Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China
Abstract
:1. Introduction
2. Methodology
2.1. Study Area and Data Sources
2.2. Urban Resilience Assessment Framework
2.2.1. The Process of Measurement Selection
2.2.2. Acquisition of Measurement Weight
2.2.3. Dimension and Indicator System of Urban Resilience
2.2.4. Processing of Data
3. Results and Analysis
3.1. Temporal Variations of Urban Resilience at City Scale
3.1.1. Time-Series Analysis
3.1.2. Subcomponents Analysis
3.1.3. Validations
3.2. Spatial Distribution of Urban Resilience at County Scale
3.2.1. Spatial Features Analysis
3.2.2. Cluster Analysis
4. Discussion
4.1. Framework and Policy Implication for Urban Resilience Planning
4.2. Spatial Imbalance between Resilience and Disaster Risk
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3. 2022. Available online: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 (accessed on 28 April 2023).
- UNISDR. How to Make Cities More Resilient—A Handbook for Mayors and Local Government Leaders; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2017; Available online: https://www.preventionweb.net/quick/11635 (accessed on 6 May 2023).
- UNDRR. 2020 Global Natural Disaster Assessment Report; UNDRR: Beijing, China, 2020; Available online: https://www.preventionweb.net/quick/67380 (accessed on 16 December 2022).
- The State Council of People Republic of China. China’s Urbanization Rate Hits 64.72% in 2021. 2022. Available online: http://english.www.gov.cn/archive/statistics/202202/22/content_WS62149dc7c6d09c94e48a5517.html (accessed on 2 October 2022).
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 2011, 100, 341–343. [Google Scholar] [CrossRef]
- Leichenko, R. Climate change and urban resilience. Curr. Opin. Environ. Sustain. 2011, 3, 164–168. [Google Scholar] [CrossRef]
- Mehmood, A. Of resilient places: Planning for urban resilience. Eur. Plan. Stud. 2016, 24, 407–419. [Google Scholar] [CrossRef]
- Béné, C.; Mehta, L.; McGranahan, G.; Cannon, T.; Gupte, J.; Tanner, T. Resilience as a policy narrative: Potentials and limits in the context of urban planning. Clim. Dev. 2018, 10, 116–133. [Google Scholar] [CrossRef]
- Gencer, E.A. Natural disasters, urban vulnerability, and risk management: A theoretical overview. Interplay Between Urban Dev. Vulnerability Risk Manag. A Case Study Istanb. Metrop. Area 2013, 7, 7–43. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining urban resilience: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Urban resilience for whom, what, when, where, and why? Urban Geogr. 2019, 40, 309–329. [Google Scholar] [CrossRef]
- Ribeiro PJ, G.; Gonçalves LA, P.J. Urban resilience: A conceptual framework. Sustain. Cities Soc. 2019, 50, 101625. [Google Scholar] [CrossRef]
- Sharifi, A.; Yamagata, Y. Urban resilience assessment: Multiple dimensions, criteria, and indicators. Urban Resil. A Transform. Approach 2016, 2016, 259–276. [Google Scholar] [CrossRef]
- Dianat, H.; Wilkinson, S.; Williams, P.; Khatibi, H. Choosing a holistic urban resilience assessment tool. Int. J. Disaster Risk Reduct. 2022, 71, 102789. [Google Scholar] [CrossRef]
- Song, J.; Chang, Z.; Li, W.; Feng, Z.; Wu, J.; Cao, Q.; Liu, J. Resilience-vulnerability balance to urban flooding: A case study in a densely populated coastal city in China. Cities 2019, 95, 102381. [Google Scholar] [CrossRef]
- Bertilsson, L.; Wiklund, K.; de Moura Tebaldi, I.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience–A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Kawakubo, S.; Yuan, M.; Wang, Q.; Corcoran, J.; Xu, Z.; Peng, J. Dealing with urban floods within a resilience framework regarding disaster stages. Habitat Int. 2023, 136, 102783. [Google Scholar] [CrossRef]
- Campanella, T.J. Urban resilience and the recovery of New Orleans. J. Am. Plan. Assoc. 2006, 72, 141–146. [Google Scholar] [CrossRef]
- Burton, C.G. A validation of metrics for community resilience to natural hazards and disasters using the recovery from Hurricane Katrina as a case study. Ann. Assoc. Am. Geogr. 2015, 105, 67–86. [Google Scholar] [CrossRef]
- Tumini, I.; Villagra-Islas, P.; Herrmann-Lunecke, G. Evaluating reconstruction effects on urban resilience: A comparison between two Chilean tsunami-prone cities. Nat. Hazards 2017, 85, 1363–1392. [Google Scholar] [CrossRef]
- Ainuddin, S.; Routray, J.K. Community resilience framework for an earthquake prone area in Baluchistan. Int. J. Disaster Risk Reduct. 2012, 2, 25–36. [Google Scholar] [CrossRef]
- Allan, P.; Bryant, M.; Wirsching, C.; Garcia, D.; Teresa Rodriguez, M. The influence of urban morphology on the resilience of cities following an earthquake. J. Urban Des. 2013, 18, 242–262. [Google Scholar] [CrossRef]
- Boyd, E.; Juhola, S. Adaptive climate change governance for urban resilience. Urban Stud. 2015, 52, 1234–1264. [Google Scholar] [CrossRef]
- Zheng, Y.; Xie, X.-L.; Lin, C.-Z.; Wang, M.; HE, X.-J. Development as adaptation: Framing and measuring urban resilience in Beijing. Adv. Clim. Chang. Res. 2018, 9, 234–242. [Google Scholar] [CrossRef]
- Lu, Y.; Li, R.; Mao, X.; Wang, S. Towards comprehensive regional resilience evaluation, resistance, recovery, and creativity: From the perspective of the 2008 Wenchuan Earthquake. Int. J. Disaster Risk Reduct. 2022, 82, 103313. [Google Scholar] [CrossRef]
- Choryński, A.; Matczak, P.; Jeran, A.; Witkowski, M. Extreme weather events and small municipalities’ resilience in Wielkopolska Province (Poland). Int. J. Disaster Risk Reduct. 2023, 95, 103928. [Google Scholar] [CrossRef]
- Guo, Y. Urban resilience in post-disaster reconstruction: Towards a resilient development in Sichuan, China. Int. J. Disaster Risk Sci. 2012, 3, 45–55. [Google Scholar] [CrossRef]
- Xu, J.; Shao, Y. The role of the state in China’s post-disaster reconstruction planning: Implications for resilience. Urban Stud. 2020, 57, 525–545. [Google Scholar] [CrossRef]
- Leitner, H.; Sheppard, E.; Webber, S.; Colven, E. Globalizing urban resilience. Urban Geogr. 2018, 39, 1276–1284. [Google Scholar] [CrossRef]
- Langemeyer, J.; Madrid-Lopez, C.; Beltran, A.M.; Mendez, G.V. Urban agriculture—A necessary pathway towards urban resilience and global sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Christopherson, S.; Michie, J.; Tyler, P. Regional resilience: Theoretical and empirical perspectives. Camb. J. Reg. Econ. Soc. 2010, 3, 3–10. [Google Scholar] [CrossRef]
- Peng, C.; Yuan, M.; Gu, C.; Peng, Z.; Ming, T. A review of the theory and practice of regional resilience. Sustain. Cities Soc. 2017, 29, 86–96. [Google Scholar] [CrossRef]
- Huang, X. Do immigrants build regional resilience? An analysis of US regions from 1980 to 2010. Cities 2022, 131, 103891. [Google Scholar] [CrossRef]
- DeWit, A.; Shaw, R.; Djalante, R. An integrated approach to sustainable development, National Resilience, and COVID-19 responses: The case of Japan. Int. J. Disaster Risk Reduct. 2020, 51, 101808. [Google Scholar] [CrossRef] [PubMed]
- Elkhidir, E.; Mannakkara, S.; Henning, T.F.; Wilkinson, S. A pathway towards resilient cities: National resilience knowledge networks. Cities 2023, 136, 104243. [Google Scholar] [CrossRef]
- Cariolet, J.M.; Vuillet, M.; Diab, Y. Mapping urban resilience to disasters–A review. Sustain. Cities Soc. 2019, 51, 101746. [Google Scholar] [CrossRef]
- Sharifi, A. Urban form resilience: A meso-scale analysis. Cities 2019, 93, 238–252. [Google Scholar] [CrossRef]
- Scott, M. Resilience: A conceptual lens for rural studies? Geogr. Compass 2013, 7, 597–610. [Google Scholar] [CrossRef]
- Huang, X.; Li, H.; Zhang, X.; Zhang, X. Land use policy as an instrument of rural resilience–The case of land withdrawal mechanism for rural homesteads in China. Ecol. Indic. 2018, 87, 47–55. [Google Scholar] [CrossRef]
- Baldwin, C.; Hamerlinck, J.; McKinlay, A. Institutional support for building resilience within rural communities characterised by multifunctional land use. Land Use Policy 2023, 132, 106808. [Google Scholar] [CrossRef]
- Berkes, F.; Ross, H. Community resilience: Toward an integrated approach. Soc. Nat. Resour. 2013, 26, 5–20. [Google Scholar] [CrossRef]
- Fang, Y.P.; Zhu, F.B.; Qiu, X.P.; Zhao, S. Effects of natural disasters on livelihood resilience of rural residents in Sichuan. Habitat Int. 2018, 76, 19–28. [Google Scholar] [CrossRef]
- Rapaport, C.; Hornik-Lurie, T.; Cohen, O.; Lahad, M.; Leykin, D.; Aharonson-Daniel, L. The relationship between community type and community resilience. Int. J. Disaster Risk Reduct. 2018, 31, 470–477. [Google Scholar] [CrossRef]
- Roostaie, S.; Nawari, N.; Kibert, C.J. Sustainability and resilience: A review of definitions, relationships, and their integration into a combined building assessment framework. Build. Environ. 2019, 154, 132–144. [Google Scholar] [CrossRef]
- Sherrieb, K.; Norris, F.H.; Galea, S. Measuring capacities for community resilience. Soc. Indic. Res. 2010, 99, 227–247. [Google Scholar] [CrossRef]
- Lam, N.S.N.; Reams, M.; Li, K.; Li, C.; Mata, L.P. Measuring community resilience to coastal hazards along the Northern Gulf of Mexico. Nat. Hazards Rev. 2016, 17, 04015013. [Google Scholar] [CrossRef]
- Du, M.; Zhang, X.; Wang, Y.; Tao, L.; Li, H. An operationalizing model for measuring urban resilience on land expansion. Habitat Int. 2020, 102, 102206. [Google Scholar] [CrossRef]
- Shi, Y.; Zhai, G.; Xu, L.; Zhou, S.; Lu, Y.; Liu, H.; Huang, W. Assessment methods of urban system resilience: From the perspective of complex adaptive system theory. Cities 2021, 112, 103141. [Google Scholar] [CrossRef]
- Mehryar, S.; Sasson, I.; Surminski, S. Supporting urban adaptation to climate change: What role can resilience measurement tools play? Urban Clim. 2022, 41, 101047. [Google Scholar] [CrossRef]
- Milman, A.; Short, A. Incorporating resilience into sustainability indicators: An example for the urban water sector. Glob. Environ. Chang. 2008, 18, 758–767. [Google Scholar] [CrossRef]
- Mai, X.; Zhan, C.; Chan, R.C. The nexus between (re) production of space and economic resilience: An analysis of Chinese cities. Habitat Int. 2021, 109, 102326. [Google Scholar] [CrossRef]
- Colding, J. ‘Ecological land-use complementation’ for building resilience in urban ecosystems. Landsc. Urban Plan. 2007, 81, 46–55. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, H.; Liu, X. Evaluating urban ecosystem resilience using the DPSIR framework and the ENA model: A case study of 35 cities in China. Sustain. Cities Soc. 2021, 72, 102997. [Google Scholar] [CrossRef]
- Yang, S.; He, S.; Du, J.; Sun, X. Screening of social vulnerability to natural hazards in China. Nat. Hazards 2015, 76, 1–18. [Google Scholar] [CrossRef]
- Shi, P.; Xu, W.; Wang, J.A. Natural disaster system in China. In Natural Disasters in China; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–36. [Google Scholar] [CrossRef]
- Abramson, D.B. Ancient and current resilience in the Chengdu Plain: Agropolitan development re-‘revisited’. Urban Stud. 2020, 57, 1372–1397. [Google Scholar] [CrossRef]
- Mou, Y.; Luo, Y.; Su, Z.; Wang, J.; Liu, T. Evaluating the dynamic sustainability and resilience of a hybrid urban system: Case of Chengdu, China. J. Clean. Prod. 2021, 291, 125719. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Jiao, L.; Wei, Y.; Zhang, Y. Analysis on the spatial-temporal evolution of urban agglomeration resilience: A case study in Chengdu-Chongqing Urban Agglomeration, China. Int. J. Disaster Risk Reduct. 2022, 79, 103167. [Google Scholar] [CrossRef]
- Yang, W. Rural Community Resilience in the Chengdu Plain, China: A Comparative Study of Three Community-Scale Cases. Rethink. Sustain. Pac. Rim Territ. 2020, 237–247. [Google Scholar] [CrossRef]
- Song, H.; Lu, B.; Ye, C.; Li, J.; Zhu, Z.; Zheng, L. Fraud vulnerability quantitative assessment of Wuchang rice industrial chain in China based on AHP-EWM and ANN methods. Food Res. Int. 2021, 140, 109805. [Google Scholar] [CrossRef]
- Yu, L.; Li, D.; Mao, L.; Zhou, S.; Feng, H. Towards people-centric smart cities: A comparative evaluation of citizens’ sense of gain in pilot cities in China. J. Clean. Prod. 2024, 434, 140027. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, H.; Gao, Y. The global cooperation in asteroid mining based on AHP, entropy and TOPSIS. Appl. Math. Comput. 2023, 437, 127535. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C.; O’Rourke, T.D.; Reinhorn, A.M.; Shinozuka, M.; Tierney, K.; Wallace, W.A.; Von Winterfeldt, D. A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. Am. J. Community Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Kwok, A.H.; Doyle, E.E.; Becker, J.; Johnston, D.; Paton, D. What is ‘social resilience’? Perspectives of disaster researchers, emergency management practitioners, and policymakers in New Zealand. Int. J. Disaster Risk Reduct. 2016, 19, 197–211. [Google Scholar] [CrossRef]
- Cutter, S.L.; Burton, C.G.; Emrich, C.T. Disaster resilience indicators for benchmarking baseline conditions. J. Homel. Secur. Emerg. Manag. 2010, 7, 1–22. [Google Scholar] [CrossRef]
- Moghadas, M.; Asadzadeh, A.; Vafeidis, A.; Fekete, A.; Kötter, T. A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. Int. J. Disaster Risk Reduct. 2019, 35, 101069. [Google Scholar] [CrossRef]
- Qin, W.; Lin, A.; Fang, J.; Wang, L.; Li, M. Spatial and temporal evolution of community resilience to natural hazards in the coastal areas of China. Nat. Hazards 2017, 89, 331–349. [Google Scholar] [CrossRef]
- Scherzer, S.; Lujala, P.; Rød, J.K. A community resilience index for Norway: An adaptation of the Baseline Resilience Indicators for Communities (BRIC). Int. J. Disaster Risk Reduct. 2019, 36, 101107. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, H.; Chen, L.; Liu, X.; Gu, M.; Pan, W. Multiattribute decision making for the assessment of disaster resilience in the Three Gorges Reservoir Area. Ecol. Soc. 2020, 25, 5. [Google Scholar] [CrossRef]
- Zhao, R.; Fang, C.; Liu, J.; Zhang, L. The evaluation and obstacle analysis of urban resilience from the multidimensional perspective in Chinese cities. Sustain. Cities Soc. 2022, 86, 104160. [Google Scholar] [CrossRef]
- Da Silva, J.; Morera, B. City Resilience Framework; Ove Arup and Partners: London, UK, 2014; Available online: https://www.rockefellerfoundation.org/wp-content/uploads/City-Resilience-Framework-2015.pdf (accessed on 5 April 2022).
- Baba, K.; Nagata, Y.; Kawakubo, S.; Tanaka, M. A framework and indicators of resilience. Resilient Policies Asian Cities Adapt. Clim. Chang. Nat. Disasters 2020, 2020, 3–45. [Google Scholar] [CrossRef]
- Kawakubo, S.; Baba, K.; Tanaka, M.; Murakami, S.; Ikaga, T. Assessment of city resilience using urban indicators in Japanese cities. Resilient Policies Asian Cities Adapt. Clim. Chang. Nat. Disasters 2020, 2020, 47–60. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Xu, X.; Luo, J. Integrated natural disasters urban resilience evaluation: The case of China. Nat. Hazards 2021, 107, 2105–2122. [Google Scholar] [CrossRef]
- Cai, H.; Lam, N.S.; Qiang, Y.; Zou, L.; Correll, R.M.; Mihunov, V. A synthesis of disaster resilience measurement methods and indices. Int. J. Disaster Risk Reduct. 2018, 31, 844–855. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Huang, G.; Chhipi-Shrestha, G.; Nahiduzzaman, K.M.; Hewage, K.; Sadiq, R. Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct. 2021, 61, 102355. [Google Scholar] [CrossRef]
- Javadpoor, M.; Sharifi, A.; Roosta, M. An adaptation of the Baseline Resilience Indicators for Communities (BRIC) for assessing resilience of Iranian provinces. Int. J. Disaster Risk Reduct. 2021, 66, 102609. [Google Scholar] [CrossRef]
- Gerges, F.; Nassif, H.; Geng, X.; Michael, H.A.; Boufadel, M.C. GIS-based approach for evaluating a community intrinsic resilience index. Nat. Hazards 2022, 111, 1271–1299. [Google Scholar] [CrossRef]
- Serdar, M.Z.; Koç, M.; Al-Ghamdi, S.G. Urban transportation networks resilience: Indicators, disturbances, and assessment methods. Sustain. Cities Soc. 2022, 76, 103452. [Google Scholar] [CrossRef]
- Buck, K.D.; Dunn, R.J.; Bennett, M.K.; Bousquin, J.J. Influence of cross-scale measures on neighborhood resilience. Nat. Hazards 2022, 119, 1011–1040. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Fath, B.D.; Hubacek, K.; Yao, H.; Liu, W. The spatio-temporal dynamics of urban resilience in China’s capital cities. J. Clean. Prod. 2022, 379, 134400. [Google Scholar] [CrossRef]
- Joerin, J.; Shaw, R.; Takeuchi, Y.; Krishnamurthy, R. The adoption of a climate disaster resilience index in Chennai, India. Disasters 2014, 38, 540–561. [Google Scholar] [CrossRef]
- Hung, H.C.; Yang, C.Y.; Chien, C.Y.; Liu, Y.C. Building resilience: Mainstreaming community participation into integrated assessment of resilience to climatic hazards in metropolitan land use management. Land Use Policy 2016, 50, 48–58. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Li, L.; Shen, D.; Wei, G.; Dong, S. Measuring the resilience to floods: A comparative analysis of key flood control cities in China. Int. J. Disaster Risk Reduct. 2021, 59, 102248. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Cutter, S.L.; Ash, K.D.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Cardoni, A.; Noori, A.Z.; Greco, R.; Cimellaro, G.P. Resilience assessment at the regional level using census data. Int. J. Disaster Risk Reduct. 2021, 55, 102059. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, F.; Liu, H.; Zhang, C.; Fu, G. Assessing catchment scale flood resilience of urban areas using a grid cell based metric. Water Res. 2019, 163, 114852. [Google Scholar] [CrossRef]
- Abenayake, C.C.; Mikami, Y.; Matsuda, Y.; Jayasinghe, A. Ecosystem services-based composite indicator for assessing community resilience to floods. Environ. Dev. 2018, 27, 34–46. [Google Scholar] [CrossRef]
- Anelli, D.; Tajani, F.; Ranieri, R. Urban resilience against natural disasters: Mapping the risk with an innovative indicators-based assessment approach. J. Clean. Prod. 2022, 371, 133496. [Google Scholar] [CrossRef]
- Ji, T.; Wei, H.H.; Sim, T.; Yang, L.E.; Scheffran, J. Disaggregated validation of disaster-resilience indicators using household survey data: A case study of Hong Kong. Sustain. Cities Soc. 2021, 67, 102726. [Google Scholar] [CrossRef]
- Cutter, S.L. The landscape of disaster resilience indicators in the USA. Nat. Hazards 2016, 80, 741–758. [Google Scholar] [CrossRef]
- Casadio Tarabusi, E.; Guarini, G. An unbalance adjustment method for development indicators. Soc. Indic. Res. 2013, 112, 19–45. [Google Scholar] [CrossRef]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through urban ecosystem services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.; Geng, X.; Wang, T.; Wang, K.; Liu, S. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 2020, 61, 102354. [Google Scholar] [CrossRef]
- Bixler, R.P.; Lieberknecht, K.; Atshan, S.; Zutz, C.P.; Richter, S.M.; Belaire, J.A. Reframing urban governance for resilience implementation: The role of network closure and other insights from a network approach. Cities 2020, 103, 102726. [Google Scholar] [CrossRef]
The Level of Importance | Numerical Value | Reciprocal Value |
---|---|---|
Extreme importance | 9 | 1/9 (0.111) |
Very strong to extreme importance | 8 | 1/8 (0.125) |
Very strong importance | 7 | 1/7 (0.143) |
Strong to very strong importance | 6 | 1/6 (0.167) |
Strong importance | 5 | 1/5 (0.200) |
Moderate to strong importance | 4 | 1/4 (0.250) |
Moderate importance | 3 | 1/3 (0.333) |
Equal to moderate importance | 2 | 1/2 (0.500) |
Equal importance | 1 | 1 (1.000) |
Order | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0.58 | 0.89 | 1.12 | 1.26 | 1.32 | 1.41 | 1.46 | 1.49 | 1.52 | 1.54 |
Dimension | Indicator | Measurement | Weight | References |
---|---|---|---|---|
D1 Infrastructure resilience (0.311) | I1 Housing capacity | M1 Housing area per capita (+) | 0.030 | Norris et al., 2008 [67]; Cutter et al., 2008 [5]; Cutter et al., 2010 [69]; Scherzer et al., 2019 [72]; Yang et al., 2020 [73]; Zhao et al., 2022 [74] |
I2 Evacuation capacity | M2 Urban road area per capita (+) | 0.017 | Cutter et al., 2010 [69]; ARUP 2014 [75]; Burton 2015 [20]; Baba et al., 2020 [76]; Kawakubo et al., 2020 [77]; Liu et al., 2021 [78] | |
M3 Length of refuge road per capita (+) | 0.024 | |||
I3 Transportation access | M4 Number of public vehicles per 10,000 persons (+) | 0.023 | Burton 2015 [20]; Cai et al., 2018 [79]; Yang et al., 2020 [73]; Zhu et al., 2021 [80]; Liu et al., 2021 [78]; Javadpoor et al., 2021 [81]; Gerges et al., 2022 [82]; Serdar et al., 2022 [83]; Buck et al., 2022 [84]; Liu et al., 2022 [85]; Zhao et al., 2022 [74] | |
M5 Number of private cars per 10,000 persons (+) | 0.018 | |||
I4 Public utilities | M6 Electricity and water supply coverage (+) | 0.021 | Joerin et al., 2014 [86]; Hung et al., 2016 [87]; Scherzer et al., 2019 [72]; Zhang et al., 2021 [88]; Liu et al., 2021 [78]; Zhao et al., 2022 [74] | |
I5 Shelter capacity | M7 Public space area per capita (+) | 0.020 | Burton 2015 [20]; Hung et al., 2016 [87]; Kawakubo et al., 2020 [77]; Cai et al., 2018 [79]; Moghadas et al., 2019 [70]; Yang et al., 2020 [73]; Javadpoor et al., 2021 [81]; Buck et al., 2022 [84] | |
M8 Number of schools and parks per 10,000 persons (+) | 0.044 | |||
I6 Medical capacity | M9 Number of hospital beds per 10,000 persons (+) | 0.037 | Cimellaro et al., 2010 [89]; Cutter et al., 2014 [90]; Hung et al., 2016 [87]; Cai et al., 2018 [79]; Baba et al., 2020 [76]; Yang et al., 2020 [73]; Cardoni et al., 2021 [91]; Javadpoor et al., 2021 [81]; Gerges et al., 2022 [82] | |
I7 Communication capacity | M10 Number of mobile phones per 10,000 persons (+) | 0.027 | Cutter et al., 2010 [69]; ARUP 2014 [75]; Burton 2015 [20]; Yang et al., 2020 [73]; Javadpoor et al., 2021 [81]; Cardoni et al., 2021 [91]; Buck et al., 2022 [84]; Liu et al., 2022 [85]; Zhao et al., 2022 [74] | |
M11 Number of Internet users per 10,000 persons (+) | 0.021 | |||
I8 Flood resistance capacity | M12 Density of drainage (+) | 0.033 | Wang et al., 2019 [92]; Zhang et al., 2021 [88]; Zhu et al., 2021 [80]; Liu et al., 2022 [85]; Yu et al., 2023 [18] | |
D2 Environmental resilience (0.191) | I9 Natural buffers | M13 Proportion of natural land in built-up area (+) | 0.036 | Cutter et al., 2014 [90]; Kawakubo et al., 2020 [77]; Abenayake et al., 2018 [93]; Moghadas et al., 2019 [70]; Scherzer et al., 2019 [72]; Buck et al., 2022 [84]; Yu et al., 2023 [18] |
M14 Proportion of water and woodland area (+) | 0.028 | |||
I10 Urban ecosystem | M15 Green area rate of built-up area (+) | 0.034 | Joerin et al., 2014 [86]; ARUP 2014 [75]; Abenayake et al., 2018 [93]; Zhang et al., 2021 [88]; Yang et al., 2020 [73]; Zhu et al., 2021 [80]; Liu et al., 2022 [85]; Zhao et al., 2022 [74] | |
I11 Ecological capacity | M16 The population density (−) | 0.040 | Qin et al., 2017 [71]; Zhang et al., 2021 [88]; Yang et al., 2020 [73]; Zhu et al., 2021 [80]; Cardoni et al., 2021 [91]; Zhao et al., 2022 [74] | |
I12 Food security | M17 Cultivated land area per capita (+) | 0.055 | Cutter et al., 2014 [90]; Burton 2015 [20]; Hung et al., 2016 [87]; Scherzer et al., 2019 [72]; Yang et al., 2020 [73]; Javadpoor et al., 2021 [81]; Anelli et al., 2022 [94] | |
D3 Socio-economic resilience (0.306) | I13 Independent population | M18 Percentage of population aged 15–64 (+) | 0.033 | Cutter et al., 2008 [5]; Hung et al., 2016 [87]; Qin et al., 2017 [71]; Moghadas et al., 2019 [70]; Yang et al., 2020 [73]; Ji et al., 2021 [95]; Javadpoor et al., 2021 [81]; Anelli et al., 2022 [94]; Buck et al., 2022 [84] |
I14 Employment | M19 Unemployment rate (−) | 0.029 | Cutter et al., 2010 [69]; Qin et al., 2017 [71]; Moghadas et al., 2019 [70]; Yang et al., 2020 [73]; Ji et al., 2021 [95]; Cardoni et al., 2021 [91]; Liu et al., 2022 [85]; Zhao et al., 2022 [74] | |
I15 Household budget capacity | M20 Average saving rate (= household savings/income) (+) | 0.023 | Cutter et al., 2008 [5]; Hung et al., 2016 [87]; Baba et al., 2020 [76]; Yang et al., 2020 [73]; Gerges et al., 2022 [82]; Anelli et al., 2022 [94] | |
I16 Education level | M21 Percent population educated with high school (+) | 0.033 | Cutter et al., 2008 [5]; Hung et al., 2016 [87]; Qin et al., 2017 [71]; Ji et al., 2021 [95]; Zhang et al., 2021 [88]; Cardoni et al., 2021 [91]; Gerges et al., 2022 [82] | |
I17 Education access | M22 Number of teachers per 10,000 persons (+) | 0.025 | Yang et al., 2020 [73]; Liu, X. et al., 2021 [85]; Lu et al., 2022 [26] | |
I18 Health access | M23 Number of doctors per 10,000 persons (+) | 0.058 | Norris et al., 2008 [67]; Cutter et al., 2010 [69]; Baba et al., 2020 [76]; Yang et al., 2020 [73]; Liu, X. et al., 2021 [78]; Javadpoor et al., 2021 [81]; Gerges et al., 2022 [82]; Buck et al., 2022 [84]; Zhao et al., 2022 [74] | |
I19 Social capital | M24 Number of NPOs and NGOs per 10,000 persons (+) | 0.036 | Cutter et al., 2010 [69]; Sherrieb et al., 2010 [46]; Burton 2015 [20]; Yang et al., 2020 [73]; Gerges et al., 2022 [82]; Buck et al., 2022 [84] | |
M25 Percent population employed in social organization (+) | 0.030 | |||
I20 Social innovation | M26 Percent population employed in creative class occupations (+) | 0.041 | Norris et al., 2008 [67]; Sherrieb et al., 2010 [46]; Burton 2015 [20]; Zheng et al., 2018 [25]; Scherzer et al., 2019 [72] | |
D4 Institutional resilience (0.192) | I21 Risk management capacity | M27 Urban risk management capacity index a (+) | 0.039 | Zheng et al., 2018 [25]; Scherzer et al., 2019 [72]; Baba et al., 2020 [76]; Javadpoor et al., 2021 [81] |
I22 Social insurance | M28 Social Insurance Index b (+) | 0.044 | Cutter et al., 2010 [69]; Zheng et al., 2018 [25]; Yang et al., 2020 [73]; Zhu et al., 2021 [80]; Liu et al., 2021 [78]; Gerges et al., 2022 [82]; Buck et al., 2022 [84] | |
I23 Disaster mitigation community | M29 Communities covered by disaster prevention and mitigation plan (+) | 0.079 | Cutter et al., 2010 [69]; Ainuddin & Routray 2012 [22]; Cutter 2016 [96]; Zhang et al., 2021 [88]; Javadpoor et al., 2021 [81] | |
I24 Funding | M30 Percent municipal expenditures for public safety (+) | 0.031 | Cutter 2016 [96]; Zheng et al., 2018 [25]; Scherzer et al., 2019 [72]; Zhang et al., 2021 [88]; Zhao et al., 2022 [74] |
Variables | Regression Coefficient | Standard Error | p | adj. R2 |
---|---|---|---|---|
Constant | 0.7230 | 0.0351 | 0.006 *** | 0.166 |
Resilience | −1.0747 | 0.0188 | 0.020 ** | |
Population | 0.3470 | 0.3220 | 0.132 |
Dimension | Moran’s I | p-Value | Z-Score |
---|---|---|---|
URI | 0.3355 | 0.017 | 2.381 |
InfR | 0.4372 | 0.003 | 2.927 |
ER | 0.5886 | 0.001 | 3.779 |
SER | 0.3126 | 0.005 | 2.792 |
InsR | 0.3955 | 0.024 | 2.255 |
Scoring and Classification | |||||
---|---|---|---|---|---|
Resilience | Very high = 5 | High = 4 | Intermediate = 3 | Low = 2 | Very low = 1 |
Disaster risk | Very high = 5 | High = 4 | Intermediate = 3 | Low = 2 | Very low = 1 |
Resilience to risk | 3, 4 | 1, 2 | 0, −1 | −2 | −3 |
Over-abundant | Self-adaptive | Less-adaptive | Deficient | Severely-deficient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Kidokoro, T.; Seta, F.; Shu, B. Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China. Land 2024, 13, 506. https://doi.org/10.3390/land13040506
Wei Y, Kidokoro T, Seta F, Shu B. Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China. Land. 2024; 13(4):506. https://doi.org/10.3390/land13040506
Chicago/Turabian StyleWei, Yang, Tetsuo Kidokoro, Fumihiko Seta, and Bo Shu. 2024. "Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China" Land 13, no. 4: 506. https://doi.org/10.3390/land13040506
APA StyleWei, Y., Kidokoro, T., Seta, F., & Shu, B. (2024). Spatial-Temporal Assessment of Urban Resilience to Disasters: A Case Study in Chengdu, China. Land, 13(4), 506. https://doi.org/10.3390/land13040506