conservation tillage technology based on distributed cognition theory. Chin. Land Sci. 2021, 35, 75–84. [Google Scholar]
- Jiang, X.; Yan, T.; Yan, S.; Zhang, J. Land scale and straw recycling technology adoption: A micro survey based on the four provinces of Hebei, Shandong, Anhui and Hubei. China Land Sci. 2018, 12, 42–49. [Google Scholar]
- Macho, S.; Ledermann, T. Estimating, Testing, and Comparing Specific Effects in Structural Equation Models: The Phantom Model Approach. Psychol. Methods 2011, 16, 34–43. [Google Scholar] [CrossRef]
- MacKinnon, D.P. Contrasts in multiple mediator models. In Multivariate Applications in Substance Use Research: New Methods for New Questions; Psychology Press: Hove, East Sussex, UK, 2000; pp. 155–174. [Google Scholar]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The Farm-Level Economics of Conservation Agriculture for Resource-Poor Farmers. Agric. Ecosyst. Environ. 2014, 187, 52–64. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Sauer, J. Adoption of Labor-Saving Technologies in Agriculture. Annu. Rev. Resour. Econ. 2018, 10, 185–206. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping System Diversification, Conservation Tillage and Modern Seed Adoption in Ethiopia: Impacts on Household Income, Agrochemical Use and Demand for Labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Omer, A.; Pascual, U.; Russell, N.P. Biodiversity Conservation and Productivity in Intensive Agricultural Systems. J. Agric. Econ. 2007, 58, 308–329. [Google Scholar] [CrossRef]
- Chabert, A.; Sarthou, J.-P. Conservation Agriculture as a Promising Trade-off between Conventional and Organic Agriculture in Bundling Ecosystem Services. Agric. Ecosyst. Environ. 2020, 292, 106815. [Google Scholar] [CrossRef]
- Abdulai, A.N. Impact of Conservation Agriculture Technology on Household Welfare in Zambia. Agric. Econ. 2016, 47, 729–741. [Google Scholar] [CrossRef]
- Lee, M.; Gambiza, J. The Adoption of Conservation Agriculture by Smallholder Farmers in Southern Africa: A Scoping Review of Barriers and Enablers. J. Rural. Stud. 2022, 92, 214–225. [Google Scholar] [CrossRef]
- Ray, S.; Hertel, T.W. Effectiveness and Distributional Impacts of Conservation Policies: The Role of Labor Markets. Environ. Resour. Econ. 2025, 1–47. [Google Scholar] [CrossRef]
- Piñeiro, V.; Arias, J.; Dürr, J.; Elverdin, P.; Ibáñez, A.M.; Kinengyere, A.; Opazo, C.M.; Owoo, N.; Page, J.R.; Prager, S.D.; et al. A Scoping Review on Incentives for Adoption of Sustainable Agricultural Practices and Their Outcomes. Nat. Sustain. 2020, 3, 809–820. [Google Scholar] [CrossRef]
- Sikandar, F.; Erokhin, V.; Xin, L.; Sidorova, M.; Ivolga, A.; Bobryshev, A. Sustainable Agriculture and Rural Poverty Eradication in Pakistan: The Role of Foreign Aid and Government Policies. Sustainability 2022, 14, 14751. [Google Scholar] [CrossRef]
- Christiaensen, L. Agriculture in Africa–Telling Myths from Facts: A Synthesis. Food Policy 2017, 67, 1–11. [Google Scholar] [CrossRef]
- Zeng, D.Z.; Cheng, L.; Shi, L.; Luetkenhorst, W. China’s Green Transformation through Eco-Industrial Parks. World Dev. 2021, 140, 105249. [Google Scholar] [CrossRef]
- Karayalcin, C.; Yilmazkuday, H. Trade and Cities. World Bank. Econ. Rev. 2015, 29, 523–549. [Google Scholar] [CrossRef]
Variables | Mono-Type Technology Group (D = 0) | Composite Technology Group (D = 1) | ||
---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |
Variable Explained | ||||
Natural Logarithm of Total Household Income (y)/RMB | 10.48 | 1.331 | 10.927 *** | 1.398 |
Mediating (Moderating) Variables | ||||
Natural Logarithm of Gross Food Production (M1)/RMB | 9.889 | 1.263 | 10.277 *** | 1.527 |
Natural Logarithm of Household Non-farm Business Income (M2)/RMB | 10.4 | 1.087 | 10.316 | 1.068 |
Natural Logarithm of the Cost of Domestic Workers (M3)/RMB | 7.918 | 2.161 | 9.854 *** | 2.322 |
Individual Characteristics | ||||
Age/year | 59.289 | 10.078 | 57.662 * | 10.898 |
Educational Period (Edu)/year | 7.547 | 3.232 | 8.298 *** | 3.103 |
Gender/(Male = 1; Female = 0) | 0.926 | 0.261 | 0.889 * | 0.314 |
Technology Preferences (pre)/(Prefer = 1; Neutral = 2; sheltered = 3) | 2.272 | 0.822 | 2.253 | 0.824 |
Planting Period (Year)/year | 33.9 | 14.324 | 33.599 | 14.73 |
Household Characteristics | ||||
Total Household Labor Force (Labor)/persons | 2.489 | 1.051 | 2.44 | 0.888 |
Village Cadres in Household (Cadres)/persons | 0.111 | 0.314 | 0.179 ** | 0.384 |
Party Members in Household (Members)/persons | 0.182 | 0.43 | 0.327 *** | 0.573 |
Operational Characteristics | ||||
Farming Days (Day)/day | 75.865 | 52.424 | 75.563 | 64.919 |
Natural Logarithm of Subsidized Amount (Insubsidy)/RMB | 7.123 | 1.374 | 7.078 | 1.692 |
Planting Scale (Land)/Mu | 66.434 | 241.717 | 144.584 *** | 442.357 |
Natural Logarithm of Total Annual Fertilizer Inputs (lnfer)/RMB | 8.18 | 1.347 | 8.517 *** | 1.649 |
Natural Logarithm of Total Annual Pesticide Inputs (lnpes)/RMB | 6.601 | 1.536 | 6.865 * | 1.664 |
Number of Trainings Received (Training times)/class | 0.865 | 2.481 | 1.581 ** | 4.153 |
Observed Value | 570 | 352 |
Variables | Resulting Equations | Behavioral Equation | |
---|---|---|---|
Unitary Technology Group | Composite Technology Group | ||
Age | −0.018 ** | −0.009 | −0.010 |
(0.009) | (0.006) | (0.007) | |
Edu | −0.036 | 0.024 | 0.046 ** |
(0.022) | (0.017) | (0.018) | |
Gender | 0.148 | 0.115 | −0.460 *** |
(0.195) | (0.184) | (0.177) | |
Pre | 0.003 | −0.131 ** | 0.027 |
(0.074) | (0.058) | (0.064) | |
Year | −0.009 | −0.005 | 0.012 ** |
(0.007) | (0.004) | (0.005) | |
Labor | 0.416 *** | 0.473 *** | −0.116 ** |
(0.072) | (0.048) | (0.055) | |
Cadres | 0.358 ** | 0.039 | −0.059 |
(0.176) | (0.170) | (0.169) | |
Members | −0.013 | 0.196 | 0.226 * |
(0.126) | (0.131) | (0.120) | |
Day | 0.000 | −0.002 *** | −0.001 |
(0.001) | (0.001) | (0.001) | |
Subsidy | 0.046 | 0.067 | −0.071 |
(0.052) | (0.055) | (0.052) | |
Land | 0.000 | 0.001 ** | 0.000 |
(0.000) | (0.000) | (0.000) | |
Lnfer | 0.089 | 0.310 *** | 0.309 *** |
(0.102) | (0.087) | (0.084) | |
Lnpes | 0.220 *** | 0.036 | −0.126 * |
(0.074) | (0.063) | (0.065) | |
Training times | / | / | 0.038 ** |
(0.017) | |||
Control cropping system | Yes | Yes | Yes |
Control hamlet | Yes | Yes | Yes |
Constants term | 10.373 *** | 7.542 *** | −1.985 *** |
(0.968) | (0.626) | (0.688) | |
ρμ0 (or ρμ1) | −0.645 ** | −0.089 | |
LR test | 7.08 ** |
Sample Group | Sample Size | Sample Mean | Standard Deviation | ANOVA | |
---|---|---|---|---|---|
Unitary Technology Group | 570 | 66.43419 | 241.7165 | F-Value (Logarization) | p-Value (Logarization) |
Composite Technology Group | 352 | 144.5841 | 442.3572 | 10.13 | 0.0015 |
Sample Group | Decision-Making Phase | ATT | ATU | |
---|---|---|---|---|
Ring Changed | Ring Unchanged | |||
Composite Technology Group | 10.934 (0.061) | 10.366 (0.068) | 0.567 *** | |
Unitary Technology Group | 11.824 (0.042) | 10.415 (0.046) | 1.408 *** |
Sample Group | Decision-Making Phase | Process Effect | ||
---|---|---|---|---|
Ring Changed | Ring Unchanged | |||
Maize | Composite Technology Group | 10.947 (0.062) | 12.108 (0.064) | −1.160 *** |
Unitary Technology Group | 11.021 (0.049) | 10.048 (0.048) | 0.478 *** | |
Wheat | Composite Technology Group | 10.673 (0.063) | 12.992 (0.065) | −2.319 *** |
Unitary Technology Group | 10.677 (0.063) | 10.192 (0.067) | 0.485 *** |
Variables | X | M1 | M2 | M3 |
---|---|---|---|---|
Adj | 0.252 | 0.196 *** | −0.065 | 0.282 |
(0.245) | (0.019) | (0.105) | (0.941) | |
M1 | 0.339 *** | |||
(0.077) | ||||
M2 | 0.390 *** | |||
(0.062) | ||||
M3 | −0.022 | |||
(0.108) | ||||
Control variable | Yes | Yes | Yes | Yes |
Control cropping systems | Yes | Yes | Yes | Yes |
Control village-level features | Yes | Yes | Yes | Yes |
Constant term | 0.835 | 3.873 *** | 9.629 *** | −0.523 |
(0.762) | (0.391) | (0.439) | (0.275) | |
Estimated error variance | 0.245 *** | 0.527 *** | 0.899 *** | 1.925 *** |
(0.012) | (0.011) | (0.052) | (0.071) |
Variables | X | M1 | M2 | |
---|---|---|---|---|
Adj | 0.275 | 0.196 *** | −0.065 | |
(0.149) | (0.019) | (0.105) | ||
M1 | 0.312 *** | |||
(0.032) | ||||
M2 | 0.513 *** | |||
(0.024) | ||||
Control variable | Yes | Yes | Yes | |
Control cropping systems | Yes | Yes | Yes | |
Control village-level features | Yes | Yes | Yes | |
Constant term | 2.296 *** | 3.873 *** | 9.629 *** | |
(0.168) | (0.391) | (0.439) | ||
Estimated error variance | 0.314 *** | 0.527 *** | 0.899 *** | |
(0.090) | (0.011) | (0.052) |
Variables | X | M1 | M3 |
---|---|---|---|
Adj | 0.061 | 0.196 *** | 0.282 |
(0.087) | (0.019) | (0.941) | |
M1 | 0.405 *** | ||
(0.048) | |||
M3 | −0.064 | ||
(0.131) | |||
Control variables | Yes | Yes | Yes |
Control cropping systems | Yes | Yes | Yes |
Control village-level features | Yes | Yes | Yes |
Constant term | 4.132 *** | 3.873 *** | −0.523 |
(0.420) | (0.391) | (0.275) | |
Estimated error variance | 0.492 *** | 0.527 *** | 1.925 *** |
(0.095) | (0.011) | (0.071) |
Yield Effect | Transfer Effect | Hired Labor Effect | |||||
---|---|---|---|---|---|---|---|
x | M1 | X | M2 | x | M3 | x | |
Adj | 0.441 *** | 0.235 *** | 0.328 *** | −0.077 | 0.454 *** | 0.309 | 0.082 |
(0.079) | (0.061) | (0.075) | (0.105) | (0.064) | (0.456) | (0.259) | |
M1 | 0.453 *** | ||||||
(0.046) | |||||||
M2 | 0.528 *** | ||||||
(0.030) | |||||||
M3 | −0.075 | ||||||
(0.064) | |||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control cropping systems | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Control village-level features | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant term | 7.010 *** | 3.932 *** | 5.254 *** | 9.600 *** | 3.611 *** | −0.528 | 6.285 *** |
(0.445) | (0.343) | (0.458) | (0.551) | (0.445) | (2.089) | (1.173) | |
Adj R-squared | 0.526 | 0.706 | 0.586 | 0.212 | 0.682 | 0.624 | 0.771 |
Variables | Non-Farm Income | Hired Labor Costs | ||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
M1 | M2 | M1 | M3 | |
Adj | 0.238 *** | 1.020 *** | −0.034 | 0.528 ** |
(0.076) | (0.210) | (0.189) | (0.259) | |
M1 | 0.357 *** | 0.096 | ||
(0.059) | (0.218) | |||
M2 | 1.191 *** | |||
(0.193) | ||||
M1×M2 | −0.070 *** | |||
(0.020) | ||||
M3 | 0.067 | |||
(0.317) | ||||
M1×M3 | −0.012 | |||
(0.027) | ||||
Control variables | Yes | Yes | Yes | Yes |
Controll cropping systems | Yes | Yes | Yes | Yes |
Controll village-level features | Yes | Yes | Yes | Yes |
Constant term | 4.336 *** | 4.895 *** | −3.861 * | 3.579 |
(0.457) | (0.913) | (2.092) | (2.474) | |
Log likelihood | −18,294.87 | −43,754.63 | ||
Estimated error variance | 0.492 *** | 0.283 *** | 0.363 *** | 0.482 *** |
(0.033) | (0.019) | (0.054) | (0.071) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, J.; Li, Y.; Mu, Y. Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income? Land 2025, 14, 973. https://doi.org/10.3390/land14050973
Zhang J, Wang J, Li Y, Mu Y. Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income? Land. 2025; 14(5):973. https://doi.org/10.3390/land14050973
Chicago/Turabian StyleZhang, Jing, Jingchun Wang, Yafei Li, and Yueying Mu. 2025. "Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income?" Land 14, no. 5: 973. https://doi.org/10.3390/land14050973
APA StyleZhang, J., Wang, J., Li, Y., & Mu, Y. (2025). Time Allocation Effect: How Does the Combined Adoption of Conservation Agriculture Technologies Affect Income? Land, 14(5), 973. https://doi.org/10.3390/land14050973