Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sampling, Soil Aging, and Pot Experiment
2.2. Soil Analyses
2.3. Statistical Analysis
3. Results
3.1. Physicochemical Features of Soil Samples
3.2. Nutrition Parameters and Trace Element Content of Soil Samples
3.3. Cr (III) and Cr (VI) Determination Using Voltammetry Techniques
3.4. Cr Speciation and Fractions in the Soil Samples of the Study
3.4.1. Cr (ΙΙΙ) and Cr (VI) Available and Pseudo-Total Concentrations
3.4.2. Fractionation of Cr (III) and Cr (VI) Using the BCR Sequential Extraction Method and Relationships Between Their Fractions and Bioavailable Forms Extracted with DTPA
3.4.3. Evaluating Differences in Cr (III) and Cr (VI) Fractions in BCR Extraction Schemes or DTPA Based on Aging or Different Land Use Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health Hazards of Hexavalent Chromium (Cr (VI)) and Its Microbial Reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Wang, A.; Dang, Z.; Wang, Y.; Fan, H.; Miao, S. Efficient Inorganic Stabilization Materials for Chromium and Arsenic Pollution in Water and Soil. Appl. Sci. 2025, 15, 7069. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium Speciation, Bioavailability, Uptake, Toxicity and Detoxification in Soil-Plant System: A Review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef]
- Pandey, A.K.; Gautam, A.; Singh, A.K. Insight to Chromium Homeostasis for Combating Chromium Contamination of Soil: Phytoaccumulators-Based Approach. Environ. Pollut. 2023, 322, 121163. [Google Scholar] [CrossRef]
- Xu, S.; Yu, C.; Wang, Q.; Liao, J.; Liu, C.; Huang, L.; Liu, Q.; Wen, Z.; Feng, Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics 2022, 11, 27. [Google Scholar] [CrossRef]
- Sparks, D.L. Environmental Soil Chemistry: An Overview. In Environmental Soil Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 1–42. [Google Scholar]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef] [PubMed]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Overall Evaluations of Carcinogenicity: An Updating of IARC Monographs, Volumes 1 to 42; International Agency for Research on Cancer: Lyon, France, 1987; ISBN 9283214110. [Google Scholar]
- Chen, Z.; Chen, Y.; Liang, J.; Sun, Z.; Zhao, H.; Huang, Y. The Release and Migration of Cr in the Soil under Alternating Wet–Dry Conditions. Toxics 2024, 12, 140. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Wu, Y.; Jiang, S.; Huo, C.; Liu, T.; Yang, Y.; Ma, Y. Transformation of Exogenous Hexavalent Chromium in Soil: Factors and Modelling. J. Hazard. Mater. 2024, 480, 135799. [Google Scholar] [CrossRef] [PubMed]
- Wani, K.I.; Naeem, M.; Aftab, T. Chromium in Plant-Soil Nexus: Speciation, Uptake, Transport and Sustainable Remediation Techniques. Environ. Pollut. 2022, 315, 120350. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global Soil Pollution by Toxic Elements: Current Status and Future Perspectives on the Risk Assessment and Remediation Strategies—A Review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Ma, J.; Liu, Q.; Shi, T.; Gong, Y.; Yang, S.; Wu, Y. Status of Chromium Accumulation in Agricultural Soils across China (1989–2016). Chemosphere 2020, 256, 127036. [Google Scholar] [CrossRef]
- Adewumi, A.J.; Ogundele, O.D. Hidden Hazards in Urban Soils: A Meta-Analysis Review of Global Heavy Metal Contamination (2010–2022), Sources and Its Ecological and Health Consequences. Sustain. Environ. 2024, 10, 2293239. [Google Scholar] [CrossRef]
- Binner, H.; Sullivan, T.; Jansen, M.A.K.; McNamara, M.E. Metals in Urban Soils of Europe: A Systematic Review. Sci. Total Environ. 2023, 854, 158734. [Google Scholar] [CrossRef]
- Golia, E.E.; Diakoloukas, V. Soil Parameters Affecting the Levels of Potentially Harmful Metals in Thessaly Area, Greece: A Robust Quadratic Regression Approach of Soil Pollution Prediction. Environ. Sci. Pollut. Res. 2022, 29, 29544–29561. [Google Scholar] [CrossRef]
- Golia, E.E. The Impact of Heavy Metal Contamination on Soil Quality and Plant Nutrition. Sustainable Management of Moderate Contaminated Agricultural and Urban Soils, Using Low Cost Materials and Promoting Circular Economy. Sustain. Chem. Pharm. 2023, 33, 101046. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis Part 2, Chemical and Microbiological Properties, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Golia, E.E.; Dimirkou, A.; Floras, S.A. Spatial Monitoring of Arsenic and Heavy Metals in the Almyros Area, Central Greece. Statistical Approach for Assessing the Sources of Contamination. Environ. Monit. Assess. 2015, 187, 399. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Calvo-Pérez, A.; Domínguez-Renedo, O.; Alonso-Lomillo, M.A.; Arcos-Martínez, M.J. Simultaneous Determination of Cr(III) and Cr(VI) by Differential Pulse Voltammetry Using Modified Screen—Printed Carbon Electrodes in Array Mode. Electroanalysis 2010, 22, 2924–2930. [Google Scholar] [CrossRef]
- Chatzitheodorou, E.; Economou, A.; Voulgaropoulos, A. Trace Determination of Chromium by Square-Wave Adsorptive Stripping Voltammetry on Bismuth Film Electrodes. Electroanalysis 2004, 16, 1745–1754. [Google Scholar] [CrossRef]
- Jorge, E.O.; Rocha, M.M.; Fonseca, I.T.E.; Neto, M.M.M. Studies on the Stripping Voltammetric Determination and Speciation of Chromium at a Rotating-Disc Bismuth Film Electrode. Talanta 2010, 81, 556–564. [Google Scholar] [CrossRef]
- Tonidandel, S.; LeBreton, J.M. RWA Web: A Free, Comprehensive, Web-Based, and User-Friendly Tool for Relative Weight Analyses. J. Bus. Psychol. 2015, 30, 207–216. [Google Scholar] [CrossRef]
- Mónok, D.; Kardos, L.; Pabar, S.A.; Kotroczó, Z.; Tóth, E.; Végvári, G. Comparison of Soil Properties in Urban and Non-urban Grasslands in Budapest Area. Soil Use Manag. 2021, 37, 790–801. [Google Scholar] [CrossRef]
- Papadimou, S.G.; Barbayiannis, Ν.; Golia, E.E. Preliminary Investigation of the Use of Silybum marianum (L.) Gaertn. as a Cd Accumulator in Contaminated Mediterranean Soils: The Relationships among Cadmium (Cd) Soil Fractions and Plant Cd Content. Euro-Mediterr. J. Environ. Integr. 2024, 9, 405–417. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-Term Effects of Mineral Fertilizers on Soil Microorganisms—A Review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Walenczak-Bekier, K.; Uściła, M. Soil Organic Matter Composition in Urban Soils: A Study of Wrocław Agglomeration, SW Poland. Sustainability 2023, 15, 2277. [Google Scholar] [CrossRef]
- Guilland, C.; Maron, P.A.; Damas, O.; Ranjard, L. Biodiversity of Urban Soils for Sustainable Cities. Environ. Chem. Lett. 2018, 16, 1267–1282. [Google Scholar] [CrossRef]
- Penn, C.; Camberato, J. A Critical Review on Soil Chemical Processes That Control How Soil PH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Rolka, E.; Wyszkowski, M. Availability of Trace Elements in Soil with Simulated Cadmium, Lead and Zinc Pollution. Minerals 2021, 11, 879. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil PH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef]
- Bobrowski, A.; Mocak, J.; Dominik, J.; Pereira, H.; Bas, B.; Knap, W. Metrological Characteristics and Comparison of Analytical Methods for Determination of Chromium Trace in Water Samples. Acta Chim. Slov. 2004, 51, 77–93. [Google Scholar]
- Thị Hue, N.; Van Hop, N.; Thai Long, H.; Hai Phong, N.; Uyen, T.H.; Quoc Hung, L.; Nhi Phuong, N. Determination of Chromium in Natural Water by Adsorptive Stripping Voltammetry Using In Situ Bismuth Film Electrode. J. Environ. Public Health 2020, 2020, 1347836. [Google Scholar] [CrossRef] [PubMed]
- Hilali, N.; Mohammadi, H.; Amine, A.; Zine, N.; Errachid, A. Recent Advances in Electrochemical Monitoring of Chromium. Sensors 2020, 20, 5153. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Cheng, Z.; Yang, H.; Morris, E.E.; Sutherland, M.; McSpadden Gardener, B.B.; Grewal, P.S. Differences in Soil Chemical Properties with Distance to Roads and Age of Development in Urban Areas. Urban Ecosyst. 2010, 13, 483–497. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9780429192036. [Google Scholar]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative Sorption of Chromium Species as Influenced by PH, Surface Charge and Organic Matter Content in Contaminated Soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Shi, J.; McGill, W.B.; Rutherford, P.M.; Whitcombe, T.W.; Zhang, W. Aging Shapes Cr(VI) Speciation in Five Different Soils. Sci. Total Environ. 2022, 804, 150066. [Google Scholar] [CrossRef]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- Alloway, B.J. (Ed.) Heavy Metals in Soils. In Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Blackie Academic and Professional: London, UK, 2013. [Google Scholar]
- Shaheen, S.M.; Kwon, E.E.; Biswas, J.K.; Tack, F.M.G.; Ok, Y.S.; Rinklebe, J. Arsenic, Chromium, Molybdenum, and Selenium: Geochemical Fractions and Potential Mobilization in Riverine Soil Profiles Originating from Germany and Egypt. Chemosphere 2017, 180, 553–563. [Google Scholar] [CrossRef]
- Osakwe, S.A. Chemical Partitioning of Iron, Cadmium, Nickel and Chromium in Contaminated Soils of South-Eastern Nigeria. Chem. Speciat. Bioavailab. 2013, 25, 71–78. [Google Scholar] [CrossRef]
- Cao, Q.; Zhao, J.; Ma, W.; Cui, D.; Zhang, X.; Liu, J.; Chen, H. Heavy Metals in Homestead Soil: Metal Fraction Contents, Bioaccessibility, and Risk Assessment. J. Hazard. Mater. 2024, 480, 135933. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Trammell, T.L.; Paltseva, A.; Livesley, S.J.; Edmondson, J. Editorial: Urban Soil Formation, Properties, Classification, Management, and Function. Front. Ecol. Evol. 2022, 10, 987903. [Google Scholar] [CrossRef]
- Yang, J.; Guo, Q.; Li, L.; Wang, R.; Chen, Y.; Wang, X. Insights into the Evolution of Cr(VI) Species in Long-Term Hexavalent Chromium Contaminated Soil. Sci. Total Environ. 2023, 858, 160149. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, S.; Tao, Z.; Li, Y.; Magni, P.; Zhang, L.; Zheng, X.; Pan, K. The Importance of Organic Matter in Controlling the Metal Variability and Mobility in Seagrass Sediments. Environ. Pollut. 2025, 366, 125542. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-S.; Park, J.H.; Ahn, J.S. Aging Effects on Fractionation and Speciation of Redox-Sensitive Metals in Artificially Contaminated Soil. Chemosphere 2021, 263, 127931. [Google Scholar] [CrossRef] [PubMed]
- Papadimou, S.G.; Golia, E.E. Green and Sustainable Practices for an Energy Plant Cultivation on Naturally Contaminated versus Spiked Soils. The Impact of Ageing Soil Pollution in the Circular Economy Framework. Environ. Res. 2024, 246, 118130. [Google Scholar] [CrossRef]










| Soil 1 (S1) | Soil 2 (S2) | Soil 3 (S3) | Soil 4 (S4) | |
|---|---|---|---|---|
| Agricultural Soils | Urban Soils | |||
| pH (1:2.5 H2O) | 7.4 ± 0.4 | 7.5 ± 0.7 | 6.9 ± 0.6 | 6.5 ± 0.4 |
| EC (μS cm−1) | 488 ± 4 | 533 ± 6 | 1234 ± 10 | 1677 ± 10 |
| OM (%) | 2.3 ± 0.1 | 2.7 ± 0.2 | 1.7 ± 0.2 | 1.5 ± 0.4 |
| Clay (%) | 38.0 ± 2.1 | 35.5 ± 2.0 | 47.0 ± 2.2 | 48.7 ± 4.8 |
| Texture | Sandy Clay Loam | Sandy Clay Loam | Clay Loam | Clay Loam |
| N (mg kg−1) | 7.8 | 8.1 | 11.7 | 12.8 |
| Olsen P (mg kg−1) | 27.6 | 21.8 | 22.9 | 23.5 |
| Exchangeable K (mg kg−1) | 134.4 | 146.9 | 80.4 | 75.5 |
| CuAqRe (mg kg−1) | 22.4 | 20.6 | 33.8 | 35.9 |
| ZnAqRe (mg kg−1) | 54.9 | 44.9 | 67.6 | 72.9 |
| MnAqRe (mg kg−1) | 45.6 | 41.0 | 61.9 | 68.0 |
| FeAqRe (mg kg−1) | 101.3 | 98.3 | 111.8 | 103.6 |
| CuDTPA (mg kg−1) | 2.2 | 3.0 | 3.1 | 5.9 |
| ZnDTPA (mg kg−1) | 4.7 | 4.8 | 6.0 | 9.0 |
| MnDTPA (mg kg−1) | 3.8 | 4.0 | 5.7 | 8.3 |
| FeDTPA (mg kg−1) | 8.1 | 9.4 | 12.0 | 13.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golia, E.E.; Bilias, F.; Gouliou, E.; Papadimou, S.G.; Papadopoulos, I.; Alexiadis, D.; Girousi, S. Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability. Land 2025, 14, 2157. https://doi.org/10.3390/land14112157
Golia EE, Bilias F, Gouliou E, Papadimou SG, Papadopoulos I, Alexiadis D, Girousi S. Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability. Land. 2025; 14(11):2157. https://doi.org/10.3390/land14112157
Chicago/Turabian StyleGolia, Evangelia E., Fotis Bilias, Eleni Gouliou, Sotiria G. Papadimou, Ioannis Papadopoulos, Dimitrios Alexiadis, and Stella Girousi. 2025. "Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability" Land 14, no. 11: 2157. https://doi.org/10.3390/land14112157
APA StyleGolia, E. E., Bilias, F., Gouliou, E., Papadimou, S. G., Papadopoulos, I., Alexiadis, D., & Girousi, S. (2025). Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability. Land, 14(11), 2157. https://doi.org/10.3390/land14112157

