Analysis of the Distribution Pattern and Driving Factors of Bald Patches in Black Soil Beach Degraded Grasslands in the Three-River-Source Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Remote Imageries
- (1)
- Landsat 8–9 OLI Image
- (2)
- Aerial image data
2.2.2. Basic Data
2.3. Methods
2.3.1. Multiple Endmember Spectral Mixture Analysis
- (1)
- Construction of the spectral library and selection of the optimal endmembers
- (2)
- Determination of the spectral unmixing model
- (3)
- Extraction of black soil beach
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Landscape Pattern Index
2.3.4. Geographical Detector Model
3. Results
3.1. Extraction Results of Black Soil Beach
3.1.1. Spatial Distribution Characteristics of Black Soil Beach
3.1.2. Accuracy Verification
3.2. Analysis of the Landscape Pattern Characteristics of Black Soil Beach
3.3. Spatial Autocorrelation Analysis of Black Soil Beach
3.4. Analysis of Spatial Heterogeneity Driving Factors of Black Soil Beach
3.4.1. Factor Detection
3.4.2. Interaction Detection
3.4.3. Risk Detection
3.4.4. Ecological Detection
4. Discussion
4.1. Analysis of Distribution Pattern of Black Soil Beach
4.2. Analysis of Black Soil Beach Driving Factors
4.3. Limitations
5. Conclusions
- (1)
- From the perspective of spatial distribution, the total area of black soil beach in the study area was 32,222.11 km2, accounting for 43.43% of the total area of Guoluo Tibetan Autonomous Prefecture. The ecological degradation problem was serious, and the spatial distribution showed a zonal pattern of ‘west dense east sparse‘ along the Yellow River Basin. The degraded area of Maduo County and Dari County in the west accounted for the highest proportion, which was the priority area for ecological restoration.
- (2)
- The landscape pattern analysis showed that the fragmentation degree of black soil beach increased first and then decreased with the aggravation of degradation, while the aggregation index and landscape shape index continued to decrease, reflecting the structural damage of the ecosystem and the process of boundary homogenization, which may be related to the continuous expansion of patches caused by freeze–thaw erosion and grazing disturbance. Spatial autocorrelation analysis further revealed the agglomeration effect of degradation hotspots: Moran ‘s I index increased significantly with the increase in degradation degree, and the high–high clustering area (H-H) was concentrated in Maduo County and the north of Dari County, which confirmed that the west was the core area of degradation.
- (3)
- The analysis of driving factors showed that the distribution pattern of black soil beach was affected by the synergistic effect of multiple factors such as annual average precipitation, actual stocking capacity, and silt content, among which the influence of precipitation was the most significant (q value is 0.620), but the interaction between various factors exceeded the independent contribution of a single factor. When the sand content (0%–37%), silt content (43%–100%), annual average precipitation (272–355 mm), and actual stocking capacity (64–76 MU/km2) are in a specific threshold range, the distribution of black soil beach is highly concentrated, while other environmental factors show dynamic heterogeneity. This phenomenon reveals the nonlinear characteristics of the formation mechanism of black soil beach, and emphasizes that ecological restoration must abandon the idea of single factor regulation and build a systematic governance framework based on multi-factor coupling. The study provides a quantitative basis for the vulnerability assessment of alpine ecosystems, and achieves sustainable recovery by dynamically balancing the threshold relationship of each driving force.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Shang, Z.; Dong, Q.; Shi, J.; Zhou, H.; Dong, S.; Shao, X.; Li, S.; Wang, Y.; Ma, Y.; Ding, L.; et al. Research Progress in Recent Ten Years of Ecological Restoration for ‘Black Soil Land’ Degraded Grassland on Tibetan Plateau—Concurrently Discuss of Ecological Restoration in Sangjiangyuan Region. Acta Agrestia Sin. 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Liu, W.; Li, B.; Yuan, Y.; Li, Y.; Jiang, Y.; Li, R.; Zhai, D.; Xu, J. Artificial grassland mapping using artificial grassland detection index of vegetation growth in the Three-River Headwaters region. Ecol. Indic. 2023, 154, 110869. [Google Scholar] [CrossRef]
- Xiao, Z.; Ding, M.; Li, L.; Nie, Y.; Pan, J.; Li, R.; Liu, L.; Zhang, Y. Divergent changes of surface water and its climatic drivers in the headwater region of the Three Rivers on the Qinghai-Tibet Plateau. Ecol. Indic. 2024, 158, 111615. [Google Scholar] [CrossRef]
- Zhao, C.; Su, S.; Gong, Z.; Lv, C.; Li, N.; Luo, Q.; Zhou, X.; Li, S. Effectiveness of protected areas in the Three-river Source Region of the Tibetan Plateau for biodiversity and ecosystem services. Ecol. Indic. 2023, 154, 110861. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; An, R.; Li, J. Comprehensive Research on Remote Sensing Monitoring of Grassland Degradation: A Case Study in the Three-River Source Region, China. Sustainability 2019, 11, 1845. [Google Scholar] [CrossRef]
- Zhao, Y.; Pu, Y.; Lin, H.; Tang, R. Examining Soil Erosion Responses to Grassland Conversation Policy in Three-River Headwaters, China. Sustainability 2021, 13, 2702. [Google Scholar] [CrossRef]
- An, R.; Xu, X.; Li, X.; Liang, X. “Black Soil Land” recognition at Maduo County in source region of Yellow River based on quantitative remote sensing. Opt. Precis. Eng. 2013, 21, 3183–3190. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Li, X.; Liu, H.; Wang, X. Spatial Distribution Characteristics of Alpine Degraded Grassland in Source Region of Yellow River. Acta Agric. Boreali-Occident. Sin. 2024, 33, 108–120. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, C.; Lu, P. A fully automatic framework for sub-pixel mapping of thermokarst lakes using Sentinel-2 images. Sci. Remote Sens. 2023, 8, 100111. [Google Scholar] [CrossRef]
- Feng, F.; Wang, L.; Hou, W.; Yang, R.; Zhang, S.; Zhao, W. Analyzing the dynamic changes and causes of greenspace landscape patterns in Beijing plains. Ecol. Indic. 2024, 158, 111556. [Google Scholar] [CrossRef]
- Yang, T.; Song, M.; Li, S.; Bao, H. Multiscale NMF based on intra-pixel and inter-pixel structure adjustment for spectral unmixing. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103901. [Google Scholar] [CrossRef]
- Gedamu, W.T.; Plank-Wiedenbeck, U.; Wodajo, B.T. A spatial autocorrelation analysis of road traffic crash by severity using Moran’s I spatial statistics: A comparative study of Addis Ababa and Berlin cities. Accid. Anal. Prev. 2024, 200, 107535. [Google Scholar] [CrossRef]
- Ren, D.; Cao, A. Analysis of the heterogeneity of landscape risk evolution and driving factors based on a combined GeoDa and Geodetector model. Ecol. Indic. 2022, 144, 109568. [Google Scholar] [CrossRef]
- Dong, Q.; Zhao, X.; Wu, G.; Shi, J.; Ren, G. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environ. Earth Sci. 2013, 70, 2359–2370. [Google Scholar] [CrossRef]
- Li, X. Natural factors and formative mechanism of “Black Beach” formed on grassland in Qinghai—Tibetan plateau. Pratacultural Sci. 2002, 19, 20–22. [Google Scholar] [CrossRef]
- Guo, L.; Xue, D.; Du, S.; Cao, L. Analysis of landscape change and ecological assessment of Guoluo Tibetan Autonomous Prefecture in Qinghai Province. Ecol. Sci. 2008, 27, 248–253. [Google Scholar] [CrossRef]
- Cai, Z.; Lyu, L.; Liu, Q.; Xing, Y.; He, M.; Zhang, H.; Shi, J. Restoration measures and prospects for degenerated grasslandof black soil beach in the Qinghai-Tibet Plateau. J. Beijing Univ. Agric. 2024, 39, 115–120. [Google Scholar] [CrossRef]
- Hu, Y.; Li, R.; Xin, Y.; Zhu, X.; Wang, Z.; Zhao, Y. Management and restoration of degradation vegetation on the Tibetan Plateau. Pratacultural Sci. 2015, 9, 1413. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Chen, B.; Shi, P.; Zhang, J.; Shen, Z.; Tao, J.; Wu, J. Causes and Restoration of Degraded Alpine Grassland in Northern Tibet. J. Resour. Ecol. 2013, 4, 43–49. [Google Scholar] [CrossRef]
- Yang, L.; Song, M.; Wang, Y.; Wang, H.; Zhou, R. The Distribution of Plateau Pika (Ochotona curzoniae) in Guoluo Prefecture, Qinghai Province and Its Response to Climate Change. Acta Agrestia Sin. 2024, 32, 1902. [Google Scholar] [CrossRef]
- Xia, X.; Liang, W.; Lv, S.; Pan, Y.; Chen, Q. Remote Sensing Identification and Stability Change of Alpine Grasslands in Guoluo Tibetan Autonomous Prefecture, China. Sustainability 2024, 16, 5041. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, X.; Li, G.; Li, J. The cause of grassland degradation in Golog Tibetan Autonomous Prefecture in the Three Rivers Headwaters Region of Qinghai Province. Acta Ecol. Sin. 2013, 33, 6577–6586. [Google Scholar] [CrossRef]
- Feng, S.; Guo, L.; Cai, J.; Li, F. On ecological sensitivity assessment of Guoluo Tibetan Autonomous Prefecture in Qinghai. Ecol. Sci. 2016, 35, 142–147. [Google Scholar] [CrossRef]
- Zhang, Z.; Gong, J.; Li, J.; Zhang, Z.; Zhang, M. Grassland degradation susceptibility assessment of the eastern area of the Three Rivers Source region based on the information quantity model: A case study of Golog Tibetan Autonomous Prefecture, Qinghai Province. Resour. Sci. 2022, 44, 464–479. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, L.; Liu, W.; Zhao, X.; Lai, D.; Cai, R.; Zhao, B.; Li, Y. Study on grassland degradation and strategies for the sustainable development of the livestock raising industry in Guoluo Prefecture of Qinghai. Pratacultural Sci. 2003, 2003, 19–25. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, H.; Dong, F.; Zhou, X.; Li, J.; Zhu, B.; Chen, F.; Ma, P.; Zhao, X.; Zheng, Z.; et al. Spatial Distribution Characteristics of Plant Community and the Identification of Driving Factors in Riparian Zone of the Three-River Headwaters Region, China. Environ. Sci. 2024, 45, 5351–5360. [Google Scholar] [CrossRef]
- Li, F.; Wu, Z.; Xu, C.; Xu, Y.; Zhang, L. The spatial distribution of Ophiocordyceps sinensis suitability in Sanjiangyuan Region. Acta Ecol. Sin. 2014, 34, 1318–1325. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, G.; Li, X.; Huang, H.; Fan, J.; Wang, L.; Liu, J.; Guo, X. Assessing the Snow Disaster and Disaster Resistance Capability for Spring 2019 in China’s Three-River Headwaters Region. Sustainability 2019, 11, 6423. [Google Scholar] [CrossRef]
- Shang, Z.; Long, R. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Front. Agric. China 2007, 1, 197–202. [Google Scholar] [CrossRef]
- Mudereri, B.T.; Abdel-Rahman, E.M.; Dube, T.; Niassy, S.; Khan, Z.; Tonnang, H.E.Z.; Landmann, T. A two-step approach for detecting Striga in a complex agroecological system using Sentinel-2 data. Sci. Total Environ. 2021, 762, 143151. [Google Scholar] [CrossRef]
- Roberts, D.A.; Gardner, M.; Church, R.; Ustin, S.; Scheer, G.; Green, R.O. Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models. Remote Sens. Environ. 1998, 65, 267–279. [Google Scholar] [CrossRef]
- Fan, F.; Deng, Y. Enhancing endmember selection in multiple endmember spectral mixture analysis (MESMA) for urban impervious surface area mapping using spectral angle and spectral distance parameters. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 290–301. [Google Scholar] [CrossRef]
- Franke, J.; Roberts, D.A.; Halligan, K.; Menz, G. Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments. Remote Sens. Environ. 2009, 113, 1712–1723. [Google Scholar] [CrossRef]
- Smith, M.O.; Ustin, S.L.; Adams, J.B.; Gillespie, A.R. Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens. Environ. 1990, 31, 1–26. [Google Scholar] [CrossRef]
- Quintano, C.; Fernández-Manso, A.; Roberts, D.A. Multiple Endmember Spectral Mixture Analysis (MESMA) to map burn severity levels from Landsat images in Mediterranean countries. Remote Sens. Environ. 2013, 136, 76–88. [Google Scholar] [CrossRef]
- Thorp, K.R.; French, A.N.; Rango, A. Effect of image spatial and spectral characteristics on mapping semi-arid rangeland vegetation using multiple endmember spectral mixture analysis (MESMA). Remote Sens. Environ. 2013, 132, 120–130. [Google Scholar] [CrossRef]
- Xiong, S. Application of Geographic Information System in Monitoring the Change of Black Soil Beach Type Degraded Grassland in Sanjiangyuan Comprehensive Test Area. China Manganese Ind. 2018, 36, 176–178. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, K.; Zhao, F. Research on the regional spatial effects of green development and environmental governance in China based on a spatial autocorrelation model. Struct. Change Econ. Dyn. 2020, 55, 1–11. [Google Scholar] [CrossRef]
- Islam, S.M.S.; Islam, K.M.A.; Mullick, M.R.A. Drought hot spot analysis using local indicators of spatial autocorrelation: An experience from Bangladesh. Environ. Chall. 2022, 6, 100410. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X.; Lei, Y.; Gao, S. The contributions of natural and anthropogenic factors to NDVI variations on the Loess Plateau in China during 2000–2020. Ecol. Indic. 2022, 143, 109342. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, J.; Dong, G.; Wei, Y. Quantitative analysis of NDVI driving factors based on the geographical detector model in the Chengdu–Chongqing region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, S.; Li, Y.; Wu, H.; Wu, R. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Wei, P.; Jia, Y.; Hou, G.; Xu, H.; Yang, M. Effects of artificial grasslands on the freeze-thaw process of black soil beach in permafrost regions. Pratacultural Sci. 2022, 39, 2016–2028. [Google Scholar] [CrossRef]
- Geng, G. Beautiful Answer Sheet for Qinghai Alpine Grassland Protection and Restoration. Green China 2021, 18, 8–13. [Google Scholar] [CrossRef]
- Geng, G. Luorigai is a “Living Map” on the Dari Grassland. Green China 2022, 19, 56–59+51. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Li, X.; Zhang, F.; Dong, X.; Wang, Y.; Zhang, H. Identification of Degraded Grassland in Qinghai Area of Yellow River Source Based On High-Resolution Images. Acta Agric. Boreali-Occident. Sin. 2023, 32, 198–211. [Google Scholar] [CrossRef]
- Zhuoma, C. Management Model of “Black Soil Beach” Degraded Grassland in Qinghai Province. Graziery Vet. Sci. (Electron. Version) 2021, 2021, 129–130. [Google Scholar] [CrossRef]
- Jia, Y.; Wei, P.; Wu, M.; Zhao, J.; Gao, Y.; Chen, S. Response of Soil Aggregate to Artificial Planting in “Black Soil Land” of Permafrost Regions. Acta Agrestia Sin. 2022, 30, 1934–1943. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Wei, W.; Lu, G.; Tian, F.; Qiao, Y. The Influence of “Black Beach” to Soils Nutrient on Alpine Meadow. Acta Agric. Boreali-Occident. Sin. 2009, 18, 304–308. [Google Scholar] [CrossRef]
- Wang, X.; Ma, Y.; Wang, Y.; Li, S.; Jing, M.; Shi, J.; Wen, J. Effects of Eestablishment Ages of Elymus tangutorum on Soil Characteristics of Black-Soil-Beach in Alpine Region of Qilian Mountains. Chin. Qinghai J. Anim. Vet. Sci. 2020, 50, 7–13+70. [Google Scholar] [CrossRef]
- Harris, R.B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. J. Arid Environ. 2010, 74, 1–12. [Google Scholar] [CrossRef]
- Wang, B.; Ga, M.; Zhang, Y. Study on the forming mechanism of “black beach” degraded alpine meadow on Qinghai-Tibetan Plateau and the research progress on its restoration. Grassl. Turf 2007, 2007, 72–77. [Google Scholar] [CrossRef]
- Tuo, W.; Liu, Z.; Zhang, R.; Zhang, Q.; Zhou, H. Research progress on the causes and restoration of degraded grassland of black soil land in Qinghai Province. Qinghai Prataculture 2024, 33, 43–49. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, K.; Lu, H.; Chen, S. Spatio-temporal monitoring of black soil land degraded grassland by remote sensing. Bull. Surv. Mapp. 2022, 2022, 57–61. [Google Scholar] [CrossRef]
Factors | Driving Factors | Variables | Data Source |
---|---|---|---|
Terrain factors | Elevation (m) | X1 | Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences https://www.resdc.cn/ (accessed on 10 November 2023) |
Slope (°) | X2 | ||
Aspect (/) | X3 | ||
Meteorological factors | Annual average precipitation (mm) | X4 | National Tibetan Plateau Data Center https://data.tpdc.ac.cn/ (accessed on 10 November 2023) |
Annual average temperature (°C) | X5 | ||
Soil texture factors | Clay content (%) | X6 | |
Sand content (%) | X7 | ||
Silt content (%) | X8 | ||
Human factor | Actual stocking capacity (MU/km2) | X9 |
Landscape Pattern Index | Calculation Formula | Range | Ecological Meaning |
---|---|---|---|
patch density (PD) | PD ≥ 0 | Reflecting the degree of spatial heterogeneity in the landscape | |
aggregation index (AI) | 0 < AI ≤ 100 | Reflecting the degree of patch aggregation in the landscape | |
landscape shape index (LSI) | LSI ≥ 1 | Reflecting the degree of complexity in the patch boundary shapes |
County Name | Mild Black Soil Beach | Moderate Black Soil Beach | Severe Black Soil Beach | Total (km2) | Proportion (%) |
---|---|---|---|---|---|
Maqin | 3318.83 | 925.37 | 485.04 | 4729.24 | 35.29% |
Gande | 2428.48 | 594.09 | 178.42 | 3200.99 | 45.43% |
Maduo | 4049.51 | 3192.22 | 1997.43 | 9239.16 | 36.52% |
Jiuzhi | 2320.22 | 372.35 | 95.04 | 2787.61 | 31.83% |
Dari | 6330.39 | 2778.30 | 549.85 | 9658.54 | 62.78% |
Banma | 1988.59 | 515.00 | 102.98 | 2606.57 | 41.09% |
Total (km2) | 20,436.02 | 8377.33 | 3408.76 | 32,222.11 | 43.43% |
Field Sampling Points | Extract Sampling Points | ||
---|---|---|---|
Mild Black Soil Beach | Moderate Black Soil Beach | Severe Black Soil Beach | |
Mild black soil beach | 86 | 14 | |
Moderate black soil beach | 12 | 81 | 7 |
Severe black soil beach | 2 | 15 | 83 |
County Name | Mild Black Soil Beach | Moderate Black Soil Beach | Severe Black Soil Beach | ||||||
---|---|---|---|---|---|---|---|---|---|
PD | AI | LSI | PD | AI | LSI | PD | AI | LSI | |
Maqin County | 7.10 | 67.49 | 625.54 | 11.17 | 45.64 | 551.57 | 4.68 | 56.38 | 320.40 |
Gande County | 8.11 | 66.52 | 550.17 | 14.15 | 46.86 | 432.77 | 4.99 | 48.26 | 232.35 |
Maduo County | 5.85 | 66.94 | 702.37 | 9.37 | 58.66 | 779.59 | 6.07 | 65.11 | 520.51 |
Jiuzhi County | 9.92 | 70.88 | 467.89 | 8.22 | 49.60 | 324.25 | 2.56 | 47.93 | 168.93 |
Dari County | 4.96 | 71.25 | 763.14 | 20.44 | 55.46 | 782.57 | 8.40 | 47.70 | 407.80 |
Banma County | 4.69 | 75.65 | 361.73 | 10.76 | 53.36 | 352.19 | 3.67 | 47.85 | 176.05 |
County level | 6.77 | 69.79 | 578.47 | 12.35 | 51.60 | 537.16 | 5.06 | 52.21 | 304.34 |
Global level | 6.44 | 69.93 | 1448.81 | 12.28 | 54.59 | 1385.95 | 4.56 | 59.18 | 794.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jing, W.; Wang, Z.; Pang, G.; Long, Y.; Wang, L.; Yang, Q.; Song, J. Analysis of the Distribution Pattern and Driving Factors of Bald Patches in Black Soil Beach Degraded Grasslands in the Three-River-Source Region. Land 2025, 14, 1050. https://doi.org/10.3390/land14051050
Jing W, Wang Z, Pang G, Long Y, Wang L, Yang Q, Song J. Analysis of the Distribution Pattern and Driving Factors of Bald Patches in Black Soil Beach Degraded Grasslands in the Three-River-Source Region. Land. 2025; 14(5):1050. https://doi.org/10.3390/land14051050
Chicago/Turabian StyleJing, Weitao, Zhou Wang, Guowei Pang, Yongqing Long, Lei Wang, Qinke Yang, and Jinxi Song. 2025. "Analysis of the Distribution Pattern and Driving Factors of Bald Patches in Black Soil Beach Degraded Grasslands in the Three-River-Source Region" Land 14, no. 5: 1050. https://doi.org/10.3390/land14051050
APA StyleJing, W., Wang, Z., Pang, G., Long, Y., Wang, L., Yang, Q., & Song, J. (2025). Analysis of the Distribution Pattern and Driving Factors of Bald Patches in Black Soil Beach Degraded Grasslands in the Three-River-Source Region. Land, 14(5), 1050. https://doi.org/10.3390/land14051050