Towards an Integrated Framework for Understanding the Landscape Pattern of Coupled Urban Green and Blue Spaces
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. A Framework for Analyzing the Integrated Landscape Pattern of the Coupled Green and Blue Spaces
2.3. Quantifying the Integrated Landscape Pattern of Green and Blue Spaces
2.4. Analyzing the Spatial Equity of the Coupled Green and Blue Spaces
3. Results
3.1. Integrated Landscape Pattern of the Coupled Green and Blue Spaces at Multiple Scales
3.2. Types of Coupled Green and Blue Spaces
3.3. Spatial Equity of the Coupled Green and Blue Spaces
4. Discussion
4.1. To What Degree Are Green and Blue Spaces Spatially Coupled?
4.2. How Are the Coupled Green and Blue Spaces Distributed Among Different Sociodemographic Groups?
4.3. Implications and Research Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Yang, C.; Xu, H.; Li, Q.; Wang, X.; Tang, B.; Chen, J.; Tu, W.; Zhang, Y.; Shi, T.; Chen, M.; et al. Global loss of mountain vegetated landscapes and its impact on biodiversity conservation. Nat. Commun. 2025, 16, 8971. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.; Yue, L.; Gu, T.; Tang, J.; Wang, Z. Unraveling the factors behind self-reported trapped incidents in the extraordinary urban flood disaster: A case study of Zhengzhou City, China. Cities 2024, 155, 105444. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Wen, D.; Kang, J.; Chen, T.; Zhang, B.; Hu, Y.; Yin, J. Global South shows higher urban flood exposures than the Global North under current and future scenarios. Commun. Earth Environ. 2025, 6, 594. [Google Scholar] [CrossRef]
- Veerkamp, C.J.; Schipper, A.M.; Hedlund, K.; Lazarova, T.; Nordin, A.; Hanson, H.I. A review of studies assessing ecosystem services provided by urban green and blue infrastructure. Ecosyst. Serv. 2021, 52, 101367. [Google Scholar] [CrossRef]
- Sahani, J.; Kumar, P.; Debele, S.E. Efficacy assessment of green-blue nature-based solutions against environmental heat mitigation. Environ. Int. 2023, 179, 108187. [Google Scholar] [CrossRef]
- Richards, D.R.; Belcher, R.N.; Carrasco, L.R.; Edwards, P.J.; Fatichi, S.; Hamel, P.; Masoudi, M.; McDonnell, M.J.; Peleg, N.; Stanley, M.C. Global variation in contributions to human well-being from urban vegetation ecosystem services. One Earth 2022, 5, 522–533. [Google Scholar] [CrossRef]
- Smith, N.; Georgiou, M.; King, A.C.; Tieges, Z.; Webb, S.; Chastin, S. Urban blue spaces and human health: A systematic review and meta-analysis of quantitative studies. Cities 2021, 119, 103413. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Liu, H.; Zhang, B.; An, W.; Zhu, C. Effects of urban lakes and neighbouring green spaces on air temperature and humidity and seasonal variabilities. Sustain. Cities Soc. 2023, 91, 104438. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, Q.; Zhang, L.; Sun, C. Summer cooling island effects of blue-green spaces in severe cold regions: A case study of harbin, China. Build. Environ. 2024, 257, 111539. [Google Scholar] [CrossRef]
- Cao, W.; Wang, L.; Li, R.; Zhou, W.; Zhang, D. Unveiling the nonlinear relationships and co-mitigation effects of green and blue space landscapes on PM2.5 exposure through explainable machine learning. Sustain. Cities Soc. 2025, 122, 106234. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Guan, Y.; Ji, P.; Ren, B.; Zhu, C. Effect of urban lake wetlands and neighboring urban greenery on air PM10 and PM2.5 mitigation. Build. Environ. 2021, 206, 108291. [Google Scholar] [CrossRef]
- Tan, C.L.Y.; Chang, C.-C.; Nghiem, L.T.P.; Zhang, Y.; Oh, R.R.Y.; Shanahan, D.F.; Lin, B.B.; Gaston, K.J.; Fuller, R.A.; Carrasco, L.R. The right mix: Residential urban green-blue space combinations are correlated with physical exercise in a tropical city-state. Urban For. Urban Green. 2021, 57, 126947. [Google Scholar] [CrossRef]
- Fei, F.; Wang, Y.; Yao, W.; Gao, W.; Wang, L. Coupling mechanism of water and greenery on summer thermal environment of waterfront space in China’s cold regions. Build. Environ. 2022, 214, 108912. [Google Scholar] [CrossRef]
- Janhäll, S. Review on urban vegetation and particle air pollution—Deposition and dispersion. Atmos. Environ. 2015, 105, 130–137. [Google Scholar] [CrossRef]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Li, Y.; Ren, C.; Ho, J.Y.-e.; Shi, Y. Landscape metrics in assessing how the configuration of urban green spaces affects their cooling effect: A systematic review of empirical studies. Landsc. Urban Plan. 2023, 239, 104842. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, G.; Zuo, S.; Jørgensen, G.; Koga, M.; Vejre, H. Critical review on the cooling effect of urban blue-green space: A threshold-size perspective. Urban For. Urban Green. 2020, 49, 126630. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, W.; Wu, T.; Zhang, T. The win-win interaction between integrated blue and green space on urban cooling. Sci. Total Environ. 2023, 863, 160712. [Google Scholar] [CrossRef]
- Shi, D.; Song, J.; Huang, J.; Zhuang, C.; Guo, R.; Gao, Y. Synergistic cooling effects (SCEs) of urban green-blue spaces on local thermal environment: A case study in Chongqing, China. Sustain. Cities Soc. 2020, 55, 102065. [Google Scholar] [CrossRef]
- Yang, F.; Yang, D.; Zhang, Y.; Guo, R.; Li, J.; Wang, H. Evaluating the multi-seasonal impacts of urban blue-green space combination models on cooling and carbon-saving capacities. Build. Environ. 2024, 266, 112045. [Google Scholar] [CrossRef]
- Wang, M.; Song, H.; Zhu, W.; Wang, Y. The Cooling Effects of Landscape Configurations of Green–Blue Spaces in Urban Waterfront Community. Atmosphere 2023, 14, 833. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, Y.; Liu, Y.; Li, X. Exploring the correlation between waterbodies, green space morphology, and carbon dioxide concentration distributions in an urban waterfront green space: A simulation study based on the carbon cycle. Sustain. Cities Soc. 2023, 98, 104831. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Liu, Y.; Sun, Y.; Li, C. The impact of landscape spatial morphology on green carbon sink in the urban riverfront area. Cities 2024, 148, 104919. [Google Scholar] [CrossRef]
- Feng, H.; Feng, L.; Huang, F.; Sun, J.; Chen, J. Synergistic cooling effects of urban blue-green spaces at microscale: Using the synergistic cooling composite index. Sustain. Cities Soc. 2025, 131, 106768. [Google Scholar] [CrossRef]
- Mu, T.; Zhao, R.; Li, H.; Lei, Y.; Chen, Q.; Tian, G.; Zhang, Y.; Mu, B. A novel indicator for assessing spatial coupling relationships within hybrid landscapes comprising diverse land cover types and its application to explaining urban thermal environment. Sustain. Cities Soc. 2025, 130, 106595. [Google Scholar] [CrossRef]
- Guan, J.; Wang, R.; Van Berkel, D.; Liang, Z. How spatial patterns affect urban green space equity at different equity levels: A Bayesian quantile regression approach. Landsc. Urban Plan. 2023, 233, 104709. [Google Scholar] [CrossRef]
- Rui, J. Green disparities, happiness elusive: Decoding the spatial mismatch between green equity and the happiness from vulnerable perspectives. Cities 2025, 163, 106063. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Does socioeconomic development lead to more equal distribution of green space? Evidence from Chinese cities. Sci. Total Environ. 2021, 757, 143780. [Google Scholar] [CrossRef]
- Yang, H.; Jin, C.; Li, T. Who gets the green, who feels the equity? Dual inequity in exposure and perception of green space in high-density built-up areas. Cities 2026, 168, 106416. [Google Scholar] [CrossRef]
- Xu, R.; Hamel, P.; Lim, A.Y.M.; He, T. Assessing equity in heat mitigation ecosystem services of urban green space in Singapore. Ecosyst. Serv. 2025, 73, 101727. [Google Scholar] [CrossRef]
- LaReaux, J.; Watkins, D. Geospatial analysis for promoting urban green space equity: Case study of Detroit, Michigan, USA. Urban For. Urban Green. 2025, 105, 128716. [Google Scholar] [CrossRef]
- Liang, H.; Yan, Q.; Yan, Y. A novel spatiotemporal framework for accessing green space accessibility change in adequacy and equity: Evidence from a rapidly urbanizing Chinese City in 2012–2021. Cities 2024, 151, 105112. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Fan, Y.; Huang, L.; Zhang, Z.; Fang, X. Threats to Sustainable Ecosystem Services Provision for Different Sociodemographic Groups: A Case Study in Nanjing. Ecosyst. Health Sustain. 2025, 11, 0422. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, S.; Guo, W.; Zhang, J. Spatiotemporal dynamics and driving factors of green-blue space in High-Density Cities: Evidence from central Nanjing. Ecol. Indic. 2024, 160, 111860. [Google Scholar] [CrossRef]
- Fan, Z.; Duan, J.; Lu, Y.; Zou, W.; Lan, W. A geographical detector study on factors influencing urban park use in Nanjing, China. Urban For. Urban Green. 2021, 59, 126996. [Google Scholar] [CrossRef]
- Li, K.; Mao, Y.; Li, Y.; Wei, J.; Shou, T.; Lu, D.; Geng, W. Exploring the pathways of urban green space exposure on respiratory health: An empirical study in Nanjing, China. Urban For. Urban Green. 2024, 101, 128536. [Google Scholar] [CrossRef]
- Yuan, Y.; Tang, S.; Zhang, J.; Guo, W. Quantifying the relationship between urban blue-green landscape spatial pattern and carbon sequestration: A case study of Nanjing’s central city. Ecol. Indic. 2023, 154, 110483. [Google Scholar] [CrossRef]
- Kong, L.; Liu, Z.; Pan, X.; Wang, Y.; Guo, X.; Wu, J. How do different types and landscape attributes of urban parks affect visitors’ positive emotions? Landsc. Urban Plan. 2022, 226, 104482. [Google Scholar] [CrossRef]
- Sheng, S.; Wang, Y. Configuration characteristics of green-blue spaces for efficient cooling in urban environments. Sustain. Cities Soc. 2024, 100, 105040. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, Y.; Wang, X.; Guo, S. Influence of Urban Blue-green Landscape Pattern on Rainfall-flood Regulation and Storage Function. Landsc. Archit. 2021, 28, 63–67. [Google Scholar]
- Wang, J.; Ke, N.; Pan, J.; Wang, M. Key Factors of Urban Blue-Green Spatial Coupling that Impact on Vitality Distribution Characteristics: A Study Based on 130 Samples in Changning District, Shanghai. Landsc. Archit. Acad. J. 2023, 40, 4–13. [Google Scholar]
- Xu, Z.; Zhao, S. Fine-grained urban blue-green-gray landscape dataset for 36 Chinese cities based on deep learning network. Sci. Data 2024, 11, 266. [Google Scholar] [CrossRef]
- Graskemper, V.; Yu, X.; Feil, J.-H. Farmer typology and implications for policy design—An unsupervised machine learning approach. Land Use Policy 2021, 103, 105328. [Google Scholar] [CrossRef]
- Botyarov, M.; Miller, E.E. Partitioning around medoids as a systematic approach to generative design solution space reduction. Results Eng. 2022, 15, 100544. [Google Scholar] [CrossRef]
- Peng, S. 1-km Monthly Mean Temperature Dataset for China (1901–2023); National Tibetan Plateau Data Center, Ed.; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Chen, Y.; Xu, C.; Ge, Y.; Zhang, X.; Zhou, Y. A 100 m gridded population dataset of China’s seventh census using ensemble learning and big geospatial data. Earth Syst. Sci. Data 2024, 16, 3705–3718. [Google Scholar] [CrossRef]
- Zhong, Z.; Ma, Q.; Fang, X.; Kong, L.; Cao, Q.; Liu, L.; Zhou, R.; Du, S. Who are marginalized? Unequal distribution of urban street shading in Shanghai. Build. Environ. 2025, 283, 113361. [Google Scholar] [CrossRef]
- Fang, X.; Ma, Q.; Wu, L.; Liu, X. Distributional environmental justice of residential walking space: The lens of urban ecosystem services supply and demand. J. Environ. Manag. 2023, 329, 117050. [Google Scholar] [CrossRef]
- Ju, Y.; Liang, Y.; Kong, J.; Wang, X.; Wen, S.; Shang, H.; Wang, X. 100-m resolution Age-Stratified Population Estimation from the 2020 China Census by Township (ASPECT). Sci. Data 2025, 12, 1058. [Google Scholar] [CrossRef]
- Ju, Y. 100-m resolution Age-Stratified Population Dataset from the 2020 China Census. Sci. Data 2025, 12, 1058. [Google Scholar] [CrossRef]
- Wu, W.-B.; Ma, J.; Banzhaf, E.; Meadows, M.E.; Yu, Z.-W.; Guo, F.-X.; Sengupta, D.; Cai, X.-X.; Zhao, B. A first Chinese building height estimate at 10 m resolution (CNBH-10 m) using multi-source earth observations and machine learning. Remote Sens. Environ. 2023, 291, 113578. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J.; Liao, L.; et al. The Global NPP-VIIRS-like Nighttime Light Data (Version 2) for 1992–2024, Harvard Dataverse, 2020. [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Lu, W. Dataset of Urban Built-Up Area in China (1992–2020) V1.0; National Tibetan Plateau Data Center, Ed.; National Tibetan Plateau Data Center: Beijing, China, 2022. [Google Scholar]
- Du, H.; Cai, W.; Xu, Y.; Wang, Z.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Shah, A.; Garg, A.; Mishra, V. Quantifying the local cooling effects of urban green spaces: Evidence from Bengaluru, India. Landsc. Urban Plan. 2021, 209, 104043. [Google Scholar] [CrossRef]
- Tan, X.; Sun, X.; Huang, C.; Yuan, Y.; Hou, D. Comparison of cooling effect between green space and water body. Sustain. Cities Soc. 2021, 67, 102711. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, Y.; Wang, J. Synergistic Response of Blue and Green Spaces as Urban Cooling Source to Extreme Heatwaves. Land 2025, 14, 1944. [Google Scholar] [CrossRef]
- Lu, Q.; Qi, W.; Yang, D.; Zhang, M. The influence of internal spatial coupling characteristics of blue-green space on cooling benefit in metropolitan areas: Evidence form Hangzhou, China. Environ. Sustain. Indic. 2025, 25, 100558. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, X.; Song, M.; Ye, J. The spatio-temporal trends of urban green space and its interactions with urban growth: Evidence from the Yangtze River Delta region, China. Land Use Policy 2023, 128, 106598. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, S.S. Comprehensive greenspace planning based on landscape ecology principles in compact Nanjing city, China. Landsc. Urban Plan. 2003, 65, 95–116. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, L.; Yu, J.; Guo, S. Do seasons matter? Exploring the dynamic link between blue-green space and mental restoration. Urban For. Urban Green. 2022, 73, 127612. [Google Scholar] [CrossRef]
- White, M.P.; Elliott, L.R.; Gascon, M.; Roberts, B.; Fleming, L.E. Blue space, health and well-being: A narrative overview and synthesis of potential benefits. Environ. Res. 2020, 191, 110169. [Google Scholar] [CrossRef]
- Liang, S.; Lu, M. Computer vision framework for site-scale multidimensional vitality assessment: Lakeside waterfront spaces as a testing ground. Habitat Int. 2025, 166, 103603. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Turner, M.G.; O’Neill, R.V.; Gardner, R.H.; Milne, B.T. Effects of changing spatial scale on the analysis of landscape pattern. Landsc. Ecol. 1989, 3, 153–162. [Google Scholar] [CrossRef]
- Wu, J.; Shen, W.; Sun, W.; Tueller, P.T. Empirical patterns of the effects of changing scale on landscape metrics. Landsc. Ecol. 2002, 17, 761–782. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Wong, D.W.S. The modifiable areal unit problem in multivariate statistical analysis. Environ. Plan. A 1991, 23, 1025–1044. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem; CATMOG 38; GeoBooks: Norwich, UK, 1984. [Google Scholar]
- Xiao, Y.; Wang, Z.; Li, Z.; Tang, Z. An assessment of urban park access in Shanghai—Implications for the social equity in urban China. Landsc. Urban Plan. 2017, 157, 383–393. [Google Scholar] [CrossRef]
- Zhao, H.; Gu, B.; Zhang, Q.; Chen, Y. How Can the Balance of Green Infrastructure Supply and Demand Build an Ecological Security Pattern. Ecosyst. Health Sustain. 2024, 10, 179. [Google Scholar] [CrossRef]
- Nghiem, L.T.P.; Zhang, Y.; Oh, R.R.Y.; Chang, C.-c.; Tan, C.L.Y.; Shannahan, D.F.; Lin, B.B.; Gaston, K.J.; Fuller, R.A.; Carrasco, L.R. Equity in green and blue spaces availability in Singapore. Landsc. Urban Plan. 2021, 210, 104083. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Z.; Pearce, J.; Yao, Y.; Li, X.; Liu, Y. The distribution of greenspace quantity and quality and their association with neighbourhood socioeconomic conditions in Guangzhou, China: A new approach using deep learning method and street view images. Sustain. Cities Soc. 2021, 66, 102664. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Kuzovkina, Y.A.; Weiner, D. Who lives in greener neighborhoods? The distribution of street greenery and its association with residents’ socioeconomic conditions in Hartford, Connecticut, USA. Urban For. Urban Green. 2015, 14, 751–759. [Google Scholar] [CrossRef]
- Liu, Y.; Li, G. Inequities in thermal comfort and urban blue-green spaces cooling: An explainable machine learning study across residents of different socioeconomic statuses in Hangzhou, China. Sustain. Cities Soc. 2025, 127, 106427. [Google Scholar] [CrossRef]
- Yu, Z.; Ma, W.; Hu, J.; Yang, G.; Liu, H.; Zhou, Y.; Li, X.; Li, Y.; Guan, C.; Ma, W.; et al. Greening dominates greenspace exposure inequality in Chinese cities. npj Urban Sustain. 2025, 5, 73. [Google Scholar] [CrossRef]
- Zhang, X.; Brandt, M.; Tong, X.; Tong, X.; Zhang, W.; Reiner, F.; Li, S.; Tian, F.; Yue, Y.; Zhou, W.; et al. A strong but uneven increase in urban tree cover in China over the recent decade. Nat. Cities 2025, 2, 460–469. [Google Scholar] [CrossRef]
- Hong, W.; Li, Y.; Guo, R.; Chen, B.; Zhang, W.; Li, F.; Yang, S.; Liu, Y.; Zhao, Y.; Li, Y.; et al. Empowering China’s sustainable development through social-ecological networks. npj Urban Sustain. 2025, 5, 45. [Google Scholar] [CrossRef]
- Lu, Q.; Ning, J.; You, H.; Xu, L. Urban Intensity in Theory and Practice: Empirical Determining Mechanism of Floor Area Ratio and Its Deviation from the Classic Location Theories in Beijing. Land 2023, 12, 423. [Google Scholar] [CrossRef]
- Iojă, I.-C.; Osaci-Costache, G.; Breuste, J.; Hossu, C.A.; Grădinaru, S.R.; Onose, D.A.; Nită, M.R.; Skokanová, H. Integrating urban blue and green areas based on historical evidence. Urban For. Urban Green. 2018, 34, 217–225. [Google Scholar] [CrossRef]
- Ahmed, S.; Meenar, M.; Alam, A. Designing a Blue-Green Infrastructure (BGI) Network: Toward Water-Sensitive Urban Growth Planning in Dhaka, Bangladesh. Land 2019, 8, 138. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Shen, Z.; Fan, Z. Evaluating Neighborhood Green-Space Quality Using a Building Blue–Green Index (BBGI) in Nanjing, China. Land 2022, 11, 445. [Google Scholar] [CrossRef]
- Li, H.; Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 2004, 19, 389–399. [Google Scholar] [CrossRef]
- Karimi, J.D.; Corstanje, R.; Harris, J.A. Understanding the importance of landscape configuration on ecosystem service bundles at a high resolution in urban landscapes in the UK. Landsc. Ecol. 2021, 36, 2007–2024. [Google Scholar] [CrossRef]
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]








| Category | Metrics, Abbreviations, and References | Definition | |
|---|---|---|---|
| Single green and blue space | Composition | Class area (CA) [20] | The total area of all patches of green or blue spaces aij is the area of the jth patch of type i |
| Percentage of landscape (PLAND) [23,40] | The proportion of the total area occupied by blue or green spaces aij is the area of the jth patch of type i, and A is the total landscape area | ||
| Largest patch index (LPI) [41] | The proportion of the landscape area occupied by the largest blue or green patch aij is the area of the jth patch of type i, and A is the total landscape area | ||
| Mean patch size (MPS) [9,40] | The average size of individual blue or green space patches aij is the area of the jth patch of type i, and Ni is the total number of patches of type i | ||
| Configuration | Division index (DIVISION) [39] | Degree of fragmentation among blue or green space patches aij is the area of the jth patch of type i, and A is the total landscape area | |
| Shape index (SHAPE) [20,42] | Complexity of patch shape aij is the area of the jth patch of type i, Ni is the total number of patches of type i, and Pij is the perimeter of the jth patch of type i | ||
| Perimeter-area ratio (PARA) [42] | The average ratio of the perimeter to the area of blue or green space patches aij is the area of the jth patch of type i, Ni is the total number of patches of type i, and Pij is the perimeter of the jth patch of type i | ||
| Quality | Normalized Difference Vegetation Index (NDVI) | Indicator of vegetation quality | |
| Relationship between blue and green space | Composition | Area ratio (AR) [43] | Ratio of the total area of blue spaces to green spaces CAUBS and CAUGS are the areas of blue and green spaces, respectively |
| Mean patch size ratio (MPSR) | Ratio of the mean patch size of blue spaces to that of green spaces MPSUBS and MPSUGS are the mean patch size of blue and green spaces, respectively | ||
| Largest patch index ratio (LPR) | Ratio of the largest patch size of blue spaces to that of green spaces LPIUBS and LPIUGS are the largest patch size of blue and green spaces, respectively | ||
| Combination type (CT) | Type of blue and green spaces combination, including blue-green space, blue space, and green space | ||
| Configuration | Length of edge contacted with blue spaces (LE) [20,43] | Total length of the waterfront shoreline within the blue and green spaces | |
| Distance from green spaces to blue spaces (D) [25] | Average shortest distance from the centroid of green patches to the nearest water bodies | ||
| Area of waterfront green spaces (WGS300A) | Total area of green spaces within 300 m buffer zones of blue spaces | ||
| Quality | NDVI of waterfront green spaces (NDVIWGS) | Vegetation characteristics of waterfront green spaces | |
| Category | Influencing Factor | Unit | Sources |
|---|---|---|---|
| Natural factor | DEM | m | https://www.earthdata.nasa.gov/ (accessed on 20 November 2025) |
| Slope | ° | https://www.earthdata.nasa.gov/ (accessed on 20 November 2025) | |
| Annual average temperature | °C | [47] | |
| Socioeconomic factor | Population | person | [48] |
| Road density | km/km2 | http://www.resdc.cn/ (accessed on 20 November 2025) | |
| Points of interest | count | https://lbs.amap.com/ (accessed on 20 November 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, J.; Liu, Y.; Fan, Y.; He, B.; Shang, C. Towards an Integrated Framework for Understanding the Landscape Pattern of Coupled Urban Green and Blue Spaces. Land 2025, 14, 2311. https://doi.org/10.3390/land14122311
Liu L, Zhang J, Liu Y, Fan Y, He B, Shang C. Towards an Integrated Framework for Understanding the Landscape Pattern of Coupled Urban Green and Blue Spaces. Land. 2025; 14(12):2311. https://doi.org/10.3390/land14122311
Chicago/Turabian StyleLiu, Lumeng, Jiajia Zhang, Yilin Liu, Yuchen Fan, Baiting He, and Chenwei Shang. 2025. "Towards an Integrated Framework for Understanding the Landscape Pattern of Coupled Urban Green and Blue Spaces" Land 14, no. 12: 2311. https://doi.org/10.3390/land14122311
APA StyleLiu, L., Zhang, J., Liu, Y., Fan, Y., He, B., & Shang, C. (2025). Towards an Integrated Framework for Understanding the Landscape Pattern of Coupled Urban Green and Blue Spaces. Land, 14(12), 2311. https://doi.org/10.3390/land14122311

