Determination of Soil Thermal Properties Across Seasons in Alkaline–Nonalkaline Soils of Igdır, Türkiye
Abstract
1. Introduction
- This paper presents analytical solutions to the heat transfer problem in soil of finite and semi-infinite thickness under boundary conditions of the first kind with infinite harmonics on the soil surface, as well as boundary conditions of the second kind at depth, i.e., T’z(z = L, t) = 0 and T’z(z → ∞, t) = 0.
- Based on these solutions, methods have been developed for determining the thermal conductivity coefficient from a point value of soil temperature of a given power based on the results of an analysis of temperature dynamics at one depth based on eight daily observations with an interval of 3 h.
- 3.
- When using the second harmonic in boundary conditions on the soil surface (z = 0), the model allows for high-precision determination of the parameters of temperature distribution on the soil surface, as well as the thermal conductivity parameter using the proposed M8 method.
- 4.
- The proposed methods, in addition to the amplitude of fluctuations (Ta) of the soil surface temperature, also take into account the depth of the soil profile (L).
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Soil Analysis
2.2. Methods
2.2.1. Mathematical Formulation of the Problem
2.2.2. Direct Problem of Heat Transfer Model in Soil
2.2.3. Inverse Problem of Heat Transfer Model in Soil
2.3. Calculation of Thermal Properties of Soil
2.4. Comparison of Methods and Model Assessment
3. Results and Discussion
3.1. Calculations of the Parameters of the Soil Surface Zone
3.2. Calculation of Soil Thermal Parameters
3.3. Assessment of Soil Thermal Diffusivity Models
3.4. Heat Flux (q)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barzegar, A.R.; Oades, J.M.; Rengasamy, P.; Giles, L. Effect of sodicity and salinity on disaggregation and tensile strength of an alfisol under different cropping systems. Soil Till. Res. 1994, 32, 329–345. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Buchan, G.D. Soil Temperature Regime. In Soil and Environmental Analysis; CRC Press: Boca Raton, FL, USA, 2000; pp. 551–606. [Google Scholar]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Ochsner, T.E.; Horton, R.; Ren, T. A new perspective on soil thermal properties. Soil Sci. Soc. Am. J. 2001, 65, 1641–1647. [Google Scholar] [CrossRef]
- Kelishadi, H.; Mosaddeghi, M.R.; Ayoubi, S.; Mamedov, A.I. Effect of temperature on soil structural stability as characterized by High Energy Moisture Characteristic method. Catena 2018, 160, 290–304. [Google Scholar] [CrossRef]
- Mazirov, M.A.; Makarychev, S.V. Thermophysical Characterization of the Altai and Western Tien Shan Soil Cover; Vladimir: Yonkers, NY, USA, 2002. [Google Scholar]
- Noborio, K.; McInnes, K.J. Thermal conductivity of salt-affected soils. Soil Sci. Soc. Am. J. 1993, 57, 329–334. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Reeder, R.C.; Khdair, A.I.; Al-Jalil, H.F. Thermal conductivity of disturbed soils under laboratory conditions. Trans. ASAE (Am. Soc. Agric. Eng.) 2000, 43, 855–860. [Google Scholar] [CrossRef]
- Morozova, N.S. Change in the thermophysical properties of saline soils caused by economic activities. Nauchno-Tekh. Byull. GGI 1986, 308, 55–68. [Google Scholar]
- Tikhonravova, P.I. Assessment of thermophysical properties of soils in the trans-volga solonetzic complex. Pochvovedenie 1991, 5, 50–61. [Google Scholar]
- Tikhonravova, P.I.; Khitrov, N.B. Estimation of thermal conductivity in vertisols of the central ciscaucasus region. Eurasian Soil Sci. 2003, 36, 351–353. [Google Scholar]
- Tikhonravova, P.I. Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the Transvolga Region. Eurasian Soil Sci. 2007, 40, 47–50. [Google Scholar] [CrossRef]
- Bovesecchi, G.; Coppa, P.; Potenza, M. A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils. Int. J. Thermophys. 2017, 38, 1–14. [Google Scholar] [CrossRef]
- Jia, G.S.; Tao, Z.Y.; Meng, X.Z.; Ma, C.F.; Chai, J.C.; Jin, L.W. Review of effective thermal conductivity models of rock-soil for geothermal energy applications. Geothermics 2019, 77, 1–11. [Google Scholar] [CrossRef]
- Rahib, Y.; Sarh, B.; Chaoufi, J.; Bonnamy, S.; Elorf, A. Physicochemical and thermal analysis of argan fruit residues (afrs) as a new local biomass for bioenergy production. J. Therm. Anal. Calorim. 2021, 145, 2405–2416. [Google Scholar] [CrossRef]
- Zheng, Q.; Kaur, S.; Dames, C.; Prasher, R.S. Analysis and improvement of the hot disk transient plane source method for low thermal conductivity materials. Int. J. Heat Mass Transf. 2020, 151, 119331. [Google Scholar] [CrossRef]
- Fourier, J.B.J. Th’eorie Analytique de la Chaleur; Chez Firmin Didot, p`Ere et Fils: Paris, France, 1822; p. 639. [Google Scholar]
- Kolmogorov, A.N. On the question of determining the coefficient of thermal diffusivity of the soil. Izv. Acad. Sci. USSR Geogr. Geophys. 1950, 2, 97–99. [Google Scholar]
- Chudnovsky, A.F. Physics of Heat Exchange in Soil; Gostekhizdat: Moscow, Russia, 1948; 220p. (In Russian) [Google Scholar]
- Kaganov, M.A.; Chudnovsky, A.F. On the determination of the termal conductivity of the soil. Izv. Acad. Sci. USSR Geogr. 1953, 2, 183–191. [Google Scholar]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Oxford University Press: Oxford, UK, 1959; 510p. [Google Scholar]
- Nerpin, S.V.; Chudnovskii, A.F. Physics of the Soil; Israel Program for Scientific Translations; Keter Press: Jerusalem, Israel, 1967; 466p. [Google Scholar]
- Tikhonov, A.N.; Samarskii, A.A. Equations of Mathematical Physics; Nauka: Moscow, Russia, 1966; pp. 177–272. (In Russian) [Google Scholar]
- Chudnovsky, A.F. Thermophysics of Soils; Nauka: Moscow, Russia, 1976; pp. 12–24. (In Russian) [Google Scholar]
- Horton, R. Determination and Use of Soil Thermal Properties near the Soil Surface. Ph.D. Dissertation, New Mexico State University, Las Cruces, NM, USA, 1982. [Google Scholar]
- Horton, R.; Wierenga, P.J. Estimating the soil heat flux from observations of soil temperature near the surface. Soil Sci. Soc. Am. J. 1983, 47, 14–20. [Google Scholar] [CrossRef]
- Verhoef, A.; Van den Hurk, B.J.; Jacobs, J.M.; Heusinkveld, A.F.G. Thermal soil properties for a vineyard (EFEDA-I) and a savanna (HAPEX-Sahel) site. Agric. For. Meteorol. 1996, 78, 1–18. [Google Scholar] [CrossRef]
- Horton, R.; Wierenga, P.J.; Nielsen, D.R. Evaluation of methods for determining the apparent thermal diffusivity of soil near the surface. Soil Sci. Soc. Am. J. 1983, 47, 25–32. [Google Scholar] [CrossRef]
- Horton, R. Soil thermal diffusivity. In Methods of Soil Analysis: Part 4—Physical Methods; Soil Science Society of America Book Series; Dane, J.H., Topp, G.C., Eds.; Soil Society of America: Madison, WI, USA, 2002; Volume 5, pp. 349–360. [Google Scholar]
- Mikail, R.; Hazar, E.; Farajzadeh, A.; Erdel, E.; Mikailsoy, F.A. Comparison of six methods used to evaluate apparent thermal diffusivity for soils (Iğdır Region, Eastern Turkey). Math. Anal. Convex Optim. 2021, 2, 51–61. [Google Scholar] [CrossRef]
- Mikail, R. Determination of Soıl Thermal Propertıes of Igdır Plaın and Mathematıcal Modelıng. Ph.D. Dissertation, Igdir University, Igdır, Turkey, 2024. [Google Scholar]
- Mikail, R.; Erdel, E.; Hazar, E.; Mikailsoy, F. Determination of the thermal properties of eastern anatolia region soils in spring season (İğdir, Türkiye). In Proceedings of the AGRO-II International Conference on Agriculture, Ganja, Azerbaijan, 5–7 June 2024; pp. 242–258. [Google Scholar]
- Mikail, R.; Hazar, E.; Shein, E.; Mikailsoy, F. Determination of thermophysical parameters of the soil according to dynamic data on its temperature. Eurasian Soil Sci. 2024, 57, 556–564. [Google Scholar] [CrossRef]
- Mikayilov, F.D. About one solution of the equation of heat conductivity in soil. In Proceedings of the Fifth Scientific Readings J.P. Bulashevicha, Yekaterinburg, Russia, 6–10 July 2009; Scientific Publications: San Jose, CA, USA, 2009; pp. 319–323. [Google Scholar]
- Mikayilov, F.D.; Shein, E.V. Theoretical principles of experimental methods for determining the thermal diffusivity of soils. Eurasian Soil Sci. 2010, 43, 556–564. [Google Scholar] [CrossRef]
- Mikailsoy, F.D. On the ınfluence of boundary conditions in modeling heat transfer in soil. J. Eng. Phys. Thermophys. 2017, 90, 67–79. [Google Scholar] [CrossRef]
- Turkish State Meteorological Service. Available online: https://www.mgm.gov.tr/ (accessed on 2 November 2022).
- Simsek, U.; Shein, E.V.; Mikailsoy, F.; Bolotov, A.G.; Erdel, E. Subsoil compaction: The intensity of manifestation in silty clayey calcic pantofluvic fluvisols of the Iğdır Region (Eastern Turkey). Eurasian Soil Sci. 2019, 52, 296–299. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Mc Lean, E.O. Soil pH and Lime Requirement. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Agronomy Monogrphs; Agronomy, ASA and SSSA: Madison, WI, USA, 1982; Volume 9, pp. 199–224. [Google Scholar] [CrossRef]
- Rhoades, J.D. Soluble salts. In Methods of Soil Analysis: Part 2; American Society of Agronomy Inc.: Madison, WI, USA, 1983; pp. 167–179. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy, ASA and SSSA: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk density. In Methods of Soil Analysis. Part II; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 374–390. [Google Scholar]
- Shein, E.V. A Course in Soil Physics; Izd. MGU: Moscow, Russia, 2005; pp. 314–329. (In Russian) [Google Scholar]
- Shahid, S.A.; Abdelfattah, M.A.; Taha, F.K. (Eds.) Developments in Soil Salinity Assessment and Reclamation: Innovative Thinking and Use of Marginal Soil and Water Resources in Irrigated Agriculture; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar]
- de Vries, D.A. A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci. 1952, 73, 83–90. [Google Scholar] [CrossRef]
- de Vries, D.A. The thermal conductivity of soil. Meded. Landbouwhogesch. 1952, 52, 1–73. [Google Scholar] [CrossRef]
- Mikayilov, F.D. Determination of salt-transport model parameters for leaching of saturated superficially salted soils. Eurasian Soil Sci. 2007, 40, 544–554. [Google Scholar] [CrossRef]
- Mikailsoy, F.D.; Pachepsky, Y.A. Average concentration of soluble salts in leached soils inferred from the convective-dispersive equation. Irrig. Sci. 2010, 28, 431–434. [Google Scholar] [CrossRef]
- de Vries, D.A. Thermal Properties of Soils. In Physics of Plant Environment; Van Wijk, W.R., Ed.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Arkhangelskaya, T.; Lukyashchenko, K. Estimating soil thermal diffusivity at different water contents from easily available data on soil texture, bulk density, and organic carbon content. Biosyst. Eng. 2017, 168, 83–95. [Google Scholar] [CrossRef]
- Lettau, H. Improved models of thermal diffusion in the soil. Trans. Amer. Geophys. Union 1954, 35, 121–132. [Google Scholar] [CrossRef]
- Tong, B.; Xu, H.; Horton, R.; Bian, L.; Guo, J. Determination of long-term soil apparent thermal diffusivity using near-surface soil temperature on the Tibetan Plateau. Remote Sens. 2022, 14, 4238. [Google Scholar] [CrossRef]
- Erdel, E.; Mikailsoy, F. Determination of thermophysical properties of fluvisols in eastern turkey using various models. Eurasian Soil Sci. 2022, 55, 1568–1575. [Google Scholar] [CrossRef]
- Marinova, T.K. On determining the conductivity coefficient of the basic soils in Bulgaria. Bulg. J. Meteorol. Hydrol. 1993, 4, 65–69. [Google Scholar]
- Marinova, T.K.; Sharov, V.G.; Slavov, N.S. On the modeling of the soil temperature variations. Bulg. J. Meteorol. Hydrol. 1990, 1, 44–47. [Google Scholar]
- Juri, W.A.; Gardner, W.R.; Gardner, W.H. Soil Physics; John Wiley & Sons, Inc.: New York, NY, USA, 1991; p. 328. [Google Scholar]
- Wierenga, P.J.; Nielsen, D.R.; Hogan, R.M. Thermal properties of a soil based upon field and laboratory measurements. Soil Sci. Soc. Amer. Proc. 1969, 33, 354–360. [Google Scholar] [CrossRef]
- Jordan, R.A.; Santos, R.C.; Freitas, R.L.; Motomiya, A.V.A.; Geisenhoff, L.O.; Sanches, A.C.; Avalo, H.; Mesquita, M.; Ferreira, M.B.; Silva, P.C.; et al. Thermal properties and temporal dynamics of red latosol (oxisol) in sustainable agriculture and environmental conservation. Resources 2023, 12, 1–16. [Google Scholar] [CrossRef]
- Smerdon, J.E.; Pollack, H.N.; Enz, J.W.; Lewis, M.J. Conduction-dominated heat transport of the annual temperature signal in soil. J. Geophys. Res. 2003, 108, 2431. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I-A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Archontoulis, S.V.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef]
- Tuşat, E.; Mikailsoy, F. An investigation of the criteria used to select the polynomial models employed in local GNSS/leveling geoid determination studies. Arab. J. Geosci. 2018, 8, 24–801. [Google Scholar] [CrossRef]
- Erdel, E. Effects of salinity and alkalinity on soil enzyme activities in soil aggregates of different sizes. Eurasian Soil Sci. 2022, 55, 759–765. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, H.; Araya, K.; Jia, H.; Ohomiya, K.; Matsuda, J. Improvement of salt-affected soils, part 4: Heat transfer coefficient and thermal conductivity of salt-affected soils. Biosyst. Eng. 2007, 96, 593–603. [Google Scholar] [CrossRef]
- Ju, Z.; Guo, K.; Liu, X. Modelling thermal conductivity on salt-affected soils and its modification. Int. J. Therm. Sci. 2023, 185, 108071. [Google Scholar] [CrossRef]
- Ju, Z.; Lu, S.; Guo, K.; Liu, X. Changes in the thermal conductivity of soil with different salts. J. Soils Sediments 2023, 23, 3376–3383. [Google Scholar] [CrossRef]




| Soil | Depth | Texture | ρb | θ | OM | pH | EC | ESP |
|---|---|---|---|---|---|---|---|---|
| cm | kg m−3 | m3 m−3 | % | 01:01 | dS m−1 | % | ||
| Non-alkaline | 0–10 | CL | 974.3 | 0.1449 | 1.40 | 8.42 | 0.3877 | 3.2 |
| 10–20 | CL | 1023.3 | 0.1521 | 1.62 | 8.26 | 0.4126 | 3.4 | |
| 20–25 | L | 1105.4 | 0.1717 | 2.35 | 8.01 | 0.5417 | 3.1 | |
| 25–30 | SCL | 1245.7 | 0.1806 | 2.81 | 8.03 | 0.5524 | 3.5 | |
| 30–35 | SL | 1158.1 | 0.1907 | 3.07 | 8.05 | 0.5507 | 3.7 | |
| 35–40 | SL | 1216.5 | 0.1925 | 2.66 | 8.12 | 0.5121 | 3.6 | |
| 0–40 | 1120.6 | 0.1721 | 2.32 | 8.15 | 0.4929 | 3.4 | ||
| Alkaline | 0–10 | CL | 1072.7 | 0.1463 | 1.26 | 8.70 | 1.2724 | 17.9 |
| 10–20 | CL | 1125.6 | 0.1628 | 1.24 | 8.56 | 1.2320 | 17.6 | |
| 20–25 | L | 1194.0 | 0.1738 | 0.91 | 8.54 | 0.9842 | 18.2 | |
| 25–30 | SCL | 1247.8 | 0.1874 | 1.12 | 9.45 | 0.8252 | 17.9 | |
| 30–35 | SL | 1160.4 | 0.1945 | 1.08 | 9.50 | 0.6945 | 17.5 | |
| 35–40 | SL | 1218.0 | 0.1948 | 1.55 | 9.68 | 0.5429 | 17.6 | |
| 0–40 | 1169.7 | 0.1766 | 1.19 | 9.07 | 0.9252 | 17.8 |
| Number of Harmonics in Equation (S8) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| m = 1 | m = 2 | ||||||||
| Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | ||
| n * | 24 | 24 | 24 | 24 | n | 24 | 24 | 24 | 24 |
| p | 3 | 3 | 3 | 3 | p | 5 | 5 | 5 | 5 |
| df | 21 | 21 | 21 | 21 | df | 19 | 19 | 19 | 19 |
| To | 1.8643 | 12.9127 | 24.5478 | 15.0455 | To | 1.8643 | 12.9127 | 24.5478 | 15.0455 |
| Ta1 | 1.0327 | 3.4375 | 5.4270 | 3.9363 | Ta1 | 0.3598 | 0.7946 | 1.5067 | 1.3964 |
| ε1 | 1.8468 | 2.1760 | 2.3607 | 2.2011 | ε1 | 4.5802 | −0.8483 | −0.4932 | −0.9846 |
| Statistical parameters of approximation | |||||||||
| R2 | 0.8862 | 0.9475 | 0.9227 | 0.8845 | R2 | 0.9938 | 0.9981 | 0.9938 | 0.9958 |
| R2adj | 0.8810 | 0.9451 | 0.9192 | 0.8792 | R2adj | 0.9935 | 0.9980 | 0.9935 | 0.9956 |
| D | 0.9951 | 0.9991 | 0.9990 | 0.9979 | D | 0.9984 | 0.9995 | 0.9984 | 0.9989 |
| UI | 0.0466 | 0.0362 | 0.0405 | 0.0560 | UI | 0.0152 | 0.0041 | 0.0063 | 0.0063 |
| RMSE | 0.28 | 0.61 | 1.19 | 1.08 | RMSE | 0.07 | 0.12 | 0.35 | 0.22 |
| AICc | −1.48 | 0.08 | 1.41 | 1.21 | AICc | −2.25 | −1.11 | 1.02 | 0.04 |
| Number of Harmonics in Equation (S8) | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| m = 1 | m = 2 | ||||||||
| Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | ||
| n | 24 | 24 | 24 | 24 | n | 24 | 24 | 24 | 24 |
| p | 3 | 3 | 3 | 3 | p | 5 | 5 | 5 | 5 |
| df | 21 | 21 | 21 | 21 | df | 19 | 19 | 19 | 19 |
| To | 2.4052 | 14.8979 | 28.9658 | 17.3838 | To | 2.4052 | 14.8979 | 28.9658 | 17.3838 |
| Ta1 | 4.4773 | 7.9065 | 14.6342 | 13.1626 | Ta2 | 1.8615 | 2.5074 | 4.9455 | 5.3725 |
| ε1 | 2.3250 | 2.5422 | 2.5776 | 2.6118 | ε2 | −1.0822 | −0.4765 | −0.5980 | −0.6023 |
| Statistical parameters of approximation | |||||||||
| R2 | 0.8424 | 0.9068 | 0.8943 | 0.8428 | R2 | 0.9880 | 0.9980 | 0.9965 | 0.9846 |
| R2adj | 0.8352 | 0.9026 | 0.8895 | 0.8356 | R2adj | 0.9874 | 0.9979 | 0.9963 | 0.9839 |
| D | 0.9525 | 0.9938 | 0.9934 | 0.9801 | D | 0.9970 | 0.9995 | 0.9991 | 0.9961 |
| UI | 0.1922 | 0.0966 | 0.1068 | 0.1785 | UI | 0.0451 | 0.0081 | 0.0105 | 0.0311 |
| RMSE | 1.46 | 1.92 | 3.80 | 4.22 | RMSE | 0.43 | 0.29 | 0.73 | 1.39 |
| AICc | 1.83 | 2.37 | 3.74 | 3.95 | AICc | 1.39 | 0.64 | 2.47 | 3.76 |
| Non-alkaline Soils | Alkaline Soils | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | ||
| To | 1.8643 | 12.9127 | 24.5478 | 15.0455 | To | 2.4052 | 14.8979 | 28.9658 | 17.3838 |
| Ta1 | 1.0327 | 3.4375 | 5.4270 | 3.9363 | Ta2 | 4.4773 | 7.9065 | 14.6342 | 13.1626 |
| ε1 | 1.8468 | 2.1760 | 2.3607 | 2.2011 | ε2 | 2.3250 | 2.5422 | 2.5776 | 2.6118 |
| Cv | 1878.49 | 2126.30 | 1596.04 | 1746.15 | Cv | 2014.11 | 2349.05 | 1637.30 | 1846.64 |
| Models | Harmoni | Season | 10−6 κ | λ | d | e | V·10−5 | Λ | Cv |
|---|---|---|---|---|---|---|---|---|---|
| m2s−1 | Wm−1 °C−1 | cm | Ws0.5m−2 °C−1 | m s−1 | m | kJ m−3 °C−1 | |||
| Layered Methods with Boundary Conditions ∂T(∞.t)/∂z = 0 | |||||||||
| M1 * | m = 1 | Winter | 0.5376 | 1.0099 | 12.16 | 1377.35 | 0.8843 | 0.76 | 1878.49 |
| Spring | 0.6972 | 1.4824 | 13.85 | 1775.39 | 1.0070 | 0.87 | 2126.30 | ||
| Summer | 0.7422 | 1.1846 | 14.29 | 1375.01 | 1.0390 | 0.90 | 1596.04 | ||
| Autumn | 0.6066 | 1.0591 | 12.92 | 1359.94 | 0.9393 | 0.81 | 1746.15 | ||
| M2 | m = 2 | Winter | 1.3235 | 2.4861 | 19.08 | 2161.05 | 1.3874 | 1.20 | 1878.49 |
| Spring | 0.8752 | 1.8610 | 15.51 | 1989.24 | 1.1283 | 0.98 | 2126.30 | ||
| Summer | 0.9287 | 1.4823 | 15.98 | 1538.12 | 1.1622 | 1.00 | 1596.04 | ||
| Autumn | 0.8807 | 1.5378 | 15.56 | 1638.65 | 1.1318 | 0.98 | 1746.15 | ||
| M3 | m = 2 | Winter | 0.7050 | 1.3243 | 13.92 | 1577.22 | 1.0126 | 0.87 | 1878.49 |
| Spring | 0.7202 | 1.5313 | 14.07 | 1804.43 | 1.0234 | 0.89 | 2126.30 | ||
| Summer | 0.7643 | 1.2199 | 14.50 | 1395.33 | 1.0543 | 0.91 | 1596.04 | ||
| Autumn | 0.6693 | 1.1688 | 13.57 | 1428.57 | 0.9867 | 0.85 | 1746.15 | ||
| M4 | m = 1 | Winter | 1.0292 | 1.9334 | 16.82 | 1905.73 | 1.2235 | 1.06 | 1878.49 |
| Spring | 0.7969 | 1.6945 | 14.80 | 1898.17 | 1.0766 | 0.93 | 2126.30 | ||
| Summer | 0.8174 | 1.3046 | 14.99 | 1442.97 | 1.0903 | 0.94 | 1596.04 | ||
| Autumn | 0.6211 | 1.0845 | 13.07 | 1376.13 | 0.9504 | 0.82 | 1746.15 | ||
| Point Methodswith Boundary Conditions ∂T(∞.t)/∂z = 0 | |||||||||
| M5 | m = 1 | Winter | 0.7550 | 1.4183 | 14.41 | 1632.27 | 1.0479 | 0.91 | 1878.49 |
| Spring | 0.8756 | 1.8618 | 15.52 | 1989.67 | 1.1285 | 0.98 | 2126.30 | ||
| Summer | 0.9325 | 1.4882 | 16.01 | 1541.20 | 1.1646 | 1.01 | 1596.04 | ||
| Autumn | 0.6821 | 1.1911 | 13.70 | 1442.14 | 0.9960 | 0.86 | 1746.15 | ||
| Μ6 | m = 2 | Winter | 0.7164 | 1.3458 | 14.04 | 1590.02 | 1.0208 | 0.88 | 1878.49 |
| Spring | 0.8843 | 1.8802 | 15.59 | 1999.48 | 1.1341 | 0.98 | 2126.30 | ||
| Summer | 1.0022 | 1.5996 | 16.60 | 1597.80 | 1.2073 | 1.04 | 1596.04 | ||
| Autumn | 0.7614 | 1.3295 | 14.47 | 1523.63 | 1.0523 | 0.91 | 1746.15 | ||
| Point Methodswith Boundary Conditions ∂T(L. t)/∂z = 0 | |||||||||
| Μ7 | m = 1 | Winter | 0.8008 | 1.5042 | 14.84 | 1680.97 | 1.0792 | 0.93 | 1878.49 |
| Spring | 0.9584 | 2.0379 | 16.24 | 2081.65 | 1.1807 | 1.02 | 2126.30 | ||
| Summer | 1.0237 | 1.6339 | 16.78 | 1614.84 | 1.2202 | 1.05 | 1596.04 | ||
| Autumn | 0.6766 | 1.1815 | 13.64 | 1436.31 | 0.9920 | 0.86 | 1746.15 | ||
| Μ8 | m = 2 | Winter | 0.7533 | 1.4151 | 14.39 | 1630.40 | 1.0467 | 0.90 | 1878.49 |
| Spring | 0.9725 | 2.0678 | 16.35 | 2096.83 | 1.1893 | 1.03 | 2126.30 | ||
| Summer | 1.1035 | 1.7613 | 17.42 | 1676.63 | 1.2669 | 1.09 | 1596.04 | ||
| Autumn | 0.7854 | 1.3714 | 14.70 | 1547.45 | 1.0688 | 0.92 | 1746.15 | ||
| Models | Harmoni | Season | 10−6 κ | λ | d | e | V·10−5 | Λ | Cv |
|---|---|---|---|---|---|---|---|---|---|
| m2s−1 | Wm−1 °C−1 | cm | Ws0.5 m−2 °C−1 | m s−1 | m | kJ m−3 °C−1 | |||
| Layered Methods with Boundary Conditions ∂T(∞.t)/∂z = 0 | |||||||||
| M1 | m = 1 | Winter | 7.2882 | 14.6792 | 44.77 | 5437.41 | 3.2558 | 2.8130 | 2014.11 |
| Spring | 92.7680 | 217.9169 | 159.73 | 22,625.17 | 3.2558 | 10.0360 | 2349.05 | ||
| Summer | 209.4553 | 342.9403 | 240.01 | 23,695.88 | 17.4540 | 15.0802 | 1637.30 | ||
| Autumn | 35.4889 | 65.5351 | 98.79 | 11,000.88 | 7.1845 | 6.2074 | 1846.64 | ||
| M2 | m = 2 | Winter | 3.6121 | 7.2751 | 31.52 | 3827.91 | 2.2921 | 1.9803 | 2014.11 |
| Spring | 7.2158 | 16.9502 | 44.55 | 6310.06 | 2.2921 | 2.7990 | 2349.05 | ||
| Summer | 349.4319 | 572.1234 | 310.00 | 30,606.13 | 22.5439 | 19.4779 | 1637.30 | ||
| Autumn | 3.4077 | 6.2928 | 30.61 | 3408.88 | 2.2263 | 1.9235 | 1846.64 | ||
| M3 | m = 2 | Winter | 6.7248 | 13.5445 | 43.01 | 5223.03 | 3.1274 | 2.7021 | 2014.11 |
| Spring | 24.9110 | 58.5173 | 82.77 | 11,724.34 | 3.1274 | 5.2006 | 2349.05 | ||
| Summer | 143.4528 | 234.8747 | 198.63 | 19,610.19 | 14.4445 | 12.4801 | 1637.30 | ||
| Autumn | 9.9721 | 18.4148 | 52.37 | 5831.42 | 3.8084 | 3.2904 | 1846.64 | ||
| M4 | m = 1 | Winter | 1.8315 | 3.6888 | 22.44 | 2725.74 | 1.6321 | 1.4101 | 2014.11 |
| Spring | 7.0423 | 16.5427 | 44.01 | 6233.75 | 1.6321 | 2.7651 | 2349.05 | ||
| Summer | 1399.3616 | 2291.1688 | 620.36 | 61,248.03 | 45.1142 | 38.9786 | 1637.30 | ||
| Autumn | 1.7919 | 3.3090 | 22.20 | 2471.93 | 1.6144 | 1.3948 | 1846.64 | ||
| Point methodswith Boundary Conditions ∂T(∞.t)/∂z = 0 | |||||||||
| M5 | m = 1 | Winter | 0.2669 | 0.5376 | 8,57 | 1040.56 | 0.6231 | 0.5383 | 2014.11 |
| Spring | 0.3423 | 0.8041 | 9.70 | 1374.399 | 0.6231 | 0.6097 | 2349.05 | ||
| Summer | 0.2085 | 0.3414 | 7.57 | 747.62 | 0.5507 | 0.4758 | 1637.30 | ||
| Autumn | 0.1557 | 0.2876 | 6.54 | 728.77 | 0.4759 | 0.4112 | 1846.64 | ||
| Winter | 0.2572 | 0.5181 | 8.41 | 1021.49 | 0.6116 | 0.5285 | 2014.11 | ||
| Μ6 | m = 2 | Spring | 0.3364 | 0.7903 | 9.62 | 1362.489 | 0.6116 | 0.6044 | 2349.05 |
| Summer | 0.2106 | 0.3448 | 7.61 | 751.36 | 0.5534 | 0.4782 | 1637.30 | ||
| Autumn | 0.1587 | 0.2931 | 6.61 | 735.75 | 0.4805 | 0.4152 | 1846.64 | ||
| Point methodswith Boundary Conditions ∂T(L. t)/∂z = 0 | |||||||||
| Μ7 | m = 1 | Winter | 0.2477 | 0.4988 | 8.25 | 1002.33 | 0.6002 | 0.5185 | 2014.11 |
| Spring | 0.3261 | 0.7661 | 9.47 | 1341.49 | 0.6887 | 0.5951 | 2349.05 | ||
| Summer | 0.1912 | 0.3130 | 7.25 | 715.85 | 0.5273 | 0.4556 | 1637.30 | ||
| Autumn | 0.1409 | 0.2601 | 6.22 | 693.09 | 0.4526 | 0.3911 | 1846.64 | ||
| Μ8 | m = 2 | Winter | 0.2371 | 0.4775 | 8.07 | 980.67 | 0.5872 | 0.5073 | 2014.11 |
| Spring | 0.3214 | 0.7549 | 9.40 | 1331.69 | 0.6837 | 0.5907 | 2349.05 | ||
| Summer | 0.1935 | 0.3168 | 7.29 | 720.16 | 0.5305 | 0.4583 | 1637.30 | ||
| Autumn | 0.1431 | 0.2643 | 6.27 | 698.66 | 0.4563 | 0.3942 | 1846.64 | ||
| Depth | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
|---|---|---|---|---|---|---|---|---|---|
| z. m | Winter | ||||||||
| R2 | 0.05 | 0.8523 | 0.8921 | 0.8705 | 0.8808 | 0.8740 | 0.9430 | 0.8783 | 0.9679 |
| 0.10 | 0.6483 | 0.3788 | 0.5568 | 0.4886 | 0.5348 | 0.3959 | 0.5069 | 0.5035 | |
| 0.15 | 0.9180 | 0.8530 | 0.9368 | 0.9224 | 0.9347 | 0.7290 | 0.9305 | 0.9936 | |
| RMSE | 0.05 | 0.3360 | 0.3003 | 0.3200 | 0.3106 | 0.3168 | 0.2631 | 0.3136 | 0.2494 |
| 0.10 | 0.8321 | 0.8845 | 0.8450 | 0.8575 | 0.8487 | 0.8840 | 0.8523 | 0.8537 | |
| 0.15 | 1.2914 | 1.3009 | 1.2918 | 1.2937 | 1.2923 | 1.3087 | 1.2923 | 1.2907 | |
| z. m | Spring | ||||||||
| R2 | 0.05 | 0.9386 | 0.9477 | 0.9401 | 0.9444 | 0.9477 | 0.9761 | 0.9514 | 0.9912 |
| 0.10 | 0.6140 | 0.5410 | 0.6033 | 0.5703 | 0.5408 | 0.4452 | 0.5075 | 0.4822 | |
| 0.15 | 0.9712 | 0.9708 | 0.9728 | 0.9742 | 0.9708 | 0.8453 | 0.9661 | 0.9853 | |
| RMSE | 0.05 | 0.5680 | 0.5078 | 0.5584 | 0.5306 | 0.5077 | 0.3395 | 0.4885 | 0.2488 |
| 0.10 | 0.9277 | 1.0431 | 0.9436 | 0.9946 | 1.0433 | 1.2158 | 1.0874 | 1.1292 | |
| 0.15 | 0.2607 | 0.2529 | 0.2539 | 0.2445 | 0.2529 | 0.5037 | 0.2613 | 0.2257 | |
| z. m | Summer | ||||||||
| R2 | 0.05 | 0.9143 | 0.9231 | 0.9157 | 0.9185 | 0.9233 | 0.9736 | 0.9270 | 0.9888 |
| 0.10 | 0.6435 | 0.5762 | 0.6344 | 0.6140 | 0.5750 | 0.4494 | 0.5452 | 0.5037 | |
| 0.15 | 0.9469 | 0.9598 | 0.9500 | 0.9555 | 0.9598 | 0.8407 | 0.9592 | 0.9936 | |
| RMSE | 0.05 | 1.0992 | 1.0228 | 1.0879 | 1.0636 | 1.0216 | 0.6347 | 0.9981 | 0.5228 |
| 0.10 | 1.4630 | 1.6310 | 1.4840 | 1.5334 | 1.6341 | 2.0207 | 1.6962 | 1.8133 | |
| 0.15 | 0.9299 | 0.9086 | 0.9237 | 0.9133 | 0.9088 | 1.2002 | 0.9086 | 0.8647 | |
| z. m | Autumn | ||||||||
| R2 | 0.05 | 0.8857 | 0.8978 | 0.8898 | 0.8866 | 0.8906 | 0.9667 | 0.8909 | 0.9904 |
| 0.10 | 0.5989 | 0.4780 | 0.5654 | 0.5907 | 0.5591 | 0.3783 | 0.5520 | 0.4829 | |
| 0.15 | 0.9266 | 0.9306 | 0.9351 | 0.9293 | 0.9361 | 0.7358 | 0.9366 | 0.9964 | |
| RMSE | 0.05 | 0.8609 | 0.7911 | 0.8378 | 0.8550 | 0.8337 | 0.4593 | 0.8329 | 0.3279 |
| 0.10 | 1.1172 | 1.3245 | 1.1691 | 1.1294 | 1.1794 | 1.5869 | 1.1842 | 1.3093 | |
| 0.15 | 0.8934 | 0.9085 | 0.8888 | 0.8918 | 0.8886 | 1.1820 | 0.8876 | 0.8570 | |
| Depth | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | |
|---|---|---|---|---|---|---|---|---|---|
| z. m | Winter | ||||||||
| R2 | 0.05 | 0.5162 | 0.5580 | 0.5204 | 0.6134 | 0.8529 | 0.8223 | 0.8619 | 0.9460 |
| 0.10 | 0.3464 | 0.4313 | 0.3545 | 0.5480 | 0.9139 | 0.6279 | 0.9092 | 0.9825 | |
| 0.15 | 0.3461 | 0.4736 | 0.3583 | 0.6435 | 0.6966 | 0.2732 | 0.6432 | 0.6508 | |
| RMSE | 0.05 | 2.4549 | 2.2906 | 2.4384 | 2.0803 | 1.2065 | 1.5692 | 1.1705 | 1.1284 |
| 0.10 | 2.7519 | 2.5047 | 2.7263 | 2.2188 | 1.5476 | 1.9136 | 1.5437 | 1.5220 | |
| 0.15 | 2.2593 | 1.9043 | 2.2218 | 1.5191 | 1.0836 | 1.6181 | 1.1023 | 1.1018 | |
| z. m | Spring | ||||||||
| R2 | 0.05 | 0.4672 | 0.5441 | 0.4949 | 0.5454 | 0.8636 | 0.8339 | 0.8707 | 0.9101 |
| 0.10 | 0.2700 | 0.4180 | 0.3215 | 0.4207 | 0.9571 | 0.7420 | 0.9586 | 0.9988 | |
| 0.15 | 0.2514 | 0.4744 | 0.3281 | 0.4783 | 0.7991 | 0.4091 | 0.7746 | 0.7946 | |
| RMSE | 0.05 | 4.5860 | 4.0131 | 4.3748 | 4.0038 | 1.7992 | 2.2409 | 1.7480 | 1.7239 |
| 0.10 | 4.9233 | 3.8579 | 4.5224 | 3.8411 | 0.6147 | 1.5951 | 0.5871 | 0.4455 | |
| 0.15 | 4.8718 | 3.3972 | 4.3017 | 3.3750 | 1.3436 | 2.0376 | 1.3819 | 1.3620 | |
| z. m | Summer | ||||||||
| R2 | 0.05 | 0.4617 | 0.4572 | 0.4658 | 0.4496 | 0.9256 | 0.8564 | 0.9335 | 0.9807 |
| 0.10 | 0.2548 | 0.2469 | 0.2622 | 0.2335 | 0.9008 | 0.5344 | 0.8709 | 0.9044 | |
| 0.15 | 0.2696 | 0.2575 | 0.2809 | 0.2372 | 0.3648 | 0.0714 | 0.2846 | 0.2916 | |
| RMSE | 0.05 | 10.0685 | 10.1238 | 10.0178 | 10.2194 | 5.3090 | 6.1000 | 5.2119 | 5.2323 |
| 0.10 | 10.7883 | 10.8938 | 10.6919 | 11.0775 | 4.8664 | 5.8961 | 4.8587 | 4.8479 | |
| 0.15 | 10.8287 | 10.9800 | 10.6913 | 11.2458 | 5.6042 | 6.6876 | 5.6402 | 5.6379 | |
| z. m | Autumn | ||||||||
| R2 | 0.05 | 0.4207 | 0.5235 | 0.4616 | 0.5788 | 0.9029 | 0.8192 | 0.9095 | 0.9908 |
| 0.10 | 0.1886 | 0.3801 | 0.2601 | 0.4953 | 0.8424 | 0.3664 | 0.7937 | 0.8310 | |
| 0.15 | 0.1471 | 0.4343 | 0.2503 | 0.6087 | 0.2999 | 0.0223 | 0.2013 | 0.2078 | |
| RMSE | 0.05 | 8.3498 | 7.1940 | 7.8738 | 6.6146 | 3.0722 | 4.5734 | 2.9157 | 2.9487 |
| 0.10 | 8.5686 | 6.5279 | 7.7026 | 5.5862 | 1.6225 | 4.1208 | 1.5893 | 1.5858 | |
| 0.15 | 8.3795 | 5.6865 | 7.1937 | 4.5811 | 2.3271 | 4.6643 | 2.3667 | 2.3666 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikail, R.; Erdel, E.; Mamedov, A.I.; Hazar, E.; Mikailsoy, F. Determination of Soil Thermal Properties Across Seasons in Alkaline–Nonalkaline Soils of Igdır, Türkiye. Land 2025, 14, 2266. https://doi.org/10.3390/land14112266
Mikail R, Erdel E, Mamedov AI, Hazar E, Mikailsoy F. Determination of Soil Thermal Properties Across Seasons in Alkaline–Nonalkaline Soils of Igdır, Türkiye. Land. 2025; 14(11):2266. https://doi.org/10.3390/land14112266
Chicago/Turabian StyleMikail, Resat, Erhan Erdel, Amrakh I. Mamedov, Elman Hazar, and Fariz Mikailsoy. 2025. "Determination of Soil Thermal Properties Across Seasons in Alkaline–Nonalkaline Soils of Igdır, Türkiye" Land 14, no. 11: 2266. https://doi.org/10.3390/land14112266
APA StyleMikail, R., Erdel, E., Mamedov, A. I., Hazar, E., & Mikailsoy, F. (2025). Determination of Soil Thermal Properties Across Seasons in Alkaline–Nonalkaline Soils of Igdır, Türkiye. Land, 14(11), 2266. https://doi.org/10.3390/land14112266

