The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Human and Natural Systems
2.3.2. Complex System Model of Humans and Nature in Mountainous Counties
2.3.3. Dynamic Degree
2.3.4. Transfer Matrices
3. Results
3.1. Evolution of TG
3.1.1. Identification of TG
3.1.2. Evolution of the TG Pattern
3.2. Changes in the PLE
3.2.1. Direction
3.2.2. Speed
3.2.3. Pattern
3.3. Impacts of Spatial Variations in the PLE on TG
4. Discussion
4.1. Evolution of the TG
4.2. Drivers of TG
4.3. Shortcomings and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, C.; Liu, Z.; Tian, J.; Ma, Q. Urban Expansion Dynamics and Natural Habitat Loss in China: A Multiscale Landscape Perspective. Glob. Change Biol. 2014, 20, 2886–2902. [Google Scholar] [CrossRef]
- He, C.; Zhao, Y.; Tian, J.; Shi, P. Modeling the Urban Landscape Dynamics in a Megalopolitan Cluster Area by Incorporating a Gravitational Field Model with Cellular Automata. Landsc. Urban Plann. 2013, 113, 78–89. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the Potential Impacts of Urban Expansion on Regional Carbon Storage by Linking the LUSD-Urban and InVEST Models. Environ. Modell. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, L.; López-Carr, D.; Dang, X.; Yuan, B.; Yuan, Z. Identification of irregular extension features and fragmented spatial governance within urban fringe areas. Appl. Geogr. 2024, 162, 103172. [Google Scholar] [CrossRef]
- Peng, J.; Wang, Y.; Zhang, Y.; Wu, J.; Li, W.; Li, Y. Evaluating the Effectiveness of Landscape Metrics in Quantifying Spatial Patterns. Ecol. Indic. 2010, 10, 217–223. [Google Scholar] [CrossRef]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and Spatial-Temporal Evolution of Rural “Production-Living-Ecological” Space from the Perspective of Villagers’ Behavior—A Case Study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Hahs, A.K.; McDonnell, M.J. Selecting Independent Measures to Quantify Melbourne’s Urban–Rural Gradient. Landsc. Urban Plann. 2006, 78, 435–448. [Google Scholar] [CrossRef]
- Shin, Y.A.; Lacasse, K.; Gross, L.J.; Beckage, B. How Coupled Is Coupled Human-Natural Systems Research? Ecol. Soc. 2022, 27, art4. [Google Scholar] [CrossRef]
- Peng, L.; Deng, W.; Zhang, H.; Sun, J.; Xiong, J. Focus on Economy or Ecology? A Three-dimensional Trade-off Based on Ecological Carrying Capacity in Southwest China. Nat. Resour. Model. 2019, 32, e12201. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An Analysis of Land Use Conflict Potentials Based on Ecological-Production-Living Function in the Southeast Coastal Area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Fagioli, F.F.; Rocchi, L.; Paolotti, L.; Słowiński, R.; Boggia, A. From the Farm to the Agri-Food System: A Multiple Criteria Framework to Evaluate Extended Multi-Functional Value. Ecol. Indic. 2017, 79, 91–102. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An Aggregation Framework to Link Indicators Associated with Multifunctional Land Use to the Stakeholder Evaluation of Policy Options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Huang, J.; Lin, H.; Qi, X. A literature review on optimization of spatial development pattern based on ecological-production-living space. Prog. Geogr. 2017, 36, 378–391. [Google Scholar]
- Huang, Q.; Song, W.; Song, C. Consolidating the Layout of Rural Settlements Using System Dynamics and the Multi-Agent System. J. Clean. Prod. 2020, 274, 123150. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial Identification of Land Use Multifunctionality at Grid Scale in Farming-Pastoral Area: A Case Study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Wang, S.; Kong, W.; Ren, L.; Zhi, D.; Dai, B. Research on misuses and modification of coupling coordination degree model in China. J. Nat. Resour. 2021, 36, 793–810. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, C.; Bai, Y.; Ning, X.; Zang, S. Spatial and Temporal Distribution of Rural Settlements and Influencing Mechanisms in Inner Mongolia, China. PLoS ONE 2022, 17, e0277558. [Google Scholar] [CrossRef]
- Zhou, H.; Ning, X.; Li, W. Spatial distribution variation of rural settlements in Damao Banner of Baotou City and its impact factors. Trans. Chin. Soc. Agric. Eng. 2019, 35, 276–286. [Google Scholar]
- Li, Y.; Li, Y.; Zhou, Y.; Shi, Y.; Zhu, X. Investigation of a Coupling Model of Coordination between Urbanization and the Environment. J. Environ. Manag. 2012, 98, 127–133. [Google Scholar] [CrossRef]
- Hussain, J.; Zhou, K.; Guo, S.; Khan, A. Investment Risk and Natural Resource Potential in “Belt & Road Initiative” Countries: A Multi-Criteria Decision-Making Approach. Sci. Total Environ. 2020, 723, 137981. [Google Scholar] [CrossRef]
- Zhou, H.; Na, X.; Li, L.; Ning, X.; Bai, Y.; Wu, X.; Zang, S. Suitability Evaluation of the Rural Settlements in a Farming-Pastoral Ecotone Area Based on Machine Learning Maximum Entropy. Ecol. Indic. 2023, 154, 110794. [Google Scholar] [CrossRef]
- Shen, W.; Zhou, T.; Chang, H.; Qiu, X.; Liu, Y.; Sun, H.; Zhai, X.; Yang, H.; Liu, G.; Yang, W. Responses of Grazing Households to Different Levels of Payments for Ecosystem Services. Ecosyst. Health Sustain. 2022, 8, 2052762. [Google Scholar] [CrossRef]
- Yi, J.; Li, H.; Wang, D.; Huo, Z. Spatial-temporal change and coupling coordination measurement of rural territorial multi-functions in Jilin Province. China Land Sci. 2021, 35, 63–73. [Google Scholar]
- Mander, Ü.; Helming, K.; Wiggering, H. Multifunctional Land Use: Meeting Future Demands for Landscape Goods and Services. In Multifunctional Land Use; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–13. ISBN 978-3-540-36763-5. [Google Scholar]
- Vizzari, M.; Sigura, M. Landscape Sequences along the Urban–Rural–Natural Gradient: A Novel Geospatial Approach for Identification and Analysis. Landsc. Urban Plann. 2015, 140, 42–55. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Zhi, C.; Hu, X. Quantitative Identification and Spatial Analysis of Land Use Ecological-Production-Living Functions in Rural Areas on China’s Southeast Coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling Coordination Analysis of Rural Production-Living-Ecological Space in the Beijing-Tianjin-Hebei Region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Bennich, T.; Weitz, N.; Carlsen, H. Deciphering the Scientific Literature on SDG Interactions: A Review and Reading Guide. Sci. Total Environ. 2020, 728, 138405. [Google Scholar] [CrossRef]
- Fu, J.; Bu, Z.; Jiang, D.; Lin, G.; Li, X. Sustainable Land Use Diagnosis Based on the Perspective of Production–Living–Ecological Spaces in China. Land Use Policy 2022, 122, 106386. [Google Scholar] [CrossRef]
- Akuraju, V.; Pradhan, P.; Haase, D.; Kropp, J.P.; Rybski, D. Relating SDG11 Indicators and Urban Scaling—An Exploratory Study. Sustain. Cities Soc. 2020, 52, 101853. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhai, T.; Li, Z.; Huang, L.; Yuan, S. Gradient Characteristics of China’s Land Use Patterns and Identification of the East-West Natural-Socio-Economic Transitional Zone for National Spatial Planning. Land Use Policy 2021, 109, 105671. [Google Scholar] [CrossRef]
- Chen, S.; Xu, G.; Lu, Z.; Ma, M.; Li, H.; Zhu, Y. Spatiotemporal variations of fractional vegetation cover and its response to climate change and urbanization in China. Arid. Land Geogr. 2023, 46, 742–752. [Google Scholar]
- Xu, Z.; Zhang, Z.; Li, C. Exploring Urban Green Spaces in China: Spatial Patterns, Driving Factors and Policy Implications. Land Use Policy 2019, 89, 104249. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wang, M.; Guo, J.; Wei, X.; Shukla, M.K.; Qi, Y. Spatiotemporal Variation of Fractional Vegetation Cover and Its Response to Climate Change and Topography Characteristics in Shaanxi Province, China. Appl. Sci. 2023, 13, 11532. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Peng, D.; Zhao, J.; Cheng, Y.; Liu, X.; Li, W.; Meng, R.; Xu, X.; Gong, P. Annual 30-m Land Use/Land Cover Maps of China for 1980–2015 from the Integration of AVHRR, MODIS and Landsat Data Using the BFAST Algorithm. Sci. China Earth Sci. 2020, 63, 1390–1407. [Google Scholar] [CrossRef]
- Naiman, R.; Décamps, H. The Ecology and Management of Aquatic-Terrestrial Ecotones; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Cadenasso, M.L.; Traynor, M.M.; Pickett, S.T. Functional Location of Forest Edges: Gradients of Multiple Physical Factors. Can. J. For. Res. 1997, 27, 774–782. [Google Scholar] [CrossRef]
- Laurance, W.F.; Didham, R.K.; Power, M.E. Ecological Boundaries: A Search for Synthesis. Trends Ecol. Evol. 2001, 16, 70–71. [Google Scholar] [CrossRef]
- Kutuzov, A. The Use of Modern and Archive Remote Sensing Data for GIS Monitoring of Riparian Ecosystems. Ecosyst. Transform. 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Chen, Q. “Hu Population Line” and the Transitional Border between Agriculture and Pasture: A Discussion from a New Perspective. Pratacultural. Sci. 2018, 35, 669–676. [Google Scholar]
- Wei, C.; Aijia, L.; Yungang, H.; Lihe, L.; Haimeng, Z.; Xuerong, H.; Bin, Y. Exploring the Long-Term Vegetation Dynamics of Different Ecological Zones in the Farming-Pastoral Ecotone in Northern China. Environ. Sci. Pollut. Res. 2021, 28, 27914–27932. [Google Scholar]
- Sun, F.; Wang, Y.; Chen, Y.; Li, Y.; Kayumba, P.M. Historic and Simulated Desert-Oasis Ecotone Changes in the Arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Yu, K.; Feng, Y.; Zheng, J.; Li, X.; Li, Z. Land use changes and their ecological effects in urban-rural ecotone. Trans. Chin. Soc. Agric. Eng. 2009, 25, 213–218. [Google Scholar]
- Yuxin, F.; University, N.N. Northwestern Farming-Pastoral Zones in the Perspective of Historical Geography. J. Arid Land Resour. Environ. 2019, 33, 83–89. [Google Scholar]
- Zhang, H.; Liu, F.; Zhang, J. Using composite system index to identify China’s ecological and socio-economic transition zone. Front. Plant Sci. 2022, 13, 1057271. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Li, Y.; Du, G. Quantifying Spatio-Temporal Patterns of Urban Expansion in Beijing during 1985–2013 with Rural-Urban Development Transformation. Land Use Policy 2018, 74, 220–230. [Google Scholar] [CrossRef]
- Changnon, S.A.; Kunkel, K.E.; Winstanley, D. Climate Factors That Caused the Unique Tall Grass Prairie in the Central United States. Phys. Geogr. 2002, 23, 259–280. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, H.; Zhang, S.; Wang, Z.; Hu, M.; Peng, L. How to Identify Transitional Geospace in Mountainous Areas?: An Approach Using a Transitional Index from the Perspective of Coupled Human and Natural Systems. J. Geogr. Sci. 2023, 33, 1205–1225. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the Urban-Rural Fringe Using Wavelet Transform and Kernel Density Estimation: A Case Study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S. Detection of Partial Land Cover Change Associated with the Migration of Inter-Class Transitional Zones. Int. J. Remote Sens. 1999, 20, 2723–2740. [Google Scholar] [CrossRef]
- Camarero, J.J.; Gutiérrez, E.; Fortin, M. Spatial Patterns of Plant Richness across Treeline Ecotones in the Pyrenees Reveal Different Locations for Richness and Tree Cover Boundaries. Glob. Ecol. Biogeogr. 2006, 15, 182–191. [Google Scholar] [CrossRef]
- Pitas, I. Digital Image Processing Algorithms and Applications. IEEE Signal Process. Mag. 2001, 18, 58. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Kang, T. Urban Fringe Division and Feature Analysis Based on the Multi-Criterion Judgment. J. Nat. Resour. 2011, 26, 703–714. [Google Scholar]
- Zhang, M.; Meng, X.; Wang, L.; Xu, T. Transit Development Shaping Urbanization: Evidence from the Housing Market in Beijing. Habitat Int. 2014, 44, 545–554. [Google Scholar] [CrossRef]
- Imhoff, M.L.; Zhang, P.; Wolfe, R.E.; Bounoua, L. Remote Sensing of the Urban Heat Island Effect across Biomes in the Continental USA. Remote Sens. Environ. 2010, 114, 504–513. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of Urbanization on Carbon Balance in Terrestrial Ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Pan, S.; Liu, M.; Lockaby, G.; Schilling, E.B.; Stanturf, J. Effects of Forest Regrowth and Urbanization on Ecosystem Carbon Storage in a Rural–Urban Gradient in the Southeastern United States. Ecosystems 2008, 11, 1211–1222. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Ye, S.; Grigoryan, S.; Zhang, Y.; Hu, Y. Spatial pattern and coordination relationship of production–living–ecological space function and residents’ behavior flow in rural–urban fringe areas. Land 2024, 13, 446. [Google Scholar] [CrossRef]
- Doum, R.; Zhangm, S.; Liu, X. Spatial and temporal diversity patterns and influencing factors in “production system-life systemecosystem” coupled coordination in resource-based cities in China. J. Beijing Norm. Univ. Sci. 2021, 57, 9. [Google Scholar] [CrossRef]
- Lemieux, L.T. Regression Discontinuity Designs in Economics. J. Econ. Lit. 2010, 48, 281–355. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Shan, B.; Shi, L. Spatial variation of soil organic carbon in bamboo forests: A case study in Changning County, Sichuan Province. Chin. J. Ecol. 2023, 42, 854–861. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, W.; Zhang, S.; Zhang, H. Analysis of Multifunctionality and Transitional Geospatial Correlation of Mountainous Land—A Case Study of Changning County. Geogr. Sci. 2022, 42, 1091–1101. [Google Scholar] [CrossRef]
- Kelin, C. 40 years of China’s turning counties into suburban districts: Review and reflection. Local Gov. Res. 2019, 2–19, 78. [Google Scholar]
- Peng Xi; Chen Zhongchang Impact evaluation on China’s western development policy. China Popul. Resour. Environ. 2016, 26, 136–144.
- Chen, M.; Li, Y.; Gong, Y.; Lu, D.; Zhang, H. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line–based on nighttime light data and cellular automata. Acta Geogr. Sin. 2016, 71, 179–193. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-Use Changes and Policy Dimension Driving Forces in China: Present, Trend and Future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Jin, F.; Wang, C.; Li, X.; Wang, J. China’s regional transport dominance: Density, proximity, and accessibility. J. Geogr. Sci. 2010, 20, 295–309. [Google Scholar] [CrossRef]
- Ge, D.; Zhou, G.; Qiao, W.; Yang, M. Land Use Transition and Rural Spatial Governance: Mechanism, Framework and Perspectives. J. Geogr. Sci. 2020, 30, 1325–1340. [Google Scholar] [CrossRef]
- Wu, S.; Liang, Z.; Li, S. Relationships between Urban Development Level and Urban Vegetation States: A Global Perspective. Urban For. Urban Green. 2019, 38, 215–222. [Google Scholar] [CrossRef]
- Li, S.; Li, X. Economic characteristics and the mechanism of farmland marginalization in mountainous areas of China. Acta Geogr. Sin. 2018, 73, 803–817. [Google Scholar]
- Zhang, S.; Deng, W.; Hu, M.; Zhang, H.; Wang, Z.; Peng, L. Identification and Differentiation Analysis of Human-Nature Interaction in Transitional Geospatial Areas of Mountainous Regions. Acta Geogr. Sin. 2022, 77, 1225–1243. [Google Scholar]
- Li, H.; Hu, X.; Zhang, X.; Li, Z.; Yuan, Y. Analysis of Rural Space. Prog. Geogr. 2018, 37, 591–600. [Google Scholar]
- Stéphenne, N.; Lambin, E.F. A Dynamic Simulation Model of Land-Use Changes in Sudano-Sahelian Countries of Africa (SALU). Agric. Ecosyst. Environ. 2001, 85, 145–161. [Google Scholar] [CrossRef]
- Pogue, D.W.; Schnell, G.D. Effects of Agriculture on Habitat Complexity in a Prairie-Forest Ecotone in the Southern Great Plains of North America. Agric. Ecosyst. Environ. 2001, 87, 287–298. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The Causes of Land-Use and Land-Cover Change: Moving beyond the Myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Fortin, M.-J.; Olson, R.J.; Ferson, S. Issues Related to the Detection of Boundaries. Landsc. Ecol. 2000, 15, 453–466. [Google Scholar] [CrossRef]
- Crumley, C.L. Analyzing Historic Ecotonal Shifts. Ecol. Appl. 1993, 3, 377–384. [Google Scholar] [CrossRef]
- Wezel, A.; Böcker, R. Mulching with Branches of an Indigenous Shrub (Guiera Senegalensis) and Yield of Millet in Semi-Arid Niger. Soil Tillage Res. 1999, 50, 341–344. [Google Scholar] [CrossRef]
- Wezel, A.; Rath, T. Resource Conservation Strategies in Agro-Ecosystems of Semi-Arid West Africa. J. Arid. Environ. 2002, 51, 383–400. [Google Scholar] [CrossRef]
- Liu, J.; Gao, J.; Lv, S.-H.; Han, Y.; Nie, Y. Shifting Farming–Pastoral Ecotone in China under Climate and Land Use Changes. J. Arid. Environ. 2011, 75, 298–308. [Google Scholar] [CrossRef]
- Reenberg, A. A Hierarchical Approach to Land Use and Sustainable Agriculture in the Sahel. Q. J. Int. Agric. 1996, 35, 63–77. [Google Scholar]
- Reenberg, A.; Markussen, B. Sahel, Population, Integrated Rural Development Projects, and Research Components in Development Projects; Aarhus University Press: Aarhus, Denmark, 1994. [Google Scholar]
- Walker, T.S. Smallholders, Householders: Farm Families and the Ecology of Intensive, Sustainable Agriculture. Agric. Syst. 1997, 53, 317–319. [Google Scholar] [CrossRef]
- Luo, Q.; Li, W.; Zhang, J. Construction and analysis of evaluation index system of rural vitalization’s comprehensive development level: A case study of Changning County, Sichuan Province. Food Sci. Technol. Econ. 2023, 48, 32–35. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Yuan, Y. Research Progress and Prospect on the Identification of Urban Fringe. Prog. Geogr. 2014, 33, 1068–1077. [Google Scholar] [CrossRef]
- Amato, F.; Maimone, B.; Martellozzo, F.; Nolè, G.; Murgante, B. The Effects of Urban Policies on the Development of Urban Areas. Sustainability 2016, 8, 297. [Google Scholar] [CrossRef]
- Liberati, M.R.; Rittenhouse, C.D.; Vokoun, J.C. Addressing Ecological, Economic, and Social Tradeoffs of Refuge Expansion in Constrained Landscapes. Landsc. Ecol. 2019, 34, 627–647. [Google Scholar] [CrossRef]
Data Types | Sources |
---|---|
Land use data | Resource and Environment Science and Data Center (30 m resolution). |
Digital elevation model | The Shuttle Radar Topography Mission dataset provided digital elevation model data (90 m resolution). |
Normalized difference vegetation index (NDVI) data | MOD13Q1 NDVI data were obtained from NASA’s (United States National Aeronautics and Space Administration) Earth Science Data Systems (250 m resolution). |
Nighttime light imagery data | Harvard Dataverse (500 m resolution). |
Population statistical data | County Statistical Yearbook. |
Transition Type | Geographical Attributes | Typical Areas |
---|---|---|
Dominated by SP | The region is characterized by a high concentration of economic activities and social development, with human activities as the main driving force and fewer geographical constraints. Land use patterns are highly urbanized, and natural ecological space is severely restricted. | Urban built-up areas; highly populated areas (plains) |
Strong SP–Weak NP | The region is mainly influenced by socioeconomic factors and still retains some natural elements, but environmental factors play a relatively minor role in the evolution of the region. Land use is mainly based on township construction and agricultural production, which guarantees the functions of production and living services. | Urban–rural ecotones; townships (low mountains and hills) |
Semi-SP–Semi-NP | The region is more dynamic in terms of human–natural interactions and is a complex area of intertwined natural and socioeconomic processes with spatial components and diverse functions. Land use is dominated by the interweaving of farmland, villages, and natural landscapes. | Rural, agricultural production areas (low mountains) |
Strong NP–Weak SP | The region’s ecosystems maintain a high degree of integrity and independence, with increased forest cover leading to fewer socioeconomic attributes and more nature, and the shaping power of natural processes generally outweighs socioeconomic drivers. Human activities are relatively few and dispersed and are often in remote or inaccessible areas; they play an irreplaceable role in maintaining ecological balance and protecting biodiversity. | Remote villages; sparsely populated areas (middle and lower mountains) |
Dominated by NP | Natural processes are the key limiting factor and the main driver for the evolution of regional systems, and there is little geographic variation. The region is dominated by high mountains, virgin forests, and nature reserves, with very little human activity; the natural ecosystem remains in a pristine state. The region plays an irreplaceable role in ecological services and is an important support area for the ecological balance of the Earth. | High mountains; nature reserves |
Time | Transition Type | LPI | SHDI | FRAC_AM | CONTAG |
---|---|---|---|---|---|
2000 | Dominated by NP | 96.246 | 0.085 | 1.009 | 17.089 |
Strong NP–Weak SP | 82.737 | 0.328 | 1.041 | 45.694 | |
Semi-SP–Semi-NP | 66.083 | 0.557 | 1.072 | 44.238 | |
Strong SP–Weak NP | 84.319 | 0.286 | 1.036 | 35.506 | |
Dominated by SP | 85.675 | 0.260 | 1.025 | 20.484 | |
2010 | Dominated by NP | 91.095 | 0.211 | 1.033 | 29.560 |
Strong NP–Weak SP | 86.913 | 0.269 | 1.034 | 41.982 | |
Semi-SP–Semi-NP | 67.205 | 0.549 | 1.070 | 45.095 | |
Strong SP–Weak NP | 78.725 | 0.375 | 1.048 | 40.525 | |
Dominated by SP | 83.944 | 0.367 | 1.030 | 46.779 | |
2020 | Dominated by NP | 100.000 | 0.000 | 1.000 | 0.000 |
Strong NP–Weak SP | 93.611 | 0.152 | 1.019 | 34.245 | |
Semi-SP–Semi-NP | 68.267 | 0.524 | 1.068 | 43.812 | |
Strong SP–Weak NP | 77.597 | 0.389 | 1.048 | 41.360 | |
Dominated by SP | 75.527 | 0.486 | 1.042 | 53.936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Liu, X.; Zhuo, X.; Zhang, S.; Zhang, H. The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China. Land 2025, 14, 1052. https://doi.org/10.3390/land14051052
Xie Y, Liu X, Zhuo X, Zhang S, Zhang H. The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China. Land. 2025; 14(5):1052. https://doi.org/10.3390/land14051052
Chicago/Turabian StyleXie, Yanlan, Xiaobo Liu, Xiaoshuang Zhuo, Shaoyao Zhang, and Hao Zhang. 2025. "The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China" Land 14, no. 5: 1052. https://doi.org/10.3390/land14051052
APA StyleXie, Y., Liu, X., Zhuo, X., Zhang, S., & Zhang, H. (2025). The Integration of Land Use Planning and the Varied Responses of Coupled Human–Natural Systems: A Case Study of Changning County in Southwest China. Land, 14(5), 1052. https://doi.org/10.3390/land14051052