Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing
Abstract
:1. Introduction
1.1. Research Background
1.2. Literature Review: Quantification of Human–Nature Relationships
1.3. Problem Statement and Objectives
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. Ecological Importance Assessment
3.1.1. Ecological Sensitivity
3.1.2. Habitat Quality
3.2. Ecological Connectivity Potential Assessment
3.2.1. Ecological Source Extraction
3.2.2. Ecological Resistance Surface Construction
3.2.3. Normalized Least-Cost Corridor Identification
3.3. Construction Suitability Assessment
3.4. Recreational Demand Assessment
3.5. Weighting of Indicators for Evaluating Nature Suitability
3.6. Evaluation of Human–Nature Relationships Alignment
4. Results
4.1. Ecological Importance
4.2. Ecological Connectivity Potential
4.2.1. Ecological Source
4.2.2. Ecological Resistance Surface
4.2.3. Potential Corridors
4.3. Construction Suitability
4.4. Recreational Demand
4.5. Nature Suitability
4.6. Spatial Disparities in Human–Nature Relationships
5. Discussion
5.1. Spatial Patterns of Nature Suitability and Human–Nature Imbalances
5.2. Spatial Protection and Optimization Strategy for the Country Parks
5.3. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cumming, G.S.; Buerkert, A.; Hoffmann, E.M.; Schlecht, E.; Cramon-Taubadel, S.V.; Tscharntke, T. Implications of agricultural transitions and urbanization for ecosystem services. Nature 2014, 515, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Erbaugh, J.T.; Fajardo, P.; Lu, L.; Molnár, I.; Papp, D.; Robinson, B.E.; Austin, K.G.; Castro, M.; Cheng, S.H.; et al. Global evidence of human well-being and biodiversity impacts of natural climate solutions. Nat. Sustain. 2024, 8, 75–85. [Google Scholar] [CrossRef]
- Huang, J.; Bibri, S.E.; Keel, P. Generative spatial artificial intelligence for sustainable smart cities: A pioneering large flow model for urban digital twin. Environ. Sci. Ecotechnol. 2025, 24, 100526. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Chen, B.; Webster, C.; Xu, B.; Gong, P. Improved human greenspace exposure equality during 21st century urbanization. Nat. Commun. 2023, 14, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Hassani, A.; Stange, E.; Schneider, P.; Castell, N. Reassessing the role of urban green space in air pollution control. Proc. Natl. Acad. Sci. USA 2024, 121, e2306200121. [Google Scholar] [CrossRef]
- Delgado-Serrano, M.M.; Melichová, K.; Fadden, I.M.; Cruz-Piedrahita, C. Perception of green spaces’ role in enhancing mental health and mental well-being in small and medium-sized cities. Land Use Policy 2024, 139, 107087. [Google Scholar] [CrossRef]
- Liu, R.; Pan, X.; Xia, Z.; Gou, J.; Han, J.; Cao, K.; Wang, D.; Xue, C. How to lead the optimization of parks spatial patterns more comprehensively with the philosophy of green equity: A case of Chengdu. Habitat Int. 2025, 157, 103318. [Google Scholar] [CrossRef]
- Ortega, U.; Ametzaga-Arregi, I.; Sertutxa, U.; Peña, L. Identifying a green infrastructure to prioritise areas for restoration to enhance the landscape connectivity and the provision of ecosystem services. Landsc. Ecol. 2023, 38, 3751–3765. [Google Scholar] [CrossRef]
- Zoeller, K.C.; Smith, G.S.; Coggan, A.; Grainger, D.; Grigg, N.J.; Szetey, K. Navigating human-nature interactions by exploring plural values across ecosystem states. People Nat. 2025, 7, 434–448. [Google Scholar] [CrossRef]
- Zong, W.; Qin, L.; Jiao, S.; Chen, H.; Zhang, R. An innovative approach for equitable urban green space allocation through population demand and accessibility modeling. Ecol. Indic. 2024, 160, 111861. [Google Scholar] [CrossRef]
- Wang, M.; You, X.-Y.; Zhao, S.-M. Multi-species ecological network based on asymmetric movement: Application in an urban rural fringe. Landsc. Urban Plan. 2025, 254, 105253. [Google Scholar] [CrossRef]
- Cao, L.; Wang, G.; Yang, F.; Li, L.; He, R. Urbanization and plant diversity in urban fringes: Differential responses across life forms. J. Environ. Manag. 2024, 371, 123151. [Google Scholar] [CrossRef]
- Wang, C.; Sun, X.; Liu, Z.; Xia, L.; Liu, H.; Fang, G.; Liu, Q.; Yang, P. A novel full-resolution convolutional neural network for urban-fringe-rural identification: A case study of urban agglomeration region. Landsc. Urban Plan. 2024, 249, 105122. [Google Scholar] [CrossRef]
- Shi, Y.; Zheng, J.; Zheng, B. Multidimensional effect analysis of typical country park construction in Shanghai. Ecol. Indic. 2024, 160, 111866. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Y.; Cao, M.; Wang, R.; Chen, J. Assessing accessibility to peri-urban parks considering supply, demand, and traffic conditions. Landsc. Urban Plan. 2025, 257, 105313. [Google Scholar] [CrossRef]
- Pourtaherian, P.; Jaeger, J.A.G. How effective are greenbelts at mitigating urban sprawl? A comparative study of 60 European cities. Landsc. Urban Plan. 2022, 227, 104532. [Google Scholar] [CrossRef]
- Peco-Costas, C.; Acuña-Alonso, C.; García-Ontiyuelo, M.; Álvarez, X. Assessing ecological connectivity in the Serra do Cando and Serra do Candán area of Galicia: A multitemporal classification and least-cost path modelling approach. Ecol. Inform. 2025, 86, 103049. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; Barrera, F.D.L.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green. 2021, 64, 127105. [Google Scholar] [CrossRef]
- Zhou, K.; Song, Y.; Tan, R. Public perception matters: Estimating homebuyers’ willingness to pay for urban park quality. Urban For. Urban Green. 2021, 64, 127275. [Google Scholar] [CrossRef]
- Musacchio, L.R. Ecologies as a complement to ecosystem services? Exploring how landscape planners might advance understanding about human–nature relationships in changing landscapes. Landsc. Ecol. 2018, 33, 847–860. [Google Scholar] [CrossRef]
- Zhao, X.; Lou, Z.; Chen, C. Multidimensional enhancement of amenity migration well-being: An analysis of the role and strategies of cultural ecosystem services. J. Nat. Conserv. 2025, 84, 126792. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.; Cao, E.; Wang, S.; Yan, L. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecol. Indic. 2022, 143, 109379. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Wang, H.; Wu, S.; Liang, Z.; Zhang, Y.; Wei, F.; Li, S.; Ma, L.; Wang, Y.; et al. Understanding the spatial relationships and drivers of ecosystem service supply-demand mismatches towards spatially-targeted management of social-ecological system. J. Clean. Prod. 2023, 406, 136882. [Google Scholar] [CrossRef]
- Jiang, S.; Feng, F.; Zhang, X.; Xu, C.; Jia, B.; Lafortezza, R. Driving factors of fragmentation in urban landscapes: Local contributions, spatial relationships, and causal effects. Ecol. Indic. 2025, 174, 113454. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Zhao, W.; Wu, J. The emerging “pattern-process-service-sustainability” paradigm in landscape ecology. Landsc. Ecol. 2025, 40, 54. [Google Scholar] [CrossRef]
- von Hornstein, F. Theorie und Anwendung der Waldgeschichte. Forstwiss. Cent. 1950, 69, 161–177. [Google Scholar] [CrossRef]
- Winter, S. Forest naturalness assessment as a component of biodiversity monitoring and conservation management. For. Int. J. For. Res. 2012, 85, 293–304. [Google Scholar] [CrossRef]
- Kowarik, I. Urban wilderness: Supply, demand, and access. Urban For. Urban Green. 2018, 29, 336–347. [Google Scholar] [CrossRef]
- Li, J.; Lin, F.; Cui, H.; Yang, S.; Chen, Y. Urban Spatial Naturalness Degree in the Planning of Ultra-High-Density Cities: The Case of Urban Green Open Spaces in Macau. Buildings 2025, 15, 206. [Google Scholar] [CrossRef]
- Liu, M.; Peng, J.; Dong, J.; Jiang, H.; Xu, D.; Meersmans, J. Trade-offs of landscape connectivity between regional and interregional ecological security patterns in a junction area of Beijing-Tianjin-Hebei region. Appl. Geogr. 2024, 167, 103272. [Google Scholar] [CrossRef]
- Hanna, E.; Bruno, D.; Comín, F.A. Evaluating naturalness and functioning of urban green infrastructure. Urban For. Urban Green. 2023, 80, 127825. [Google Scholar] [CrossRef]
- Stahl, A.T.; Fremier, A.K.; Cosens, B.A. Mapping legal authority for terrestrial conservation corridors along streams. Conserv. Biol. 2020, 34, 943–955. [Google Scholar] [CrossRef]
- Laner, P.; Rossi, C.; Luethi, R.; Favilli, F.; Bertoncelj, I.; Plassmann, G.; Haller, R.M. Landscape permeability for ecological connectivity at the macro-regional level: The Continuum Suitability Index and its practical implications. Ecol. Indic. 2024, 164, 112145. [Google Scholar] [CrossRef]
- Li, P.; Liu, C.; Yu, C.; Gao, C.; Sun, W. The delineation and effects of urban development boundaries under ecological constraints: The case of urban Nanjing, China. Ecol. Indic. 2024, 167, 112499. [Google Scholar] [CrossRef]
- Csomós, G.; Szalai, Á.; Farkas, J.Z. A sacrifice for the greater good? On the main drivers of excessive land take and land use change in Hungary. Land Use Policy 2024, 147, 107352. [Google Scholar]
- Pan, J.; Zhao, X.; Guo, W.; Feng, Y.; Liu, Y.; Zhu, J.; Fang, J. Characterizing China’s road network development from a spatial entropy perspective. J. Transp. Geogr. 2024, 116, 103848. [Google Scholar] [CrossRef]
- Barrette, M.; Dumais, D.; Auger, I.; Boucher, Y.; Bouchard, M.; Bouliane, J. Naturalness assessment performed using forestry maps to validate forest management sustainability. Ecol. Indic. 2020, 119, 106832. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, Y.; Lu, Q.; Shen, Z.; Liu, K.; Wei, X.; Yuan, C.; Gao, Y.; Liu, L. Understanding residents’ perspectives on cultural ecosystem service supply, demand and subjective well-being in rapidly urbanizing landscapes: A case study of peri-urban Shanghai. Landsc. Ecol. 2024, 39, 22. [Google Scholar] [CrossRef]
- Hooftman, D.A.P.; Ridding, L.E.; Ridding, L.E.; Willcock, S. National scale mapping of supply and demand for recreational ecosystem services. Ecol. Indic. 2023, 154, 110779. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, W. Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landsc. Urban Plan. 2018, 180, 27–35. [Google Scholar] [CrossRef]
- Wozniak, M.; Radzimski, A.; Wajchman-Świtalska, S. Is more always better? Evaluating accessibility to parks and forests in 33 European cities using sustainable modes of transportation. Urban For. Urban Green. 2025, 104, 128656. [Google Scholar] [CrossRef]
- Li, M.; Wang, G.; Li, H.; Chen, T.; Tang, S. Identifying the optimization potential for urban GI by linking supply and demand of ecosystem services under multi-scenarios a case study of Tianjin, China. Ecol. Indic. 2023, 154, 110570. [Google Scholar] [CrossRef]
- Tong, A.; Xu, L.; Ma, Q.; Shi, Y.; Feng, M.; Lu, Z.; Wu, Y. Evaluation of the level of park space service based on the residential area demand. Urban For. Urban Green. 2024, 93, 128214. [Google Scholar] [CrossRef]
- Szilassi, P.; Bata, T.; Szabó, S.; Czúcz, B.; Molnár, Z.; Mezősi, G. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 2017, 81, 252–259. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q. A model approach for post evaluation of adaptive reuse of architectural heritage: A case study of Beijing central axis historical buildings. Herit. Sci. 2023, 11, 57. [Google Scholar] [CrossRef]
- Zheng, S.; Yang, S.; Ma, M.; Dong, J.; Han, B.; Wang, J. Linking cultural ecosystem service and urban ecological-space planning for a sustainable city: Case study of the core areas of Beijing under the context of urban relieving and renewal. Sustain. Cities Soc. 2023, 89, 104292. [Google Scholar] [CrossRef]
- Liu, T.; Yu, L.; Chen, X.; Chen, Y.; Li, X.; Liu, X.; Cao, Y.; Zhang, F.; Zhang, C.; Gong, P. Identifying Potential Urban Greenways by Considering Green Space Exposure Levels and Maximizing Recreational Flows: A Case Study in Beijing’s Built-Up Areas. Land 2024, 13, 1793. [Google Scholar] [CrossRef]
- Qi, T.; Zhang, G.; Wang, Y.; Liu, C.; Li, X. Research on landscape quality of country parks in Beijing as based on visual and audible senses. Urban For. Urban Green. 2017, 26, 124–138. [Google Scholar] [CrossRef]
- Wei, X.; Wu, X.; Wang, D.; Wu, T.; Li, R.; Hu, G.; Zou, D.; Bai, K.; Liu, Y.; Yan, X.; et al. Spatiotemporal changes and management measure to enhance ecosystem services in the Mongolian Plateau. Environ. Dev. 2024, 52, 101103. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Wang, Q. Monitoring of subpixel impervious surface dynamics using seasonal time series Landsat 8 OLI imagery. Ecol. Indic. 2023, 154, 110772. [Google Scholar] [CrossRef]
- He, X.; Zhou, Y.; Yuan, X.; Zhu, M. The coordination relationship between urban development and urban life satisfaction in Chinese cities—An empirical analysis based on multi-source data. Cities 2024, 150, 105016. [Google Scholar] [CrossRef]
- Martinez, A.D.L.I.; Labib, S.M. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environ. Res. 2022, 220, 115155. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Pan, J.; Zhu, X. Optimizing the ecological source area identification method and building ecological corridor using a genetic algorithm: A case study in Weihe River Basin, NW China. Ecol. Inform. 2024, 80, 102519. [Google Scholar] [CrossRef]
- Ying, B.; Liu, T.; Ke, L.; Xiong, K.; Li, S.; Sun, R.; Zhu, F. Identifying the Landscape Security Pattern in Karst Rocky Desertification Area Based on Ecosystem Services and Ecological Sensitivity: A Case Study of Guanling County, Guizhou Province. Forests 2023, 14, 613. [Google Scholar] [CrossRef]
- Bhagya, S.B.; Sumi, A.S.; Balaji, S.; Danumah, J.H.; Costache, R.; Rajaneesh, A.; Gokul, A.; Chandrasenan, C.P.; Quevedo, R.P.; Johny, A.; et al. Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps. Land 2023, 12, 468. [Google Scholar] [CrossRef]
- Zheng, Y.; Lan, S.; Chen, W.Y.; Chen, X.; Xu, X.; Chen, Y.; Dong, J. Visual sensitivity versus ecological sensitivity: An application of GIS in urban forest park planning. Urban For. Urban Green. 2019, 41, 139–149. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Ntislidou, C.; Kazila, E.; Filintas, A.; Voreadou, C. An Innovative GIS-Based Policy Approach to Stream Water Quality and Ecological Risk Assessment in Mediterranean Regions: The Case of Crete, Greece. Land 2024, 13, 1801. [Google Scholar] [CrossRef]
- González, Á.N.; Hewitt, R.J.; Vega, J.M. Green Infrastructure Mapping in Almeria Province (Spain) Using Geographical Information Systems and Multi-Criteria Evaluation. Land 2024, 13, 1916. [Google Scholar] [CrossRef]
- GB/T 15772-2008; Comprehensive Control of Soil and Water Conservation–General Rule of Planning. Standards Press of China: Beijing, China, 2008.
- Zhong, J.; Li, Z.; Zhang, D.; Yang, J.; Zhu, J. An evaluation framework for urban ecological compensation priority in China based on meta-analysis and fuzzy comprehensive evaluation. Ecol. Indic. 2024, 158, 111284. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Liu, J.; Chen, W.; Ding, H.; Liu, Z.; Xu, M.; Singh, R.P.; Liu, C. Changing characteristics of land cover, landscape pattern and ecosystem services in the Bohai Rim region of China. Front. Environ. Sci. 2024, 12, 1500045. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Tian, Z.; Zhang, Y. Evaluation of the Importance of Ecological Service Function and Analysis of Influencing Factors in the Hexi Corridor from 2000 to 2020. Land 2024, 13, 1283. [Google Scholar] [CrossRef]
- Chen, J.; Xue, J.; Gu, K.; Wang, Y. Balancing urban expansion with ecological integrity: An ESP framework for rapidly urbanizing small and medium-sized cities, with insights from Suizhou, China. Ecol. Inform. 2024, 80, 102508. [Google Scholar]
- Zhang, Q.; Tang, F.; Chen, H.; Li, F.; Chen, Z.; Jiao, Y. Assessing landscape fragmentation and ecological connectivity to support regional spatial planning: A case study of Jiangsu province, China. Ecol. Indic. 2024, 162, 112063. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Wei, J. Identifying Key Sites of Green Infrastructure to Support Ecological Restoration in the Urban Agglomeration. Land 2021, 10, 1196. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Wu, J.; Xu, Z.; Ja, B. Ecological spatial network optimization of carbon sink patches for enhanced carbon sink in Wuhan Metropolitan Area, China. Ecol. Indic. 2024, 165, 112177. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, W.; Liu, T.; Liu, F.; Li, S.; Zhang, S. Integrating ecosystem integrity and ES supply–demand process to explore ecological connectivity in Wuhan metropolitan area, China. Ecol. Indic. 2024, 163, 112128. [Google Scholar] [CrossRef]
- Han, P.; Hu, H.; Jiang, M.; Wang, M. Construction of Wetland Ecological Security Pattern in Wuhan Metropolitan Core Area Considering Wetland Ecological Risk. Land 2024, 13, 1407. [Google Scholar] [CrossRef]
- Li, J.; Liang, L.E.; Chao, Y.; Wang, X.; Qiu, M.; Luo, P.; Zhu, Y. Construction of the ecological security pattern of Mu Us sandy land on the basis of the “Source—Resistance—Corridor” theory. Ecol. Indic. 2025, 171, 113162. [Google Scholar] [CrossRef]
- Belote, R.T.; Dietz, M.S.; McRae, B.H.; Theobald, D.M.; McClure, M.L.; Irwin, G.H.; McKinley, P.S.; Gage, J.A.; Aplet, G.H. Identifying Corridors among Large Protected Areas in the United States. PLoS ONE 2016, 11, e0154223. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhou, W.; Li, J.; Li, C. Simulation of the potential impact of urban expansion on regional ecological corridors: A case study of Taiyuan, China. Sustain. Cities Soc. 2022, 83, 103933. [Google Scholar] [CrossRef]
- Rui, J.; Xu, Y.; Cai, C.; Li, X. Leveraging large language models for tourism research based on 5D framework: A collaborative analysis of tourist sentiments and spatial features. Tour. Manag. 2025, 108, 105115. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, B.; Wang, Y.; Xu, P.; Liu, Q. Identifying spatial mismatches between the supply and demand of recreation services for sustainable urban river management: A case study of Jinjiang River in Chengdu, China. Sustain. Cities Soc. 2022, 77, 103547. [Google Scholar] [CrossRef]
- Pradhan, S.; Lahlou, F.Z.; Ghiat, I.; Bilal, H.; McKay, G.; Al-Ansari, T. A comprehensive decision-making approach for the application of biochar in agriculture to enhance water security: A GIS-AHP based approach. Environ. Technol. Innov. 2024, 36, 103801. [Google Scholar] [CrossRef]
- Xu, L.; Hang, Y.; Jin, F. Evaluating the supply-demand relationship for urban green parks in Beijing from an ecosystem service flow perspective. Urban For. Urban Green. 2023, 85, 127974. [Google Scholar]
- Tang, R.; Hou, G.; Chen, Y.; Liu, X.; Chu, S.; Li, L. Spatial and temporal characteristics and driving mechanisms of recreational ecosystem services supply-demand mismatch in rapidly urbanizing areas: Evidence from the Yangtze River Delta. Ecol. Indic. 2025, 171, 113153. [Google Scholar] [CrossRef]
- Ford, A.T.; Sunter, E.J.; Fauvelle, C.; Bradshaw, J.L.; Ford, B.; Hutchen, J.; Phillipow, N.; Teichman, K.J. Effective corridor width: Linking the spatial ecology of wildlife with land use policy. Eur. J. Wildl. Res. 2020, 66, 69. [Google Scholar] [CrossRef]
- Rui, J.; Li, X. Decoding vibrant neighborhoods: Disparities between formal neighborhoods and urban villages in eye-level perceptions and physical environment. Sustain. Cities Soc. 2024, 101, 105122. [Google Scholar] [CrossRef]
- Kaskevich, V.; Villoslada, M.; Ward, R.D.; Sepp, K. Analyzing the structural elements, ecological characteristics, and impact assessment of local green infrastructure in the coastal zone of Estonia. Ecol. Indic. 2024, 169, 112824. [Google Scholar] [CrossRef]
- Hwang, B.; Ko, C.; Im, D.; Kang, W. Network-based assessment of urban forest and green space accessibility in six major cities: London, New York, Paris, Tokyo, Seoul, and Beijing. Urban For. Urban Green. 2025, 107, 128781. [Google Scholar] [CrossRef]
- Zhao, S.; Shao, Q.; Zhou, X. Greenbelt investment with temporal preference in uncertain environments. Sustain. Cities Soc. 2023, 96, 104675. [Google Scholar] [CrossRef]
- Nie, H.; Zhao, Y.; Zhu, J.; Ning, A.; Zheng, W. Ecological Security Pattern Construction in Typical Oasis Area Based on Ant Colony Optimization: A Case Study in Yili River Valley, China. Ecol. Indic. 2024, 169, 112770. [Google Scholar] [CrossRef]
- Jia, C.; Wu, L.; Ma, L.; Qiu, W. The moderating influence of safety on green space’s health benefits in Chinese urban communities. J. Environ. Manag. 2025, 375, 124232. [Google Scholar] [CrossRef]
- Yang, J.; Guo, R.; Li, D.; Wang, X.; Li, F. Interval-thresholding effect of cooling and recreational services of urban parks in metropolises. Sustain. Cities Soc. 2022, 79, 103684. [Google Scholar] [CrossRef]
- Lin, P.; Lau, S.S.Y.; Qin, H.; Gou, Z. Effects of urban planning indicators on urban heat island: A case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 2017, 168, 48–60. [Google Scholar] [CrossRef]
- Campbell-Arvai, V.; Lindquist, M. From the ground up: Using structured community engagement to identify objectives for urban green infrastructure planning. Urban For. Urban Green. 2021, 59, 127013. [Google Scholar] [CrossRef]
- Pille, L.; Säumel, I. The water-sensitive city meets biodiversity: Habitat services of rain water management measures in highly urbanized landscapes. Ecol. Soc. 2021, 26, 23. [Google Scholar] [CrossRef]
Data | Resolution | Data Source |
---|---|---|
Land-use data | 10 m | https://esa-worldcover.org/en (accessed on 20 January 2025) |
Landsat 8 OLI | 30 m | http://www.gscloud.cn/search (accessed on 2 January 2025) |
DEM | 5 m | http://www.gisrs.cn (accessed on 2 January 2025) |
Road, water system | – | http://m.bigemap.com (accessed on 2 January 2025) |
POI data | – | https://lbs.amap.com (accessed on 2 January 2025) |
NDVI | 30 m | http://www.nesdc.org.cn (accessed on 2 January 2025) |
Indicator | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|
Slope | >35° | 25–35° | 15–25° | 5–15° | 0–5° |
NDVI | >0.75 | 0.65–0.75 | 0.5–0.65 | 0.35–0.5 | 0–0.35 |
Distance to water sources | 0–50 m | 50–100 m | 100–150 m | 150–200 m | >200 m |
Distance to roads | >2000 m | 1500–2000 m | 1000–1500 m | 500–1000 m | 0–500 m |
Threat Factor | Weight | Maximum Impact Distance | Attenuation |
---|---|---|---|
Cropland | 2 | 0.6 | Linear |
Construction land | 5 | 0.8 | Linear |
Land-Use Type | Habitat Suitability | Cropland | Construction Land |
---|---|---|---|
Forestland | 1 | 0.3 | 0.5 |
Shrubland | 0.9 | 0.3 | 0.5 |
Grassland | 0.8 | 0.5 | 0.2 |
Cropland | 0.3 | 0 | 0.4 |
Construction land | 0 | 0.1 | 0 |
Bare land | 0.1 | 0.1 | 0.1 |
Water area | 1 | 0.1 | 0.4 |
Factor Type | Indicator | Resistance Value | Weight |
---|---|---|---|
Land-use type | Forestland | 1 | 0.5 |
Water area | 10 | ||
Shrubland | 50 | ||
Grassland | 100 | ||
Cropland | 300 | ||
Bare land | 800 | ||
Construction land | 1000 | ||
NDVI | 0.8–1.0 | 1 | 0.25 |
0.6–0.8 | 20 | ||
0.4–0.6 | 200 | ||
0.2–0.4 | 500 | ||
0–0.2 | 1000 | ||
Slope | 0–6° | 100 | 0.25 |
6–12° | 200 | ||
12–18° | 400 | ||
18–24° | 600 | ||
>24° | 1000 |
Indicator | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|
NLCC | 0–0.05 | 0.05–0.15 | 0.15–0.25 | 0.25–0.50 | 0.50–1.00 |
Indicator | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|
Proportion of artificial surface area (%) | 0–10 | 10–30 | 30–50 | 50–70 | >70 |
Road network density (km/km2) | 0–3 | 3–6 | 6–9 | 9–12 | >12 |
Indicator | Grade 1 | Grade 2 | Grade 3 | Grade 4 | Grade 5 |
---|---|---|---|---|---|
Population concentration | 0–25 | 25–50 | 50–100 | 100–200 | >200 |
Service facility concentration | 0–25 | 25–50 | 50–100 | 100–200 | >200 |
Transportation accessibility (m) | >800 | 600–800 | 400–600 | 200–400 | 0–200 |
Criterion Layer | Weight | Indicator Layer | Weight |
---|---|---|---|
Ecological importance | 0.311 | Ecological sensitivity | 0.444 |
Habitat quality | 0.556 | ||
Ecological connectivity potential | 0.340 | NLCC | 1.000 |
Construction suitability | 0.165 | Proportion of artificial surface area | 0.556 |
Road network density | 0.444 | ||
Recreational demand | 0.184 | Population concentration | 0.321 |
Service facility concentration | 0.207 | ||
Transportation accessibility | 0.472 |
Suitability Level of Naturalness | Percentage | Area (hm2) |
---|---|---|
Near-natural | 29.82% | 432.14 |
More-natural | 30.26% | 438.60 |
Semi-natural | 18.28% | 264.86 |
More-artificial | 12.84% | 186.12 |
Near-artificial | 8.80% | 127.53 |
Supply–Demand Relationship | Value of Supply–Demand | Percentage | Area (hm2) |
---|---|---|---|
Supply-abundant | 0.40–0.88 | 12.77% | 185.11 |
Supply excess | 0.20–0.40 | 27.40% | 397.10 |
Supply–demand balance | −0.20–0.20 | 56.69% | 821.58 |
Supply shortage | −0.40–−0.20 | 2.62% | 37.93 |
Under-supplied | −0.62–−0.40 | 0.52% | 7.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jin, A.; Zhuang, W.; Li, H. Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing. Land 2025, 14, 1086. https://doi.org/10.3390/land14051086
Li Z, Jin A, Zhuang W, Li H. Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing. Land. 2025; 14(5):1086. https://doi.org/10.3390/land14051086
Chicago/Turabian StyleLi, Zhenyu, Aibo Jin, Weijie Zhuang, and Hui Li. 2025. "Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing" Land 14, no. 5: 1086. https://doi.org/10.3390/land14051086
APA StyleLi, Z., Jin, A., Zhuang, W., & Li, H. (2025). Human–Nature Relationships in Country Parks at the Urban–Rural Fringe: A Case Study of the Huitian Region, Beijing. Land, 14(5), 1086. https://doi.org/10.3390/land14051086