Development of Soil Fertility Index Using Machine Learning and Visible-Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Soil Fertility Index
2.3. Spectral Modeling
2.4. Accuracy Assessment
3. Results
3.1. Summary of the Characteristics of Soil Properties
3.2. Development of the Soil Fertility Index
3.3. Performance of Prediction Models for Soil Properties
3.4. Modeling of SFI Based on VNIR Spectra
4. Discussion
4.1. Capability of Spectroscopy for Soil Properties
4.2. Capability of Spectroscopy for SFI Estimation
4.3. Application of SFI in Precision Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Abbott, L.K.; Murphy, D.V. What Is Soil Biological Fertility? Soil Biological Fertility, a Key to Sustainable Land in Agriculture; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Naumann, M.; Koch, M.; Thiel, H.; Gransee, A.; Pawelzik, E. The importance of nutrient management for potato production part II, plant nutrition and tuber quality. Potato Res. 2020, 63, 121–137. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Spomer, R.G.; Piest, R.F. Soil productivity and erosion of Iowa loess soils. Trans. ASAE 1982, 25, 1295–1299. [Google Scholar] [CrossRef]
- D’Hose, T.; Cougnon, M.; De Vliegher, A.; Vandecasteele, B.; Viaene, N.; Cornelis, W.; Van Bockstaele, E.; Reheul, D. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Appl. Soil Ecol. 2014, 75, 189–198. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.; Dor, E.B.; Brown, D.J.; Clairotte, M.; Csorba, A.; et al. Soil spectroscopy, An alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar]
- Kuang, B.; Mahmood, H.S.; Quraishi, Z.; Hoogmoed, W.B.; Mouazen, A.M.; Henten, V. Sensing soil properties in the laboratory, in situ, and on-line. Adv. Agron. 2012, 114, 155–223. [Google Scholar]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; Mclaughlin, M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Xu, D.Y.; Ma, W.Z.; Chen, S.C.; Jiang, Q.S.; He, K.; Shi, Z. Assessment of important soil properties related to Chinese Soil Taxonomy based on vis–NIR reflectance spectroscopy. Comput. Electron. Agr. 2018, 144, 1–8. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Haesaert, G.; Meirvenne, M.V.; Mouazen, A.M. Site-specific seeding using multi-sensor and data fusion techniques, A review. Adv. Agron. 2020, 161, 241–323. [Google Scholar]
- Viscarra Rossel, R.A.; Rizzo, R.D.; Dematte, J.A.M.; Behrens, T. Spatial modeling of a soil fertility index using visible-near-infrared spectra and terrain properties. Soil Sci. Soc. Am. J. 2010, 74, 1293–1300. [Google Scholar] [CrossRef]
- Askari, M.S.; Cui, J.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil structural quality using VIS-NIR spectra. Soil Tillage Res. 2015, 146, 108–117. [Google Scholar] [CrossRef]
- Yang, M.H.; Abdul, M.; Zhao, X.M.; Guo, X. Assessment of a soil fertility index using visible and near-infrared spectroscopy in the rice paddy region of southern china. Eur. J. Soil Sci. 2020, 71, 615–626. [Google Scholar] [CrossRef]
- Munnaf, M.A.; Mouazen, A.M. Development of a soil fertility index using on-line Vis-NIR spectroscopy. Comput. Electron. Agr. 2021, 188, 106341. [Google Scholar] [CrossRef]
- Gergely, T.; Arwyn, J.; Luca, M.; Christine, A.; Cristiano, B.; Florence, C.; Delphine, B.; Rannveig, G.; Ciro, G.; Tamás, H.; et al. Lucas Topoil Survey-Methodology, Data and Results; Publications Office of the European Union: Luxembourg, 2013. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agr. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Li, S.; Ji, W.J.; Chen, S.C.; Peng, J.; Zhou, Y.; Shi, Z.; Ben-Dor, E.; Kellndorfer, J.; Thenkabail, P.S. Potential of VIS-NIR-SWIR spectroscopy from the chinese soil spectral library for assessment of nitrogen fertilization rates in the paddy-rice region, China. Remote Sens. 2015, 7, 7029–7043. [Google Scholar] [CrossRef]
- Li, S.; Shi, Z.; Chen, S.C.; Ji, W.J.; Zhou, L.Q.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai-Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Q.; Liu, X.; Suganthan, P.N. A survey on multi-class multi-kernel learning for support vector machines. Neural Networks 2021, 141, 297–313. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.J.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Wang, Q.L.; Peng, J.; Ji, W.J.; Liu, H.J.; Li, X.; Viscarra Rossel, R.A. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Hu, B.F.; Chen, S.C.; Hu, J.; Xia, F.; Xu, J.F.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [Google Scholar] [CrossRef] [PubMed]
- Qafoku, N.P. Ion exchange reactions in soils, principles and applications. Adv. Agron. 2018, 150, 1–50. [Google Scholar]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Ji, W.J.; Shi, Z.; Huang, J.Y.; Li, S. In situ measurement of some soil properties in paddy soil using visible and near-infrared spectroscopy. PLoS ONE 2014, 9, e105708. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Banin, A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci. Soc. Am. J. 1995, 59, 364–372. [Google Scholar] [CrossRef]
- Brown, D.J.; Shepherd, K.D.; Walsh, M.G.; Dewayne Mays, M.; Reinsch, T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006, 132, 273–290. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E. A global spectral library to characterize the worlds soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Bilgili, A.V.; van Es, H.M.; Akbas, F.; Durak, A.; Hively, W.D. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. J. Arid. Environ. 2010, 74, 229–238. [Google Scholar] [CrossRef]
- Abdi, D.; Tremblay, G.F.; Ziadi, N.; Bélanger, G.; Parent, L. Predicting soil phosphorus-related properties using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318. [Google Scholar] [CrossRef]
- Idowu, O.; Es, H.; Abawi, G.; Wolfe, D.; Ball, J.; Gugino, B.; Moebius, B.; Schindelbeck, R.; Bilgili, A. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Plant Soil 2008, 307, 243–253. [Google Scholar] [CrossRef]
- Kinoshita, R.; Moebius-Clune, B.N.; van Es, H.M.; Hively, W.D.; Bilgilis, A.V. Strategies for soil quality assessment using visible and near-infrared reflectance spectroscopy in a western Kenya chronosequence. Soil Sci. Soc. Am. J. 2012, 76, 1776–1788. [Google Scholar] [CrossRef]
- Ball, B.C.; Batey, T.; Munkholm, L.J. Field assessment of soil structural quality-a development of the Peerlkamp test. Soil Use Manag. 2007, 23, 329–337. [Google Scholar] [CrossRef]
- Askari, M.S.; O’Rourke, S.M.; Holden, N.M. Evaluation of soil quality for agricultural production using visible-near-infrared spectroscopy. Geoderma 2015, 243–244, 80–91. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Taylor, R.G.; Hill, J.; Demattê, J.A.M.; Sommer, S. Imaging spectrometry for soil applications. Adv. Agron. 2008, 97, 321–392. [Google Scholar]
Property | Unit | Min | Mean | Median | Max | SD | CV |
---|---|---|---|---|---|---|---|
clay content | % | 2.00 | 23.30 | 21.00 | 77.00 | 11.07 | 48% |
silt content | % | 1.00 | 47.45 | 47.00 | 88.00 | 17.85 | 38% |
sand content | % | 1.00 | 29.24 | 24.00 | 96.00 | 21.24 | 73% |
pH | - | 3.51 | 6.65 | 6.76 | 8.90 | 1.06 | 16% |
OC | g kg−1 | 0.00 | 25.70 | 19.90 | 191.50 | 19.88 | 77% |
CaCO3 | g kg−1 | 0.00 | 69.38 | 1.00 | 944.00 | 153.88 | 222% |
N | g kg−1 | 0.20 | 2.32 | 1.90 | 14.00 | 1.40 | 60% |
P | mg kg−1 | 0.00 | 35.25 | 28.95 | 224.50 | 29.16 | 83% |
K | mg kg−1 | 0.00 | 237.96 | 192.40 | 2184.60 | 183.75 | 77% |
CEC | cmol (+) kg−1 | 0.00 | 15.77 | 13.20 | 83.50 | 10.11 | 64% |
Clay Content | Silt Content | Sand Content | pH | CaCO3 | N | P | K | CEC | ||
---|---|---|---|---|---|---|---|---|---|---|
PLSR | R2 | 0.72 | 0.62 | 0.54 | 0.82 | 0.92 | 0.75 | 0.32 | 0.42 | 0.76 |
RMSE | 5.28 | 11.06 | 13.65 | 0.43 | 36.89 | 0.54 | 25.43 | 134.40 | 4.18 | |
RPD | 1.90 | 1.60 | 1.48 | 2.35 | 3.45 | 1.87 | 1.21 | 1.30 | 1.98 | |
RPIQ | 2.65 | 2.53 | 2.20 | 4.21 | 0.57 | 2.02 | 1.45 | 1.41 | 2.61 | |
SVM | R2 | 0.79 | 0.72 | 0.66 | 0.84 | 0.95 | 0.80 | 0.40 | 0.48 | 0.83 |
RMSE | 4.60 | 9.30 | 11.76 | 0.40 | 29.12 | 0.46 | 24.37 | 129.34 | 3.46 | |
RPD | 2.18 | 1.90 | 1.71 | 2.53 | 4.37 | 2.22 | 1.26 | 1.36 | 2.40 | |
RPIQ | 3.04 | 3.01 | 2.55 | 4.54 | 0.72 | 2.40 | 1.51 | 1.47 | 3.16 | |
RF | R2 | 0.69 | 0.60 | 0.55 | 0.75 | 0.82 | 0.70 | 0.37 | 0.41 | 0.72 |
RMSE | 5.77 | 12.45 | 14.64 | 0.52 | 59.59 | 0.65 | 24.93 | 137.52 | 4.67 | |
RPD | 1.74 | 1.42 | 1.38 | 1.94 | 2.14 | 1.56 | 1.23 | 1.27 | 1.78 | |
RPIQ | 2.43 | 2.25 | 2.05 | 3.48 | 0.35 | 1.68 | 1.48 | 1.38 | 2.34 | |
CNN | R2 | 0.75 | 0.69 | 0.66 | 0.75 | 0.95 | 0.68 | 0.39 | 0.51 | 0.75 |
RMSE | 5.50 | 11.43 | 12.51 | 0.54 | 38.31 | 0.62 | 24.44 | 125.31 | 4.47 | |
RPD | 1.82 | 1.55 | 1.61 | 1.87 | 3.32 | 1.64 | 1.26 | 1.40 | 1.85 | |
RPIQ | 2.54 | 2.45 | 2.40 | 3.35 | 0.55 | 1.77 | 1.51 | 1.52 | 2.45 |
Method | R2 | RMSE | RPD | RPIQ | |
---|---|---|---|---|---|
Indirect model | 0.83 | 0.04 | 1.74 | 2.55 | |
Direct model | PLSR | 0.80 | 0.05 | 1.37 | 2.00 |
SVM | 0.83 | 0.05 | 1.41 | 2.05 | |
RF | 0.77 | 0.05 | 1.41 | 2.06 | |
CNN | 0.77 | 0.04 | 1.63 | 2.38 |
CA | Extremely Low | Low | Medium | High | Extremely High | Total | User Accuracy |
---|---|---|---|---|---|---|---|
IP | |||||||
Extremely low | 0 | 0 | 0 | 0 | 0 | 0 | - |
Low | 0 | 4 | 6 | 0 | 0 | 10 | 40% |
Medium | 0 | 21 | 325 | 9 | 0 | 355 | 92% |
High | 0 | 0 | 138 | 418 | 2 | 558 | 75% |
Extremely high | 0 | 0 | 0 | 5 | 0 | 5 | 0% |
Total | 0 | 25 | 469 | 432 | 2 | 928 | - |
Producer accuracy | - | 16% | 69% | 97% | 0% | - | kappa: 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Fang, Y.; Hu, B.; Yu, B.; Zhou, Y. Development of Soil Fertility Index Using Machine Learning and Visible-Near-Infrared Spectroscopy. Land 2023, 12, 2155. https://doi.org/10.3390/land12122155
Jia X, Fang Y, Hu B, Yu B, Zhou Y. Development of Soil Fertility Index Using Machine Learning and Visible-Near-Infrared Spectroscopy. Land. 2023; 12(12):2155. https://doi.org/10.3390/land12122155
Chicago/Turabian StyleJia, Xiaolin, Yi Fang, Bifeng Hu, Baobao Yu, and Yin Zhou. 2023. "Development of Soil Fertility Index Using Machine Learning and Visible-Near-Infrared Spectroscopy" Land 12, no. 12: 2155. https://doi.org/10.3390/land12122155
APA StyleJia, X., Fang, Y., Hu, B., Yu, B., & Zhou, Y. (2023). Development of Soil Fertility Index Using Machine Learning and Visible-Near-Infrared Spectroscopy. Land, 12(12), 2155. https://doi.org/10.3390/land12122155