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Abstract: An accurate assessment of soil fertility is crucial for monitoring environmental dynamics,
improving agricultural productivity, and achieving sustainable land management and utilization.
The inherent complexity and spatiotemporal heterogeneity of soils result in significant challenges
in soil fertility assessment. Therefore, this study focused on developing a rapid, economical, and
precise approach to evaluate soil fertility through the application of visible-near-infrared spectroscopy
(VNIR). To achieve this, we utilized the Land Use and Cover Area Frame Survey (LUCAS) dataset
and employed a variety of prediction models, including partial least squares regression, support
vector machines (SVMs), random forest, and convolutional neural networks, to estimate various
soil properties and overall soil fertility. The results showed that the SVM model had the highest
prediction accuracy, particularly for clay content (coefficient of determination (R2) = 0.79, ratio of
performance to interquartile range (RPIQ) = 3.04), pH (R2 = 0.84, RPIQ = 4.54), total nitrogen (N)
(R2 = 0.80, RPIQ = 2.40), and cation exchange capacity (CEC) (R2 = 0.83, RPIQ = 3.16). A soil fertility
index (SFI) was developed based on factor analysis, integrating nine essential soil properties: clay
content, silt content, sand content, pH, carbonate content, N, soluble phosphorus, soluble potassium,
and CEC. We compared direct and indirect prediction models for estimating SFI and found that both
models showed high accuracy (mean value of R2 = 0.80, mean value of RPIQ = 2.21). Additionally,
SFI was classified into five classes to provide insights for precision agriculture. The kappa coefficient
was 0.63, which indicated that the SFI evaluation results between VNIR and chemical analysis were
relatively consistent. This study provides a theoretical foundation of real-time soil fertility monitoring
for the optimization of agricultural practices.

Keywords: soil fertility; VNIR; machine learning; precision agriculture; land management

1. Introduction

Soil fertility is defined as the ability of the soil to provide available nutrients for crop
production [1]. Not only is it fundamental for sustainable crop production and agricultural
development but it also plays an important role in maintaining ecosystem health [2]. Defi-
ciencies in soil nutrients can severely reduce crop yields, whereas excessive soil nutrients
can decrease production profits and result in negative environmental impacts [3]. However,
due to the high spatiotemporal heterogeneity of soil, the management of soil fertility is a
great challenge. Assessing soil fertility accurately is crucial for monitoring soil environment
dynamics and improving agricultural productivity [4].

The soil fertility index (SFI), a weighted combination of various soil properties, is
generally used to assess soil fertility [2,5]. It is usually costly to obtain soil information
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via traditional chemical analysis, especially for multiple soil properties [6]. Proximal soil-
sensing technologies, particularly visible-near-infrared spectroscopy (VNIR), provide a fast,
economical, and accurate approach to soil property analysis. A number of soil properties
can be estimated using prediction models based on the detailed spectral absorption and
reflection characteristics of substances [7,8]. These predictable properties can often be used
for SFI development, including soil properties with direct spectral responses in the VNIR
spectra (such as moisture content and clay content), as well as secondary soil properties
that may covary with the main soil properties (such as pH) [9,10]. Therefore, proximal soil
sensing technology has great potential for assessing soil fertility and estimating SFI.

VNIR has been widely used in the estimation of SFI. Viscarra Rossel et al. [11] de-
veloped an SFI with clay content, base saturation, cation exchange capacity (CEC), and
organic matter (OM) at the field scale. They successfully predicted three categories of soil
fertility, with accuracy ranging from 61% to 75%, by integrating VNIR with topographic
data and employing a decision tree model. Askari et al. [12] applied VNIR and partial least
squares regression (PLSR) models to predict specific soil characteristics and soil quality
indices for grassland and arable land. The prediction results exhibited a high coefficient of
determination (R2) of 0.89 for grassland soil quality (indicators included organic carbon
(OC), carbon-to-nitrogen ratio, and bulk density) and 0.81 for cropland (indicators included
aggregate size distribution, bulk density, carbon-to-nitrogen ration, extractable magnesium,
total nitrogen (N), penetration resistance, and respiration). Yang et al. [13] estimated the
SFI (indicators including pH, OM, N, available phosphorus (P), available potassium (K),
CEC, texture, available nitrogen, total phosphorus, and total potassium) of paddy fields in
southern China using the VNIR and PLSR models, achieving an R2 of 0.80 and a ratio of
performance to interquartile range (RPIQ) of 3.12. Munnaf and Mouazen [14] implemented
soil scanning using an online VNIR sensor (CompactSpec, Tec5 Technology, Steinbach,
Germany) and calibrated the SFI (indicators included pH, OC, P, K, available magnesium,
available sodium, moisture content) model using the PLSR algorithm, resulting in a robust
prediction with an R2 of 0.75 and a ratio of prediction to deviation (RPD) of 2.01. Based on
these studies, the construction of SFI usually integrates different soil properties without a
recognized combination, leading to a lack of comparability among different results. Fur-
thermore, most studies have focused on the construction of SFI, without considering the
impact of soil property prediction accuracy.

To address these problems, this study applied different models to predict properties
of soil fertility with spectroscopy, and the model performances were compared. The SFI
was estimated directly from VNIR and through soil properties predicted from spectroscopy,
respectively. This study is intended to develop an economical and efficient method to
evaluate SFI, which may provide decision makers with effective information for soil fertility
monitoring and management.

2. Materials and Methods
2.1. Data Collection

The Land Use and Cover Area Frame Survey (LUCAS) published information on
21,782 topsoil samples (0–20 cm) from 28 European Union member states in November 2020.
In this study, we utilized French soil samples (2792) from the LUCAS dataset to establish
spectral prediction models for soil properties and SFI (Figure 1). Approximately 55% of
the samples were collected in cropland, with the rest obtained from woodland, shrubland,
and grassland. After removing vegetation residue and litter, air-drying, grinding, and
sieving (pore size < 2 mm), the samples were shipped for chemical analysis, including
particle size distribution (clay content, silt content, and sand content), pH, OC, carbonate
content (CaCO3), N, P, K, CEC, and multispectral reflectance [15]. Soil properties were
determined using international standard methods. Multispectral reflectance was measured
using a FOSS XDS spectrometer (FOSS, Hillerød, Denmark), with a wavelength range of
400–500 nm and an interval of 0.5 nm. In this study, Haar wavelet transformation was used
on the preprocessed spectra to reduce noise and enhance the features.
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Figure 1. Location of the soil sampling sites.

2.2. Soil Fertility Index

The SFI is an indicator integrating various soil physicochemical properties for the
assessment of soil health from the perspectives of environmental management and soil
production potential [16]. The derivation of the SFI comprises three steps: (i) selection of
indices, (ii) calculation of index weights, and (iii) calculation of the comprehensive index.
First, Pearson correlation analysis was performed for the 10 soil properties, and variables
that exhibited pairwise correlations higher than 0.85 were excluded to minimize collinearity
among the variables. Then, factor analysis was used to select the soil properties with linear
combination coefficients exceeding 0.05 for each principal component. Considering the
intrinsic relationships among the soil properties, factor analysis was used to calculate the
weights of each index. The calculation steps involved (i) determining the linear combination
coefficients of each soil property in different principal components using Equation (1);
(ii) determining the comprehensive score coefficient of each soil property using Equation
(2); and (iii) calculating the weights of each index by normalizing the comprehensive score
coefficients [17]. Finally, the SFI result was calculated through weighted summation and
transformed into a range between 0 and 1 and then was classified into different levels based
on management practices.

LCCnm =
CLnm

2
√

qm
(1)

CSCn =
∑
m

LCCnm × PVEm

CP
(2)

where LCCnm is the linear combination coefficient of soil property n in principal component
m; CLnm is the rotated component loading of soil property n in principal component m;
qm is the rotated characteristic root of principal component m; CSCn is the comprehensive
score coefficient of soil property n; PVEm is the rotated explained variance proportion of
principal component m; and CP is the cumulative explained variance proportion.

2.3. Spectral Modeling

In this study, the predictive capabilities for various soil properties of different models
were compared based on VNIR, including linear, nonlinear, and machine learning models.
Then, we established relationship models between soil fertility and VNIR through indirect
and direct prediction methods, respectively. The Kennard–Stone (KS) algorithm was
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utilized to select the calibration and validation datasets [18]. Two-thirds of the soil samples
with significant spectral differences were selected as the calibration dataset by calculating
the Euclidean distances between samples. Meanwhile, the remaining samples were used
for the validation dataset. The workflow of this study is shown in Figure 2.
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This study used two methods for estimating SFI using spectral data: (i) an indirect
prediction model, where soil properties were predicted using VNIR and SFI was calculated
based on these predictions, and (ii) a direct prediction model, which directly predicted SFI
using VNIR. We used four different types of models, i.e., PLSR, support vector machine
(SVM), random forest (RF), and convolutional neural network (CNN), to construct spectral
prediction models. Owing to the large volume of spectral data, PLSR was used to compress
the spectral data, enhancing the computational efficiency and prediction accuracy of the
SVM, RF, and CNN.

PLSR is a statistical learning method that decomposes the covariance matrix between
the dependent and independent variables and transforms the prediction problem into a
series of linear regression problems [8,19]. Through PCA and regression analysis, PLSR can
effectively handle high-dimensional data and multicollinearity issues but is sensitive to
outliers and performs poorly when dealing with nonlinear relationships.

SVM is a linear classifier that projects data into a higher dimensional space using a
kernel function and then seeks an optimal hyperplane that maximizes the margin between
classes [20,21]. Despite its ability to handle linearly inseparable data, SVM training on
large-scale datasets is often associated with a relatively slow computational speed. In
addition, the interpretability of the SVM predictions is comparatively limited.

RF is a supervised machine learning method that builds multiple decision trees by
randomly selecting features and samples [22,23]. The final prediction result is deter-
mined by the average or majority vote of all the decision trees. RF has significant ad-
vantages in dealing with problems such as overfitting, multicollinearity, and missing and
imbalanced data. However, replicating the model’s results is challenging because of the
inherent randomness.

CNN is a deep learning algorithm that is built by combining fully connected layers,
convolutional layers, and pooling layers. It can automatically extract features from input
data and can be trained using a backpropagation algorithm [24]. CNN has powerful
expressive capabilities and can learn both local and global features; however, it requires a
large amount of training data and computational resources.
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2.4. Accuracy Assessment

For the regression models, R2, root mean square error (RMSE), RPD, and RPIQ of
the validation dataset were used to assess the prediction accuracy of soil properties and
soil fertility. Generally, lower RMSE and higher R2, RPD, and RPIQ values lead to higher
prediction accuracy [25]. Considering the RPD values, prediction accuracy is often classified
as excellent (RPD > 2.5), very good (RPD: 2.0–2.5), good (RPD: 1.8–2.0), fair (RPD: 1.4–1.8),
poor (RPD: 1.0–1.4), or very poor (RPD < 1.0).

For classification, the results were evaluated using Cohen’s kappa coefficient (k),
where a higher k value indicates better classification. According to k values, classification
accuracy can be divided into five classes: almost perfect agreement (k > 0.8), substantial
agreement (k: 0.6–0.8), moderate agreement (k: 0.4–0.6), fair agreement (k: 0.2–0.4), and
slight agreement (k < 0.2) [26].

The factor analysis and KS algorithm, along with the RF and CNN prediction models,
were implemented using R software, version 4.3.2 [27]. The preprocessing of spectra and the
PLSR and SVM prediction models were conducted using MatLab version 7 (MathWorks Inc.,
Natick, MA, USA) and PLS_Toolbox 8.5 (Eigenvector Research Inc., Wenatchee, WA, USA).

3. Results
3.1. Summary of the Characteristics of Soil Properties

A statistical summary of the soil properties is presented in Table 1. It has been
reported that a wider range of soil properties is beneficial for developing prediction models
that cover a substantial SFI range [13]. The coefficient of variation (CV) was used to
indicate the degree of variation in soil properties and can be divided into four degrees:
exceptionally high variability (CV > 100%), high variability (CV: 50–100%), moderate
variability (CV: 20–50%), and low variability (CV < 20%) [28]. The CVs for the soil properties,
in descending order of variability, were as follows: CaCO3, P, OC, K, sand content, CEC,
N, clay content, silt content, and pH. The exceptionally high variability in CaCO3 (222%)
suggests that its distribution is heavily influenced by both the parent material and the
external environmental conditions.

Table 1. Statistical summary of the 10 soil properties.

Property Unit Min Mean Median Max SD CV

clay content % 2.00 23.30 21.00 77.00 11.07 48%
silt content % 1.00 47.45 47.00 88.00 17.85 38%

sand content % 1.00 29.24 24.00 96.00 21.24 73%
pH - 3.51 6.65 6.76 8.90 1.06 16%
OC g kg−1 0.00 25.70 19.90 191.50 19.88 77%

CaCO3 g kg−1 0.00 69.38 1.00 944.00 153.88 222%
N g kg−1 0.20 2.32 1.90 14.00 1.40 60%
P mg kg−1 0.00 35.25 28.95 224.50 29.16 83%
K mg kg−1 0.00 237.96 192.40 2184.60 183.75 77%

CEC cmol (+) kg−1 0.00 15.77 13.20 83.50 10.11 64%

Notes: SD: standard deviation; CV: coefficient of variation.

The correlation matrix for the ten soil properties is shown in Figure 3. Soil clay
content had a strong positive correlation with CEC. The high specific surface area and
inherent negative charge of the soil clay content can contribute to cation adsorption [29].
Conversely, soil sand content and silt content presented a weaker correlation with CEC,
largely because of their smaller surface areas and diminished charge properties. In addition,
a strong correlation was observed between OC and N. This can be attributed to their close
interactions with various factors, including biological activity, chemical structure, ecological
cycling, and agricultural management practices [30,31].
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Strong correlations between OC and N can cause collinearity in the SFI estimation pro-
cess. N is a key nutrient that is essential for plant growth and development. Understanding
soil nitrogen content is critically important in agricultural management, especially when
precise nitrogen fertilization is required. Therefore, we decided to exclude OC and retain
other soil properties when calculating the SFI. This exclusion did not cause the covariance
of OC to be lost because this property was strongly correlated with N.

3.2. Development of the Soil Fertility Index

Bartlett’s sphericity test was conducted for nine soil properties (clay content, silt
content, sand content, pH, CaCO3, N, P, K, and CEC). The factor rotation method was the
maximum variance method with the characteristic root threshold set of 1. The results were
shown in Figure 4. Four primary components (PC) were extracted, explaining a cumulative
variance of 82%. PC1 comprised clay content, N, and CEC; PC2 comprised silt content and
sand content; PC3 comprised pH and CaCO3; and PC4 comprised P and K. The final set
of properties used to develop the SFI comprised clay content, silt content, sand content,
pH, CaCO3, N, P, K, and CEC. Based on our calculations and analyses, the weights of clay
content, silt content, sand content, pH, CaCO3, N, P, K, and CEC in SFI were 12%, 10%,
13%, 12%, 8%, 12%, 9%, 11%, and 13%, respectively.



Land 2023, 12, 2155 7 of 13Land 2023, 12, x FOR PEER REVIEW 7 of 13 
 

 

Figure 4. Biplot of factor loadings (PC: principal component). 

3.3. Performance of Prediction Models for Soil Properties 

Table 2 and Figure 5 present the prediction results for various property models using 

the validation dataset. SVM models used a radial basis function (RBF) kernel. The RF mod-

els contained three key parameters: the number of trees, the minimum number of samples 

at the terminal nodes, and the number of variables tried at each node, which were set to 

500, 5, and 10, respectively. The CNN model primarily consisted of fully connected con-

volutional and pooling layers. The settings for each layer type were as follows: number of 

filters: 32; kernel size: 3; pooling window size: 2; and number of neurons: 64. Except for K, 

for which the CNN model performed the best, the SVM model had the best prediction 

accuracy for various soil properties among the four models, whereas the RF model 

showed a relatively poorer performance. 

Table 2. Assessment statistics for the different models when predicting the soil properties in the 

validation dataset. 

  
Clay Con-

tent 

Silt Con-

tent 

Sand Con-

tent 
pH CaCO3 N P K CEC 

PLSR 

R2 0.72 0.62 0.54 0.82 0.92 0.75 0.32 0.42 0.76 

RMSE 5.28 11.06 13.65 0.43 36.89 0.54 25.43 134.40 4.18 

RPD 1.90 1.60 1.48 2.35 3.45 1.87 1.21 1.30 1.98 

RPIQ 2.65 2.53 2.20 4.21 0.57 2.02 1.45 1.41 2.61 

SVM 

R2 0.79 0.72 0.66 0.84 0.95 0.80 0.40 0.48 0.83 

RMSE 4.60 9.30 11.76 0.40 29.12 0.46 24.37 129.34 3.46 

RPD 2.18 1.90 1.71 2.53 4.37 2.22 1.26 1.36 2.40 

RPIQ 3.04 3.01 2.55 4.54 0.72 2.40 1.51 1.47 3.16 

RF 

R2 0.69 0.60 0.55 0.75 0.82 0.70 0.37 0.41 0.72 

RMSE 5.77 12.45 14.64 0.52 59.59 0.65 24.93 137.52 4.67 

RPD 1.74 1.42 1.38 1.94 2.14 1.56 1.23 1.27 1.78 

RPIQ 2.43 2.25 2.05 3.48 0.35 1.68 1.48 1.38 2.34 

CNN 

R2 0.75 0.69 0.66 0.75 0.95 0.68 0.39 0.51 0.75 

RMSE 5.50 11.43 12.51 0.54 38.31 0.62 24.44 125.31 4.47 

RPD 1.82 1.55 1.61 1.87 3.32 1.64 1.26 1.40 1.85 

RPIQ 2.54 2.45 2.40 3.35 0.55 1.77 1.51 1.52 2.45 
Notes: SVM: support vector machine; RF: random forest; CNN: convolutional neural network. The 

optimal prediction results of each soil property are shown in bold italic font. 

Figure 4. Biplot of factor loadings (PC: principal component).

3.3. Performance of Prediction Models for Soil Properties

Table 2 and Figure 5 present the prediction results for various property models using
the validation dataset. SVM models used a radial basis function (RBF) kernel. The RF
models contained three key parameters: the number of trees, the minimum number of
samples at the terminal nodes, and the number of variables tried at each node, which were
set to 500, 5, and 10, respectively. The CNN model primarily consisted of fully connected
convolutional and pooling layers. The settings for each layer type were as follows: number
of filters: 32; kernel size: 3; pooling window size: 2; and number of neurons: 64. Except for
K, for which the CNN model performed the best, the SVM model had the best prediction
accuracy for various soil properties among the four models, whereas the RF model showed
a relatively poorer performance.

Table 2. Assessment statistics for the different models when predicting the soil properties in the
validation dataset.

Clay
Content

Silt
Content

Sand
Content pH CaCO3 N P K CEC

PLSR

R2 0.72 0.62 0.54 0.82 0.92 0.75 0.32 0.42 0.76
RMSE 5.28 11.06 13.65 0.43 36.89 0.54 25.43 134.40 4.18
RPD 1.90 1.60 1.48 2.35 3.45 1.87 1.21 1.30 1.98
RPIQ 2.65 2.53 2.20 4.21 0.57 2.02 1.45 1.41 2.61

SVM

R2 0.79 0.72 0.66 0.84 0.95 0.80 0.40 0.48 0.83
RMSE 4.60 9.30 11.76 0.40 29.12 0.46 24.37 129.34 3.46
RPD 2.18 1.90 1.71 2.53 4.37 2.22 1.26 1.36 2.40
RPIQ 3.04 3.01 2.55 4.54 0.72 2.40 1.51 1.47 3.16

RF

R2 0.69 0.60 0.55 0.75 0.82 0.70 0.37 0.41 0.72
RMSE 5.77 12.45 14.64 0.52 59.59 0.65 24.93 137.52 4.67
RPD 1.74 1.42 1.38 1.94 2.14 1.56 1.23 1.27 1.78
RPIQ 2.43 2.25 2.05 3.48 0.35 1.68 1.48 1.38 2.34

CNN

R2 0.75 0.69 0.66 0.75 0.95 0.68 0.39 0.51 0.75
RMSE 5.50 11.43 12.51 0.54 38.31 0.62 24.44 125.31 4.47
RPD 1.82 1.55 1.61 1.87 3.32 1.64 1.26 1.40 1.85
RPIQ 2.54 2.45 2.40 3.35 0.55 1.77 1.51 1.52 2.45

Notes: SVM: support vector machine; RF: random forest; CNN: convolutional neural network. The optimal
prediction results of each soil property are shown in bold italic font.



Land 2023, 12, 2155 8 of 13

Land 2023, 12, x FOR PEER REVIEW 8 of 13 
 

In terms of the RPD, the mean prediction accuracies for the nine soil properties, 
ranked from highest to lowest, were CaCO3, pH, CEC, clay content, N, silt content, sand 
content, K, and P. Based on the RPIQ, the rankings were as follows: pH, clay content, CEC, 
silt content, sand content, N, P, K, and CaCO3. The CaCO3 content was significantly dif-
ferent between the two evaluation indices. The median values for the CaCO3 calibration 
and validation datasets were both 1.00 g kg−1, and the ranges were 0.00 to 944.00 g kg−1 
and 0.00 to 770.00 g kg−1, respectively. Both datasets exhibited highly skewed distribu-
tions. This severely impacted the RPIQ value, but had less influence on the RPD value. 
Hence, it can be concluded that the prediction model for CaCO3 had good prediction ac-
curacy (based on the RPD value), but performed poorly when considering the range of 
data variation (based on the RPIQ value), especially for low CaCO3 values. Overall, clay 
content, pH, N, and CEC showed the best predictive performances, followed by silt con-
tent, sand content, and CaCO3. Although K and P demonstrated the poorest predictive 
capabilities, they met the basic requirements for the indirect prediction of SFI in subse-
quent analyses. 

 
Figure 5. Plots of predicted versus measured values of the different soil properties in the validation 
dataset using the optimal models. (SVM: support vector machine; CNN: convolutional neural net-
work). 

3.4. Modeling of SFI Based on VNIR Spectra 
Statistical analysis of the measured SFI values revealed a mean value of 0.28, a me-

dian value of 0.27, and a CV of 21%. This study used both direct and indirect prediction 
methods to estimate the SFI values (Table 3). Direct prediction involves constructing a 
relationship between the spectra and SFI using four different models: PLSR, SVM, RF, and 
CNN. Among the four models, CNN showed the highest prediction accuracy, with an 
RPD of 1.63 and an RPIQ of 2.38. In contrast, indirect prediction involves predicting soil 

Figure 5. Plots of predicted versus measured values of the different soil properties in the vali-
dation dataset using the optimal models. (SVM: support vector machine; CNN: convolutional
neural network).

In terms of the RPD, the mean prediction accuracies for the nine soil properties, ranked
from highest to lowest, were CaCO3, pH, CEC, clay content, N, silt content, sand content,
K, and P. Based on the RPIQ, the rankings were as follows: pH, clay content, CEC, silt
content, sand content, N, P, K, and CaCO3. The CaCO3 content was significantly different
between the two evaluation indices. The median values for the CaCO3 calibration and
validation datasets were both 1.00 g kg−1, and the ranges were 0.00 to 944.00 g kg−1 and
0.00 to 770.00 g kg−1, respectively. Both datasets exhibited highly skewed distributions.
This severely impacted the RPIQ value, but had less influence on the RPD value. Hence, it
can be concluded that the prediction model for CaCO3 had good prediction accuracy (based
on the RPD value), but performed poorly when considering the range of data variation
(based on the RPIQ value), especially for low CaCO3 values. Overall, clay content, pH, N,
and CEC showed the best predictive performances, followed by silt content, sand content,
and CaCO3. Although K and P demonstrated the poorest predictive capabilities, they met
the basic requirements for the indirect prediction of SFI in subsequent analyses.

3.4. Modeling of SFI Based on VNIR Spectra

Statistical analysis of the measured SFI values revealed a mean value of 0.28, a median
value of 0.27, and a CV of 21%. This study used both direct and indirect prediction methods
to estimate the SFI values (Table 3). Direct prediction involves constructing a relationship
between the spectra and SFI using four different models: PLSR, SVM, RF, and CNN.
Among the four models, CNN showed the highest prediction accuracy, with an RPD of
1.63 and an RPIQ of 2.38. In contrast, indirect prediction involves predicting soil properties
using spectra and then selecting the best prediction results with which to calculate the SFI
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values. Compared to direct prediction, indirect prediction showed a slight improvement
in accuracy, with an RPD of 1.74 and an RPIQ of 2.55. The results of both the direct and
indirect models demonstrate that the rapid estimation of soil fertility using VNIR is feasible
and offers a high level of accuracy.

Table 3. Comparison of the soil fertility index between direct prediction and indirect prediction.

Method R2 RMSE RPD RPIQ

Indirect model 0.83 0.04 1.74 2.55

Direct model

PLSR 0.80 0.05 1.37 2.00
SVM 0.83 0.05 1.41 2.05
RF 0.77 0.05 1.41 2.06

CNN 0.77 0.04 1.63 2.38
Notes: SVM: support vector machine; RF: random forest; CNN: convolutional neural network. The optimal
prediction results of SFI are shown in bold italic font.

The number and value ranges for the SFI classification were determined according
to the frequency distribution of the comprehensive evaluation result. Soil fertility was
classified into five categories: extremely low (SFI < 0.10), low (SFI: 0.10–0.20), medium
(SFI: 0.20–0.30), high (SFI: 0.30–0.50), and extremely high (SFI > 0.50). The indirect predic-
tion results for the validation dataset were classified into five classes. Table 4 presents a
comparison between the SFI prediction and the measured results for classification. From
the perspective of producer accuracy and user accuracy, the classification accuracies for
medium and high levels were relatively high, while the performances for the low and
extremely high levels were relatively poor. Most of the samples were distributed at the
medium and high levels, and only 25 and 2 out of a total of 928 samples were at the
low or extremely high levels, resulting in inadequate training data at these levels. The
kappa coefficient of 0.63 indicated that the SFI evaluation results of the VNIR and chemical
analysis were substantially consistent, suggesting that VNIR could be a reliable method for
assessing soil fertility.

Table 4. Comparison of the soil fertility classification between indirect prediction and chemical
analysis.

IP
CA

Extremely Low Low Medium High Extremely High Total User Accuracy

Extremely low 0 0 0 0 0 0 -
Low 0 4 6 0 0 10 40%

Medium 0 21 325 9 0 355 92%
High 0 0 138 418 2 558 75%

Extremely high 0 0 0 5 0 5 0%
Total 0 25 469 432 2 928 -

Producer accuracy - 16% 69% 97% 0% - kappa: 0.63

Notes: IP, indirect prediction; CA, chemical analysis.

4. Discussion
4.1. Capability of Spectroscopy for Soil Properties

In this study, we successfully achieved the prediction of various soil properties using
VNIR (consisting the models of PLSR, SVM, RF, and CNN). The values of selectivity ratio
(SR) are calculated for individual variables. Figure 6 shows the SR of each soil property. It
was considered that the band had more influence on the spectral prediction model when the
SR value was higher. Among these properties, clay content, pH, N, CEC, and OC showed
the best predictive performance, followed by silt content, sand content, and CaCO3. The
prediction of K and P was more challenging, possibly due to their lower concentrations
and lack of direct spectral response in the VNIR spectra [32]. Although OC was not applied
to the evaluation of SFI, it showed high accuracy in the prediction model based on SVM (
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mboxemphR2 = 0.81, RPD = 2.21, RPIQ = 2.55). The advantages of VNIR in the prediction of
OC and N were mainly due to direct spectral responses to the overtones and combinations
of N—H, C—H + C—H, and C—H + C—C [9]. Although there is no direct spectral response
for pH in the VNIR spectra, its prediction accuracy is high, which may be related to mineral
wavelengths [33,34]. The clay content plays a crucial role in soil structure, associated
with OH in water and Mg−, Al−, and Fe—OH in mineral lattices [35]. CEC is key to the
buffering capacity of soil, which is closely related to clay content and OM [32]. Therefore,
VNIR spectroscopy was able to predict the clay content and CEC indirectly [36,37]. The
prediction results for various soil properties in this study are basically consistent with
previous research [25,38,39].
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4.2. Capability of Spectroscopy for SFI Estimation

Due to limitations in the dataset used, SFI developed in this study mainly consisted of
soil conventional chemical and physical properties. Although soil biological indicators were
not included, it is acknowledged that these indicators significantly influence soil fertility.
The determination of weights for the properties was based on statistical analysis, ensuring
objectivity in SFI evaluation. However, this might conflict with empirical knowledge and
could vary across different regions. Despite these limitations, our study demonstrated
the effectiveness of combining VNIR spectroscopy and machine learning models in the
assessment of soil fertility. In contrast to other studies, this study did not distinguish soil
types and sought a more universally applicable method for assessing soil fertility.

We compared the performance of indirect and direct prediction methods in estimating
SFI. The results indicated that both methods achieved high accuracy in SFI estimation, with
indirect prediction slightly outperforming direct prediction. This suggests that the accurate
prediction of individual soil properties can contribute to the assessment of SFI. The indirect
prediction not only had a high SFI prediction accuracy, but also allowed us to obtain specific
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soil property values without increasing costs. Current research mainly focuses on using
specific soil properties to represent the overall soil fertility, while soil fertility evaluation
directly using spectroscopy technology is relatively limited [40,41]. However, the direct
prediction method, due to its streamlined and efficient process, shows great potential for
the real-time monitoring of regional soil fertility changes. Therefore, whether using direct
or indirect prediction, choosing the appropriate method is crucial for devising effective
land use strategies based on soil conditions.

4.3. Application of SFI in Precision Agriculture

SFI is a valuable indicator for sustainable productivity in terms of its capability to
assess the effectiveness of soil management measures and soil functions [5]. It can be
classified into different levels, which can provide fundamental information for precision
agriculture management. Therefore, evaluating appropriate thresholds of SFI quickly
and effectively is crucial for assessing management measures, which are beneficial for
improving crop production while minimizing environmental impacts [42,43].

This study offers rapid, low-cost, and reliable methods for estimating SFI, yet the
reliance on point-based measurements limits its broader applicability. To extend these
estimations to the regional scale, an integration of point-based data with remote sensing
technology is imperative. However, satellite data face challenges in practical application.
One of the challenges is the mixed-pixel problem due to mismatch between remote sensing
data resolution and soil samples. The constrained spectral bandwidth hampers the capture
of soil spectral characteristics as well. These limitations result in SFI estimation with poor
accuracy compared with proximal soil sensing methods used in the field [44]. To address
these challenges, the fusion of proximal soil sensing with satellite remote sensing data will
be attempted in our future research. This integration of data could provide decision makers
with more comprehensive and accurate soil surface information, facilitating sustainable
land management and utilization.

5. Conclusions

This study provided a comprehensive comparative analysis of soil fertility assessment
methods using VNIR spectroscopy. The main conclusions are as follows: (1) VNIR spectra
can be effectively employed to predict various soil properties. Clay content, pH, OC, and
CEC showed the highest prediction performance, followed by silt content, sand content,
N, and CaCO3, whereas K and P had the lowest prediction accuracy. (2) Based on factor
analysis, we developed an SFI that integrates nine essential soil properties: clay content, silt
content, sand content, pH, CaCO3, N, P, K, and CEC. When comparing direct and indirect
prediction models for SFI estimation, the indirect prediction model had a higher accuracy,
with RPD = 1.74 and RPIQ = 2.55. (3) The SFI was classified into five categories, with a
kappa coefficient of 0.63. This suggests that the SFI evaluation results of the VNIR and the
chemical analyses were consistent. Overall, VNIR provides a theoretical foundation for the
real-time monitoring of soil fertility changes and the optimization of agricultural practices.
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Abbreviations

SFI: soil fertility index; VNIR: visible-near-infrared spectroscopy; CEC: cation exchange capacity;
OM: organic matter; PLSR: partial least squares regression; LUAS: land use and cover area frame
survey; OC: organic carbon; CaCO3: carbonates content; N: total nitrogen; P: available phosphorus;
K: available potassium; KS: Kennard–Stone; SVM: support vector machine; RF: random forest; CNN:
convolutional neural network; PCA: principal component analysis; R2: coefficient of determination;
RMSE: root mean square error; RPD: ratio of prediction to deviation; RPIQ: ratio of performance to
interquartile range; k: Kappa coefficient; CV: coefficient of variation; PC: primary component; SR:
selectivity ratio.
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