Distribution, Risk Assessment and Source Identification of Potentially Toxic Elements in Coal Mining Contaminated Soils of Makarwal, Pakistan: Environmental and Human Health Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physiography
2.2. Samples Collection
2.3. Experimental Procedures
2.4. Pollution Quantification and Risk Assessment
2.4.1. Contamination Factor
2.4.2. Geoaccumulation Index
2.4.3. Pollution Load Index
2.4.4. Ecological Risk Assessment
3. Results and Discussion
3.1. Distribution of Toxic Trace Elements
3.2. Major Oxides Distribution
3.3. Assessment of Potential Ecological Risk Index for Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirby, B.; Vengadajellum, C.; Burton, S.; Cowan, D. Coal, coal mines and spoil heaps. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Janjuhah, H.T.; Ishfaque, M.; Mehmood, M.I.; Kontakiotis, G.; Shahzad, S.M.; Zarkogiannis, S.D. Integrated Underground Mining Hazard Assessment, Management, Environmental Monitoring, and Policy Control in Pakistan. Sustainability 2021, 13, 13505. [Google Scholar] [CrossRef]
- Rodríguez-Pacheco, R.; García, G.; Caparrós-Ríos, A.V.; Robles-Arenas, V.; García-García, C.; Millán, R.; Pérez-Sanz, A.; Alcolea-Rubio, L.A. Mineralogy, Geochemistry and Environmental Hazards of Different Types of Mining Waste from a Former Mediterranean Metal Mining Area. Land 2023, 12, 499. [Google Scholar] [CrossRef]
- Belanović Simić, S.; Miljković, P.; Baumgertel, A.; Lukić, S.; Ljubičić, J.; Čakmak, D. Environmental and Health Risk Assessment Due to Potentially Toxic Elements in Soil near Former Antimony Mine in Western Serbia. Land 2023, 12, 421. [Google Scholar] [CrossRef]
- Somoano, M.D. Minimization of Hg and trace elements during coal combustion and gasification processes. In New Trends in Coal Conversion; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–88. [Google Scholar]
- Finkleman, D.; Santiago, J.; Alfano, S.; Vallado, D. Introduction to Data Fusion and Applications in Astrodynamics. Multisens. Fusion 2002, 70, 657–671. [Google Scholar]
- Mohanty, A.K.; Lingaswamy, M.; Rao, V.G.; Sankaran, S. Impact of acid mine drainage and hydrogeochemical studies in a part of Rajrappa coal mining area of Ramgarh District, Jharkhand State of India. Groundw. Sustain. Dev. 2018, 7, 164–175. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Fan, L.; Chen, T.; Bai, Y.; Yu, Q.; Liu, Y. Assessment of multiple exposure to chemical elements and health risks among residents near Huodehong lead-zinc mining area in Yunnan, Southwest China. Chemosphere 2017, 174, 613–627. [Google Scholar] [CrossRef]
- Makri, P.; Stathopoulou, E.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Skilodimou, H.D.; Bathrellos, G.D.; Antonarakou, A.; Scoullos, M. The Environmental Impact of a Complex Hydrogeological System on Hydrocarbon-Pollutants’ Natural Attenuation: The Case of the Coastal Aquifers in Eleusis, West Attica, Greece. J. Mar. Sci. Eng. 2020, 8, 18. [Google Scholar] [CrossRef]
- Hermides, D.; Makri, P.; Kontakiotis, G.; Antonarakou, A. Advances in the Coastal and Submarine Groundwater Processes: Controls and Environmental Impact on the Thriassion Plain and Eleusis Gulf (Attica, Greece). J. Mar. Sci. Eng. 2020, 8, 944. [Google Scholar] [CrossRef]
- Makri, P.; Hermides, D.; Kontakiotis, G.; Zarkogiannis, S.D.; Besiou, E.; Janjuhah, H.T.; Antonarakou, A. Integrated Ecological Assessment of Heavily Polluted Sedimentary Basin within the Broader Industrialized Area of Thriassion Plain (Western Attica, Greece). Water 2022, 14, 382. [Google Scholar] [CrossRef]
- Komnitsas, K.; Modis, K. Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics. Sci. Total Environ. 2006, 371, 190–196. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Parvez, L.; Islam, M.; Dampare, S.B.; Suzuki, S. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J. Hazard. Mater. 2010, 173, 384–392. [Google Scholar] [CrossRef]
- Swaine, D.J.; Goodarzi, F. General introduction. In Environmental Aspects of Trace Elements in Coal; Springer: Berlin/Heidelberg, Germany, 1995; pp. 1–4. [Google Scholar]
- Asif, M.; Muneer, T. Energy supply, its demand and security issues for developed and emerging economies. Renew. Sustain. Energy Rev. 2007, 11, 1388–1413. [Google Scholar] [CrossRef]
- Abbasi, S.A.; Harijan, K.; Memon, Z.A.; Shaikh, F.; Mirjat, N.H. Is Coal Power Generation a Sustainable Solution for Energy Needs of Pakistan: A Delphi-SWOT Paradigm? Int. J. Energy Econ. Policy 2021, 11, 308. [Google Scholar] [CrossRef]
- Hussain, R.; Luo, K.; Liang, H.; Hong, X. Impact of the coal mining-contaminated soil on the food safety in Shaanxi, China. Environ. Geochem. Health 2019, 41, 1521–1544. [Google Scholar] [CrossRef]
- Zhuang, W.; Gao, X. Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou Bay and the coastal waters of the Zhangzi Island, China: Comparison among typical marine sediment quality indices. PLoS ONE 2014, 9, e94145. [Google Scholar] [CrossRef]
- Sun, L.; Guo, D.; Liu, K.; Meng, H.; Zheng, Y.; Yuan, F.; Zhu, G. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 2019, 175, 101–109. [Google Scholar] [CrossRef]
- Malkani, M.S.; Mahmood, Z. Coal Resources of Pakistan: Entry of new coalfields. Geol. Surv. Pak. Inf. Release 2017, 980, 1–28. [Google Scholar]
- Blisniuk, P.M. Tectonic Evolution of the NW-Himalayan Thrust Front: The Trans-Indus Ranges, Northern Pakistan; Dartmouth College: Hanover, NH, USA, 1996. [Google Scholar]
- Ali, A. Structural Analysis of the Trans-Indus Ranges: Implications for the Hydrocarbon Potential of the NW Himalayas, Pakistan; National Centre of Excellence in Geology University of Peshawar: Pakhtunkhwa, Pakistan, 2010. [Google Scholar]
- Wynne, A. On the trans-indus extension of the Punjab Salt Range. Geol. Surv. India Mem. 1880, 17, 1–95. [Google Scholar]
- Simpson, R.; Pearson, K. Report on certain enteric fever inoculation statistics. Br. Med. J. 1904, 2, 1243–1246. [Google Scholar]
- Gee, G. The photopolymerisation of butadiene. Trans. Faraday Soc. 1938, 34, 712–728. [Google Scholar] [CrossRef]
- Hussain, R.; Khattak, S.A.; Sattar, S.; Ali, L.; Ullah, Z.; Muhammad, N. Evaluation of the contaminated soil and its impacts on Tobacco (Nicotiana tabacum L.) crops in Swabi, Pakistan. J. Himal. Earth Sci. 2020, 53, 34–48. [Google Scholar]
- Du, Y.; Luo, K.; Ni, R.; Hussain, R. Selenium and hazardous elements distribution in plant–soil–water system and human health risk assessment of Lower Cambrian, Southern Shaanxi, China. Environ. Geochem. Health 2018, 40, 2049–2069. [Google Scholar] [CrossRef] [PubMed]
- Hussain, R.; Khattak, S.A.; Shah, M.T.; Ali, L. Multistatistical approaches for environmental geochemical assessment of pollutants in soils of Gadoon Amazai Industrial Estate, Pakistan. J. Soils Sediments 2015, 15, 1119–1129. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Rehman, S.; Khan, A.Z.; Khan, M.A.; Shah, M.T. Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol. Environ. Saf. 2010, 73, 1820–1827. [Google Scholar] [CrossRef]
- Bohn, H.; McNeal, B.; O’Connor, G. Soil Chemistry, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2001; Volume 303, pp. 48–66. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Ho, H.H.; Swennen, R.; Van Damme, A. Distribution and Contamination Status of Heavy Metals in Estuarine Sediments Near Cua Ong Harbor, Ha Long Bay, Vietnam. Geol. Belg. 2010, 13/1-2, 37–47. [Google Scholar]
- Hussain, R.; Luo, K. Geochemical valuation and intake of F, As, and Se in coal wastes contaminated areas and their potential impacts on local inhabitants, Shaanxi China. Environ. Geochem. Health 2018, 40, 2667–2683. [Google Scholar] [CrossRef]
- Rashed, M. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J. Hazard. Mater. 2010, 178, 739–746. [Google Scholar] [CrossRef]
- Muhammad, S.; Shah, M.T.; Khan, S. Heavy metal concentrations in soil and wild plants growing around Pb–Zn sulfide terrain in the Kohistan region, northern Pakistan. Microchem. J. 2011, 99, 67–75. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Atgin, R.S.; El-Agha, O.; Zararsız, A.; Kocataş, A.; Parlak, H.; Tuncel, G. Investigation of the sediment pollution in Izmir Bay: Trace elements. Spectrochim. Acta Part B At. Spectrosc. 2000, 55, 1151–1164. [Google Scholar] [CrossRef]
- Hu, W.; Chen, Y.; Huang, B.; Niedermann, S. Health risk assessment of heavy metals in soils and vegetables from a typical greenhouse vegetable production system in China. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 1264–1280. [Google Scholar] [CrossRef]
- Håkanson, L.; Nilsson, Å.; Andersson, T. Mercury in fish in Swedish lakes. Environ. Pollut. 1988, 49, 145–162. [Google Scholar] [CrossRef]
- CEPAC. China National Environmental Monitoring Center. A Brief Discussion on National Ambient Air Quality Forecast and Early Warning System. Available online: http://www.cnemc.cn/en/ (accessed on 1 March 2023).
- Hussain, R.; Luo, K. Geochemical Evaluation of Enrichment of Rare-Earth and Critical Elements in Coal Wastes from Jurassic and Permo-Carboniferous Coals in Ordos Basin, China. Nat. Resour. Res. 2020, 29, 1731–1754. [Google Scholar] [CrossRef]
- Centeno, J.A.; Finkelman, R.B.; Selinus, O. Medical geology: Impacts of the natural environment on public health. Geosciences 2016, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Khoi, N.N. Mineral resources potential of Vietnam and current state of mining activity. Appl. Environ. Res. 2014, 36, 37–46. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2001, 2, 2000GC000109. [Google Scholar] [CrossRef]
- Danilchik, W.; Shah, S.M. Stratigraphy and coal resources of the Makarwal area, Trans-Indus mountains, Mianwali district, Pakistan. United States Geol. Surv. Prof. Pap. 1987, 75, 1341. [Google Scholar]
- Ma, L.; Sun, J.; Yang, Z.; Wang, L. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environ. Monit. Assess. 2015, 187, 731. [Google Scholar] [CrossRef]
- Hussain, R.; Wei, C.; Luo, K. Hydrogeochemical characteristics, source identification and health risks of surface water and groundwater in mining and non-mining areas of Handan, China. Environ. Earth Sci. 2019, 78, 402. [Google Scholar] [CrossRef]
- Montazeri, A.; Harirchi, A.M.; Shariati, M.; Garmaroudi, G.; Ebadi, M.; Fateh, A. The 12-item General Health Questionnaire (GHQ-12): Translation and validation study of the Iranian version. Health Qual. Life Outcomes 2003, 1, 66. [Google Scholar] [CrossRef] [Green Version]
- USDA. Soil. In Year Book of Agriculture; The United States Department of Agriculture, Amazon Book Club: Washington, DC, USA, 1957. [Google Scholar]
- GB 15618-1995; Environmental quality standard for soils. State Environmental Protection Administration of China (SEPAC): Beijing, China, 1995.
- Bozkaya, Ö.; Günal-Türkmenoğlu, A.; Göncüoğlu, M.C.; Okuyucu, C. Geological, mineralogical and geochemical characteristics of Mississippian K-bentonites from southern Turkey: A correlation with coeval tephras from Gondwana-derived terranes. J. Afr. Earth Sci. 2021, 181, 104258. [Google Scholar] [CrossRef]
- Dou, W.; Liu, L.; Wu, K.; Xu, Z.; Feng, X. Diagenesis of tight oil sand reservoirs: Upper Triassic tight sandstones of Yanchang Formation in Ordos Basin, China. Geol. J. 2018, 53, 707–724. [Google Scholar] [CrossRef]
- Wang, T.; Cao, J.; Carroll, A.R.; Zhi, D.; Tang, Y.; Wang, X.; Li, Y. Oldest preserved sodium carbonate evaporite: Late Paleozoic Fengcheng Formation, Junggar Basin, NW China. Bulletin 2021, 133, 1465–1482. [Google Scholar] [CrossRef]
- Sasmaz, A.; Zagnitko, V.M.; Sasmaz, B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine. Ore Geol. Rev. 2020, 126, 103772. [Google Scholar] [CrossRef]
- Sulaiman, M.; Salawu, K.; Barambu, A. Assessment of concentrations and ecological risk of heavy metals at resident and remediated soils of uncontrolled mining site at Dareta Village, Zamfara, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 187–193. [Google Scholar] [CrossRef]
- Bali, A.S.; Sidhu, G.P.S. Heavy metal contamination indices and ecological risk assessment index to assess metal pollution status in different soils. In Heavy Metals in the Environment; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–98. [Google Scholar]
- Chifflet, S.; Amouroux, D.; Bérail, S.; Barre, J.; Van, T.C.; Baltrons, O.; Brune, J.; Dufour, A.; Guinot, B.; Mari, X. Origins and discrimination between local and regional atmospheric pollution in Haiphong (Vietnam), based on metal (loid) concentrations and lead isotopic ratios in PM 10. Environ. Sci. Pollut. Res. 2018, 25, 26653–26668. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D. Land Use Planning for Natural Hazards. Land 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.; Janjuhah, H.T.; Kontakiotis, G.; Rehman, A.; Zarkogiannis, S.D. Natural Processes and Anthropogenic Activity in the Indus River Sedimentary Environment in Pakistan: A Critical Review. J. Mar. Sci. Eng. 2021, 9, 1109. [Google Scholar] [CrossRef]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Dimirkou, A.; Ioannou, Z.; Golia, E.E.; Danalatos, N.; Mitsios, I.K. Sorption of Cadmium and Arsenic by Goethite and Clinoptilolite. Commun. Soil Sci. Plant Anal. 2009, 40, 259–272. [Google Scholar] [CrossRef]
- Haq, N.U.; Kontakiotis, G.; Janjuhah, H.T.; Rahman, F.; Tabassum, I.; Khan, U.; Khan, J.; Ahmad, Z.; Jamal, N. Environmental Risk Assessment in the Hindu Kush Himalayan Mountains of Northern Pakistan: Palas Valley, Kohistan. Sustainability 2022, 14, 16679. [Google Scholar] [CrossRef]
Class | Values | Soil Quality |
---|---|---|
0 | (Igeo ≤ 0) | Uncontaminated |
1 | (0 < Igeo ≤ 1) | Uncontaminated to moderately contaminated |
2 | (1 < Igeo ≤ 2) | Moderately contaminated |
3 | (2 < Igeo ≤ 3) | Moderately to heavily contaminated |
4 | (3 < Igeo ≤ 4) | Heavily contaminated |
5 | (4 < Igeo ≤ 5) | Heavily to extremely contaminated |
6 | (5 > Igeo) | Extremely contaminated |
Countries | Pb | Zn | Cr | Ni | Cu | Cd |
---|---|---|---|---|---|---|
Present study (Pakistan) | 30.15 | 38.33 | 20.48 | 34.10 | 6.24 | 3.38 |
China (72 examined mines) | 641.3 | 1163 | 84.28 | 106.6 | ND | 11.00 |
Iran (3 examine mines) | 1002 | 363.4 | ND | ND | 88.4 | 1.49 |
Spain (16 examined mines) | 881.3 | 465.8 | 63.2 | 28.35 | 120.8 | 6.59 |
South Korea (70 examined mines) | 111.1 | 183.2 | ND | 22.00 | 79.00 | 1.99 |
Vietnam (5 examined mines) | 30,635 | 41,094 | 1501 | 2254 | 271.40 | 135 |
India (21 examined mines) | 304.7 | 338.8 | 1509 | 1069 | 63.49 | 3.82 |
Chinese Soil Standard a | 26 | 74 | 61 | 26.9 | 22.6 | 0.097 |
Upper continental Crust b | 17 | 71 | 83 | 44 | 25 | 0.10 |
Hussain and Luo [42] c | 7.44 | 3056 | 194 | 83 | 27.6 | 0.63 |
Elements | Pb | Zn | Cr | Ni | Cu | Cd |
---|---|---|---|---|---|---|
Pb | 1.00 | |||||
Zn | 0.366 * | 1.00 | ||||
Cr | 0.371 * | 0.564 ** | 1.00 | |||
Ni | 0.414 ** | 0.448 ** | 0.743 ** | 1.00 | ||
Cu | 0.387 ** | 0.559 ** | 0.701 ** | 0.853 ** | 1.00 | |
Cd | 0.042 | −0.274 | −0.127 | 0.222 | 0.121 | 1.00 |
TTEs | F1 | F2 |
---|---|---|
Pb | 0.587 | 0.040 |
Zn | 0.722 | −0.443 |
Cr | 0.864 | −0.131 |
Ni | 0.892 | 0.288 |
Cu | 0.900 | 0.158 |
Cd | 0.011 | 0.954 |
Eigen | 3.206 | 1.247 |
% variance | 53.437 | 20.777 |
Cumulative | 53.437 | 74.214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, L.; Ali, S.; Khattak, S.A.; Janjuhah, H.T.; Kontakiotis, G.; Hussain, R.; Rukh, S.; Shah, M.T.; Bathrellos, G.D.; Skilodimou, H.D. Distribution, Risk Assessment and Source Identification of Potentially Toxic Elements in Coal Mining Contaminated Soils of Makarwal, Pakistan: Environmental and Human Health Outcomes. Land 2023, 12, 821. https://doi.org/10.3390/land12040821
Ali L, Ali S, Khattak SA, Janjuhah HT, Kontakiotis G, Hussain R, Rukh S, Shah MT, Bathrellos GD, Skilodimou HD. Distribution, Risk Assessment and Source Identification of Potentially Toxic Elements in Coal Mining Contaminated Soils of Makarwal, Pakistan: Environmental and Human Health Outcomes. Land. 2023; 12(4):821. https://doi.org/10.3390/land12040821
Chicago/Turabian StyleAli, Liaqat, Shehzad Ali, Seema Anjum Khattak, Hammad Tariq Janjuhah, George Kontakiotis, Rahib Hussain, Shah Rukh, Mohammad Tahir Shah, George D. Bathrellos, and Hariklia D. Skilodimou. 2023. "Distribution, Risk Assessment and Source Identification of Potentially Toxic Elements in Coal Mining Contaminated Soils of Makarwal, Pakistan: Environmental and Human Health Outcomes" Land 12, no. 4: 821. https://doi.org/10.3390/land12040821
APA StyleAli, L., Ali, S., Khattak, S. A., Janjuhah, H. T., Kontakiotis, G., Hussain, R., Rukh, S., Shah, M. T., Bathrellos, G. D., & Skilodimou, H. D. (2023). Distribution, Risk Assessment and Source Identification of Potentially Toxic Elements in Coal Mining Contaminated Soils of Makarwal, Pakistan: Environmental and Human Health Outcomes. Land, 12(4), 821. https://doi.org/10.3390/land12040821