Groundwater Urban Heat Island in Wrocław, Poland
Abstract
:1. Introduction
2. Characteristics of the Study Area
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AUHI | atmospheric urban heat island; |
GWT | groundwater temperatures; |
GUHI | groundwater urban heat island; |
LST | land surface temperatures; |
NDVI | normalized difference vegetation index; |
UHI | urban heat island; |
UCI | urban cold island; |
SUHI | surface urban heat island. |
Appendix A
Appendix B
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 118.65 | 3.01 | 16.866563 | 51.149281 | 0.90 | 1.109 | −2.633 | MIN | HGWT | HGWT | |
71 | 116.57 | 4.49 | 2.14 | 16.987893 | 51.122601 | 0.84 | 2.112 | −15.377 | LGWT | LGWT | LGWT |
72 | 116.61 | 5.45 | 3.82 | 16.987780 | 51.122878 | 0.70 | 2.477 | −18.205 | LGWT | LGWT | LGWT |
74 | 111.23 | 2.02 | 1.18 | 16.970998 | 51.139932 | 0.88 | 1.947 | −10.950 | LGWT | LGWT | LGWT |
75 | 114.65 | 8.06 | 1.69 | 16.946866 | 51.158004 | 0.88 | 2.408 | −18.079 | LGWT | LGWT | LGWT |
76 | 110.99 | 2.94 | 1.73 | 16.943786 | 51.158694 | 0.87 | 2.763 | −18.383 | LGWT | LGWT | LGWT |
77 | 113.03 | 4.43 | 2.83 | 16.913755 | 51.173491 | 0.87 | 2.128 | −13.073 | LGWT | LGWT | LGWT |
2 | 118.84 | 6.20 | 1.27 | 16.899923 | 51.141886 | 0.83 | 2.518 | −18.389 | LGWT | LGWT | LGWT |
3 | 118.62 | 3.73 | 2.06 | 16.915804 | 51.125902 | 0.87 | 2.677 | −16.868 | LGWT | LGWT | LGWT |
5 | 117.26 | 4.23 | 2.25 | 16.937858 | 51.137295 | 0.82 | 2.098 | −16.181 | LGWT | LGWT | LGWT |
7 | 117.11 | 4.92 | 2.30 | 16.938388 | 51.137283 | 0.72 | 2.514 | −20.852 | LGWT | LGWT | LGWT |
4 | 116.19 | 4.25 | 2.81 | 16.936562 | 51.137225 | 0.87 | 2.300 | −13.439 | LGWT | LGWT | LGWT |
9 | 119.10 | 4.79 | 2.57 | 16.950364 | 51.105614 | 0.77 | 2.157 | −15.328 | LGWT | LGWT | LGWT |
10 | 119.03 | 4.67 | 2.54 | 16.950574 | 51.105752 | 0.76 | 2.821 | −21.413 | LGWT | LGWT | LGWT |
65 | 123.55 | 3.85 | 2.50 | 17.009241 | 51.075203 | 0.81 | 2.607 | −17.076 | LGWT | LGWT | LGWT |
63 | 124.13 | 4.32 | 2.88 | 17.009702 | 51.074778 | 0.70 | 3.241 | −23.233 | LGWT | LGWT | LGWT |
28 | 120.67 | 4.67 | 2.12 | 17.062957 | 51.092322 | 0.79 | 2.100 | −14.407 | LGWT | LGWT | LGWT |
30 | 119.76 | 1.65 | 17.056153 | 51.095442 | 0.80 | 1.770 | −10.522 | LGWT | LGWT | LGWT | |
31 | 119.51 | 1.40 | 17.056821 | 51.095514 | 0.78 | 2.336 | −17.413 | LGWT | LGWT | LGWT | |
36 | 118.90 | 4.71 | 3.53 | 17.043204 | 51.111568 | 0.88 | 3.312 | −27.471 | LGWT | LGWT | LGWT |
37 | 120.26 | 4.97 | 17.046442 | 51.114456 | 0.83 | 3.133 | −27.500 | LGWT | LGWT | LGWT | |
49 | 118.04 | 3.79 | 1.92 | 17.081856 | 51.138054 | 0.87 | 2.210 | −16.475 | LGWT | LGWT | LGWT |
50 | 118.17 | 3.63 | 2.02 | 17.082066 | 51.138025 | 0.80 | 2.117 | −13.031 | LGWT | LGWT | LGWT |
51 | 118.32 | 5.10 | 2.68 | 17.082444 | 51.138056 | 0.68 | 2.424 | −18.710 | LGWT | LGWT | LGWT |
52 | 118.43 | 3.20 | 2.15 | 17.082444 | 51.138453 | 0.78 | 1.972 | −13.463 | LGWT | HGWT | HGWT |
55 | 118.83 | 3.16 | 1.56 | 17.105609 | 51.133033 | 0.86 | 1.860 | −10.620 | LGWT | LGWT | LGWT |
54 | 117.66 | 6.45 | 1.69 | 17.098802 | 51.135477 | 0.20 | 3.534 | −27.919 | LGWT | LGWT | LGWT |
53 | 117.70 | 5.20 | 1.66 | 17.097671 | 51.136320 | 0.79 | 2.425 | −15.877 | LGWT | LGWT | LGWT |
57 | 122.60 | 3.09 | 1.61 | 17.113702 | 51.145718 | 0.87 | 1.745 | −10.260 | LGWT | LGWT | LGWT |
59 | 117.98 | 5.63 | 17.062763 | 51.131713 | 0.57 | 3.908 | −40.467 | LGWT | LGWT | LGWT | |
67 | 115.71 | 5.86 | 4.48 | 17.028512 | 51.138829 | 0.72 | 4.237 | −45.792 | HGWT | LGWT | LGWT |
66 | 115.76 | 5.68 | 4.27 | 17.027429 | 51.138567 | 0.45 | 3.453 | −29.766 | HGWT | LGWT | LGWT |
73 | 116.40 | 6.00 | 5.02 | 16.980919 | 51.126863 | 0.78 | 4.339 | −43.100 | HGWT | LGWT | LGWT |
11 | 120.53 | 7.12 | 2.81 | 16.957984 | 51.113298 | 0.84 | 3.367 | −39.965 | HGWT | HGWT | HGWT |
12 | 120.45 | 5.50 | 2.08 | 16.958122 | 51.113206 | 0.79 | 3.562 | −35.805 | HGWT | LGWT | LGWT |
13 | 120.77 | 5.00 | 1.58 | 16.958969 | 51.113386 | 0.79 | 2.363 | −20.639 | HGWT | HGWT | HGWT |
8 | 118.98 | 4.90 | 2.91 | 16.950131 | 51.105888 | 0.80 | 2.330 | −19.226 | HGWT | LGWT | LGWT |
17 | 124.07 | 4.08 | 16.979559 | 51.094236 | 0.84 | 4.551 | −48.499 | HGWT | LGWT | n.a. | |
18 | 123.94 | 2.08 | 16.979644 | 51.093770 | 0.86 | 2.792 | −26.864 | HGWT | HGWT | HGWT | |
19 | 125.33 | 4.49 | 16.980878 | 51.092403 | 0.76 | 4.764 | −47.638 | HGWT | LGWT | LGWT | |
20 | 124.70 | 7.40 | 5.00 | 17.021350 | 51.079639 | 0.68 | 4.444 | −42.821 | HGWT | LGWT | LGWT |
21 | 125.05 | 5.21 | 17.038807 | 51.085730 | 0.78 | 5.565 | −57.196 | HGWT | LGWT | LGWT | |
22 | 123.55 | 3.56 | 17.044782 | 51.086982 | 0.74 | 3.082 | −28.424 | HGWT | LGWT | LGWT | |
23 | 124.40 | 8.40 | 4.46 | 17.045010 | 51.085111 | 0.79 | 4.752 | −44.125 | HGWT | LGWT | LGWT |
24 | 124.53 | 4.27 | 17.048281 | 51.083742 | 0.60 | 2.218 | −12.890 | HGWT | HGWT | HGWT | |
25 | 124.67 | 4.71 | 17.048543 | 51.083611 | 0.39 | 0.195 | 3.264 | HGWT | LGWT | LGWT | |
26 | 124.76 | 4.98 | 17.048461 | 51.083473 | 0.31 | 4.501 | −38.734 | HGWT | LGWT | LGWT | |
27 | 124.76 | 4.82 | 17.050460 | 51.082405 | 0.53 | 3.846 | −32.446 | HGWT | LGWT | LGWT | |
29 | 120.86 | 7.28 | 2.32 | 17.063170 | 51.092141 | 0.63 | 4.704 | −41.051 | HGWT | LGWT | LGWT |
44 | 118.39 | 4.81 | 17.069237 | 51.114784 | 0.56 | 5.458 | −65.983 | HGWT | LGWT | LGWT | |
47 | 117.08 | 4.22 | 3.26 | 17.083378 | 51.115149 | 0.76 | 4.513 | −39.179 | HGWT | LGWT | LGWT |
60 | 117.65 | 5.32 | 17.062336 | 51.131606 | 0.50 | 17.120 | −198.137 | HGWT | LGWT | n.a. | |
61 | 116.97 | 7.35 | 3.63 | 17.056694 | 51.128397 | 0.53 | 3.417 | −27.884 | HGWT | LGWT | LGWT |
62 | 116.86 | 7.32 | 3.55 | 17.057143 | 51.128379 | 0.55 | 3.349 | −27.502 | HGWT | LGWT | LGWT |
38 | 118.65 | 5.48 | 3.26 | 17.033443 | 51.114156 | 0.68 | 4.090 | −38.072 | HGWT | LGWT | LGWT |
35 | 118.63 | 7.32 | 5.31 | 17.024546 | 51.109247 | 0.91 | 3.957 | −41.158 | HGWT | LGWT | LGWT |
32 | 119.37 | 2.02 | 17.025757 | 51.099291 | 0.87 | 2.649 | −23.069 | HGWT | LGWT | LGWT | |
33 | 119.44 | 1.92 | 17.025592 | 51.099321 | 0.82 | 3.081 | −24.697 | HGWT | LGWT | n.a. | |
69 | 116.57 | 7.46 | 4.23 | 16.999622 | 51.117932 | 0.82 | 5.512 | −104.462 | MAX | MAX | MAX |
46 | 118.58 | 5.24 | 17.069443 | 51.114341 | 0.57 | 11.484 | −152.314 | MAX | LGWT | LGWT | |
45 | 118.52 | 4.62 | 17.068759 | 51.114188 | 0.09 | 6.671 | −81.956 | MAX | LGWT | LGWT |
References
- Howard, L. Climate of London Deduced from Meteorological Observations, 1833rd ed.; Harvey and Darton: London, UK, 1833; Volume 1–3. [Google Scholar]
- Bennet, M.G.; Ewenz, C. Increased urban heat island effect due to building height increase. In Proceedings of the MODSIM2013, 20th International Congress on Modelling and Simulation; Piantadosi, J., Anderssen, R.S., Boland, J., Eds.; Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc.: Canberra, Australia, 2013. [Google Scholar] [CrossRef]
- Bakarman, M.A.; Chang, J.D. The Influence of Height/width Ratio on Urban Heat Island in Hot-arid Climates. Procedia Eng. 2015, 118, 101–108. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Oke, T.R. Canyon geometry and the nocturnal urban heat island: Comparison of scale model and field observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Szymanowski, M. Interactions between thermal advection in frontal zones and the urban heat island of Wrocław, Poland. Theor. Appl. Climatol. 2005, 82, 207–224. [Google Scholar] [CrossRef]
- Suder, A.; Szymanowski, M. Determination of Ventilation Channels in Urban Area: A Case Study of Wrocław (Poland). Pure Appl. Geophys. 2014, 171, 965–975. [Google Scholar] [CrossRef] [Green Version]
- Hathway, E.A.; Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Build. Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Moyer, A.N.; Hawkins, T.W. River effects on the heat island of a small urban area. Urban Clim. 2017, 21, 262–277. [Google Scholar] [CrossRef]
- Aram, F.; García, E.H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, T.W.; Brazel, A.J.; Stefanov, W.L.; Bigler, W.; Saffell, E.M. The Role of Rural Variability in Urban Heat Island Determination for Phoenix, Arizona. J. Appl. Meteorol. 2004, 43, 476–486. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Szymanowski, M. Miejska Wyspa Ciepła We Wrocławiu; Wydawnictwo Uniwersytetu Wrocławskiego: Wrocław, Poland, 2004. [Google Scholar]
- Tan, M.; Li, X. Quantifying the effects of settlement size on urban heat islands in fairly uniform geographic areas. Habitat Int. 2015, 49, 100–106. [Google Scholar] [CrossRef]
- Martin, P.; Baudouin, Y.; Gachon, P. An alternative method to characterize the surface urban heat island. Int. J. Biometeorol. 2015, 59, 849–861. [Google Scholar] [CrossRef]
- Majkowska, A.; Kolendowicz, L.; Półrolniczak, M.; Hauke, J.; Czernecki, B. The urban heat island in the city of Poznań as derived from Landsat 5 TM. Theor. Appl. Climatol. 2017, 128, 769–783. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Vamsi, K.S.; Zhenke, Z. Decadal Variation of the Land Surface Temperatures (LST) and Urban Heat Island (UHI) over Kolkata City Projected Using MODIS and ERA-Interim DataSets. Aerosol Sci. Eng. 2020, 4, 200–209. [Google Scholar] [CrossRef]
- Makinde, E.O.; Agbor, C.F. Geoinformatic assessment of urban heat island and land use/cover processes: A case study from Akure. Environ. Earth Sci. 2019, 78, 483. [Google Scholar] [CrossRef]
- Karakuş, C.B. The Impact of Land Use/Land Cover (LULC) Changes on Land Surface Temperature in Sivas City Center and Its Surroundings and Assessment of Urban Heat Island. Asia-Pac. J. Atmos. Sci. 2019, 55, 669–684. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Grover, A.; Singh, R.B. Analysis of Urban Heat Island (UHI) in Relation to Normalized Difference Vegetation Index (NDVI): A Comparative Study of Delhi and Mumbai. Environments 2015, 2, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Huang, X.; Li, J. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China. Sci. Rep. 2017, 7, 9337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheon, J.Y.; Ham, B.S.; Lee, J.Y.; Park, Y.; Lee, K.K. Soil Temperatures in Four Metropolitan Cities of Korea from 1960 to 2010: Implications for Climate Change and Urban Heat; Springer: Berlin, Germany, 2014; Volume 71, pp. 5215–5230. [Google Scholar]
- Zhu, K.; Blum, P.; Ferguson, G.; Balke, K.D.; Bayer, P. The geothermal potential of urban heat islands. Environ. Res. Lett. 2010, 5, 044002. [Google Scholar] [CrossRef]
- Menberg, K.; Bayer, P.; Zosseder, K.; Rumohr, S.; Blum, P. Subsurface urban heat islands in German cities. Sci. Total. Environ. 2013, 442, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, H.; Kellman, L. An examination of short- and long-term air–ground temperature coupling. Glob. Planet. Chang. 2003, 38, 291–303. [Google Scholar] [CrossRef]
- Dědeček, P.; Šafanda, J.; Rajver, D. Detection and quantification of local anthropogenic and regional climatic transient signals in temperature logs from Czechia and Slovenia. Clim. Chang. 2012, 113, 787–801. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B. A new analytical solution for assessing climate change impacts on subsurface temperature. Hydrol. Process. 2014, 28, 3161–3172. [Google Scholar] [CrossRef]
- Fortuniak, K. Miejska Wyspa Ciepła: Podstawy Energetyczne, Studia Eksperymentalne, Modele Numeryczne i Statystyczne. Ph.D. Thesis, Wydaw. UŁ, Łódź, Poland, 2003. ISBN 9788371716584. [Google Scholar]
- Benz, S. Human Impact on Groundwater Temperatures; Karlsruher Institut für Technologie: Karlsruhe, Germany, 2016. [Google Scholar] [CrossRef]
- Balke, K.D. Die Grundwassertemperaturen in Ballungsgebieten; Institutional Reasearch Report T81-028; Geologisches Landratsamt Nordrhein: Westfahlen, Germany, 1981. [Google Scholar]
- Čermák, V.; Bodri, L.; Šafanda, J.; Krešl, M.; Dědeček, P. Ground-air temperature tracking and multi-year cycles in the subsurface temperature time series at geothermal climate-change observatory. Stud. Geophys. Geod. 2014, 58, 403–424. [Google Scholar] [CrossRef]
- Perrier, F.; Mouël, J.L.L.; Poirier, J.P.; Shnirman, M.G. Long-term climate change and surface versus underground temperature measurements in Paris. Int. J. Climatol. 2005, 25, 1619–1631. [Google Scholar] [CrossRef]
- Taniguchi, M.; Shimada, J.; Fukuda, Y.; Yamano, M.; Onodera, S.i.; Kaneko, S.; Yoshikoshi, A. Anthropogenic effects on the subsurface thermal and groundwater environments in Osaka, Japan and Bangkok, Thailand. Sci. Total Environ. 2009, 407, 3153–3164. [Google Scholar] [CrossRef]
- Huang, S.; Taniguchi, M.; Yamano, M.; Wang, C.h. Detecting urbanization effects on surface and subsurface thermal environment—A case study of Osaka. Sci. Total Environ. 2009, 407, 3142–3152. [Google Scholar] [CrossRef]
- Yamano, M.; Goto, S.; Miyakoshi, A.; Hamamoto, H.; Lubis, R.F.; Monyrath, V.; Taniguchi, M. Reconstruction of the thermal environment evolution in urban areas from underground temperature distribution. Sci. Total Environ. 2009, 407, 3120–3128. [Google Scholar] [CrossRef]
- Wang, K.; Lewis, T.J.; Belton, D.S.; Shen, P.Y. Differences in recent ground surface warming in eastern and western Canada: Evidence from borehole temperatures. Geophys. Res. Lett. 1994, 21, 2689–2692. [Google Scholar] [CrossRef]
- Ferguson, G.; Woodbury, A.D. Urban heat island in the subsurface. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Benz, S.A.; Bayer, P.; Goettsche, F.M.; Olesen, F.S.; Blum, P. Linking Surface Urban Heat Islands with Groundwater Temperatures. Environ. Sci. Technol. 2016, 50, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Szymanowski, M.; Kryza, M. Application of remotely sensed data for spatial approximation of urban heat island in the city of Wrocław, Poland. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; pp. 353–356. [Google Scholar] [CrossRef]
- Pollack, H.N.; Huang, S.; Shen, P.Y. Climate Change Record in Subsurface Temperatures: A Global Perspective. Science 1998, 282, 279–281. [Google Scholar] [CrossRef] [Green Version]
- Beltrami, H.; Bourlon, E.; Kellman, L.; González-Rouco, J.F. Spatial patterns of ground heat gain in the Northern Hemisphere. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Bense, V.; Beltrami, H. Impact of horizontal groundwater flow and localized deforestation on the development of shallow temperature anomalies. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Szymanowski, M.; Kryza, M. Local regression models for spatial interpolation of urban heat island—An example from Wrocław, SW Poland. Theor. Appl. Climatol. 2012, 108, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cheng, H.; Xi, J.; Yang, G.; Zhao, Y. Relationship between Park Composition, Vegetation Characteristics and Cool Island Effect. Sustainability 2018, 10, 587. [Google Scholar] [CrossRef] [Green Version]
- Kuchcik, M.; Milewski, P. Urban heat island in Warsaw—An attempt at assessment with the use of Local Climate Zones method (Miejska wyspa ciepła w Warszawie – próba oceny z wykorzystaniem Local Climate Zones). Acta Geogr. Lodz. 2016, 104, 21–33. [Google Scholar]
- Bokwa, A.; Hajto, M.J.; Walawender, J.P.; Szymanowski, M. Influence of diversified relief on the urban heat island in the city of Kraków, Poland. Theor. Appl. Climatol. 2015, 122, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Fortuniak, K.; Kłysik, K.; Wibig, J. Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol. 2006, 84, 91–101. [Google Scholar] [CrossRef]
- Buczyński, S.; Staśko, S. Temperatura płytkich wód podziemnych na terenie Wrocławia. Biul. PaŃStwowego Inst. Geol. 2013, 456, 51–56. [Google Scholar]
- Błachowicz, M.; Buczyński, S.; Staśko, S. Temperatura wód podziemnych jako wskaźnik zasilania na przykładzie ujęcia dla Wrocławia. Biul. PaŃStwowego Inst. Geol. 2019, 475, 19–26. [Google Scholar] [CrossRef]
- Książek, S.; Suszczewicz, M. City profile: Wrocław. Cities 2017, 65, 51–65. [Google Scholar] [CrossRef]
- Szponar, A.; Szponar, A.M. Geology and Paleogeography of Wrocław (Geologia i Paleogeografia Wrocławia); KGHM CUPRUM Centrum Badawczo-Rozwojowe: Wrocław, Poland, 2008. [Google Scholar]
- Róźycki, M. Geological structure of the vicinity of Wrocław. Biul. Inst. Geol. 1968, 214, 181–230. [Google Scholar]
- Worsa-Kozak, M. Groundwater Table Fluctuations in Urban Areas—City of Wrocław (Wahania Zwierciadła Wód Podziemnych na Terenach Zurbanizowanych—Miasto Wrocław). Ph.D. Thesis, University of Wrocław, Wrocław, Poland, 2007. [Google Scholar] [CrossRef]
- Jaworek-Jakubska, J.; Filipiak, M.; Michalski, A.; Napierała-Filipiak, A. Spatio-Temporal Changes of Urban Forests and Planning Evolution in a Highly Dynamical Urban Area: The Case Study of Wrocław, Poland. Forests 2020, 11, 17. [Google Scholar] [CrossRef] [Green Version]
- Masbruch, M.D.; Chapman, D.S.; Solomon, D.K. Air, ground, and groundwater recharge temperatures in an alpine setting, Brighton Basin, Utah. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; Bourque, C.P.A.; MacQuarrie, K.T.B. Potential surface temperature and shallow groundwater temperature response to climate change: An example from a small forested catchment in east-central New Brunswick (Canada). Hydrol. Earth Syst. Sci. 2013, 17, 2701–2716. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Hahn, J.S. Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: Implications for heat pumps. J. Hydrol. 2006, 329, 514–526. [Google Scholar] [CrossRef]
- Calvache, M.L.; Duque, C.; Fontalva, J.M.G.; Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol. 2011, 8, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R. An Application of Thermometry to the Study of Ground Water; Technical Report; US Government Printing Office: Washington, DC, USA, 1962.
- Bennett, R. Spatial Time Series: Analysis-Forecasting-Control; Pion: London, UK, 1979. [Google Scholar]
- Seeboonruang, U. An application of time-lag regression technique for assessment of groundwater fluctuations in a regulated river basin: A case study in Northeastern Thailand. Environ. Earth Sci. 2015, 73, 6511–6523. [Google Scholar] [CrossRef]
- Moffett, K.B.; Makido, Y.; Shandas, V. Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an Urban Growth Boundary. Remote Sens. 2019, 11, 2683. [Google Scholar] [CrossRef] [Green Version]
- Steeneveld, G.J.; Koopmans, S.; Heusinkveld, B.G.; Hove, L.W.A.v.; Holtslag, A.a.M. Quantifying urban heat island effects and human comfort for cities of variable size and urban morphology in the Netherlands. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Singh, R.B.; Grover, A. Spatial Correlations of Changing Land Use, Surface Temperature (UHI) and NDVI in Delhi Using Landsat Satellite Images. In Urban Development Challenges, Risks and Resilience in Asian Mega Cities; Singh, R., Ed.; Advances in Geographical and Environmental Sciences; Springer: Tokyo, Japan, 2015; pp. 83–97. [Google Scholar] [CrossRef]
- Zhang, X.; Steeneveld, G.J.; Zhou, D.; Duan, C.; Holtslag, A.A.M. A diagnostic equation for the maximum urban heat island effect of a typical Chinese city: A case study for Xi’an. Build. Environ. 2019, 158, 39–50. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Deering, D.; Schell, J.A.; Harlan, J. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Great Goddard Space Flight Center Greenbelt: Greenbelt, MD, USA, 1973.
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Adeyeri, O.E.; Akinsanola, A.A.; Ishola, K.A. Investigating surface urban heat island characteristics over Abuja, Nigeria: Relationship between land surface temperature and multiple vegetation indices. Remote Sens. Appl. Soc. Environ. 2017, 7, 57–68. [Google Scholar] [CrossRef]
- Menberg, K. Anthropogenic and Natural Alterations of Shallow Groundwater Temperatures; Karlsruher Institut für Technologie: Karlsruhe, Germany, 2014. [Google Scholar] [CrossRef]
- Figura, S.; Livingstone, D.M.; Hoehn, E.; Kipfer, R. Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Bayer, P.; Grathwohl, P.; Blum, P. Groundwater temperature evolution in the subsurface urban heat island of Cologne, Germany. Hydrol. Process. 2015, 29, 965–978. [Google Scholar] [CrossRef]
- Hemmerle, H.; Hale, S.; Dressel, I.; Benz, S.A.; Attard, G.; Blum, P.; Bayer, P. Estimation of Groundwater Temperatures in Paris, France. Geofluids 2019, 2019, e5246307. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.; Lautenbach, S.; Seppelt, R. Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sens. Environ. 2011, 115, 3175–3186. [Google Scholar] [CrossRef]
- Dian, C.; Pongrácz, R.; Dezső, Z.; Bartholy, J. Annual and monthly analysis of surface urban heat island intensity with respect to the local climate zones in Budapest. Urban Clim. 2020, 31, 100573. [Google Scholar] [CrossRef]
- Nam, Y.; Ooka, R. Development of potential map for ground and groundwater heat pump systems and the application to Tokyo. Energy Build. 2011, 43, 677–685. [Google Scholar] [CrossRef]
Class | GWT Threshold [°C] | Mean NDVI | |
---|---|---|---|
IRSP6 | SPOT | ||
MIN | <4.0 in winter | (Odra river) | |
LGWT | ≥4.0 <7.5 in winter 04/05 | ||
≥13.0 <19.0 in summer 2004 | 0.153 | 0.097 | |
≥13.0 <18.0 in summer 2005 | |||
HGWT | ≥7.5 <12.0 in winter 04/05 | ||
≥19.0 <22.0 in summer 2004 | 0.057 | 0.055 | |
≥18.0 <22.0 in summer 2005 | |||
MAX | ≥12.0 in winter 04/05 | ||
≥22.0 in summer 2004 | −0.014 | −0.007 | |
≥22.0 in summer 2005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Worsa-Kozak, M.; Arsen, A. Groundwater Urban Heat Island in Wrocław, Poland. Land 2023, 12, 658. https://doi.org/10.3390/land12030658
Worsa-Kozak M, Arsen A. Groundwater Urban Heat Island in Wrocław, Poland. Land. 2023; 12(3):658. https://doi.org/10.3390/land12030658
Chicago/Turabian StyleWorsa-Kozak, Magdalena, and Adalbert Arsen. 2023. "Groundwater Urban Heat Island in Wrocław, Poland" Land 12, no. 3: 658. https://doi.org/10.3390/land12030658
APA StyleWorsa-Kozak, M., & Arsen, A. (2023). Groundwater Urban Heat Island in Wrocław, Poland. Land, 12(3), 658. https://doi.org/10.3390/land12030658