Predictive Scenarios of LULC Changes Supporting Public Policies: The Case of Chapecó River Ecological Corridor, Santa Catarina/Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. Database
2.3.1. Land Use and Land-Cover Data
2.3.2. Variable Selection
2.4. Scenario Building
2.4.1. Scenarios
2.4.2. Actions
2.5. Simulation Model Based on Artificial Neural Networks
2.6. LULC Dynamics and Sensitivity Analysis
3. Results
3.1. Predictive Scenario A (‘Do Nothing’)—LULC Changes and Key Driving Forces
3.2. Predictive Scenario B (‘AreaNat’)—LULC Changes and Key Driving Forces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathewos, M.; Lencha, S.M.; Tsegaye, M. Land use and land cover change assessment and future predictions in the Matenchose Watershed, Rift Valley Basin, using CA-Markov simulation. Land 2022, 11, 1632. [Google Scholar] [CrossRef]
- Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches; West Virginia University: Morgantown, WV, USA, 2000. [Google Scholar]
- Turner, B.L.; Skole, D.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change: Science/Research Plan; IGBP Secretariat: Stockholm, Sweden, 1995. [Google Scholar]
- Quan, B.; Chen, J.-F.; Qiu, H.-L.; Römkens, M.J.M.; Yang, X.-Q.; Jiang, S.-F.; Li, B.-C. Spatial-temporal pattern and driving forces of land use changes in Xiamen. Pedosphere 2006, 16, 477–488. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schot, P.P.; Dijst, M.J.; Veldkamp, A. Land use change modelling: Current practice and research priorities. GeoJournal 2004, 61, 309–324. [Google Scholar] [CrossRef]
- Mustard, J.F.; Defries, R.S.; Fisher, T.; Moran, E. Land-use and land-cover change pathways and impacts. In Land Change Science. Remote Sensing and Digital Image Processing, v.6; Gutman, G., Janetos, A.C., Justice, C.O., Mustard, J.F., Rindfuss, R.R., Skole, D., Turner, B., II, Cochrane, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 411–429. ISBN 978-1-4020-2562-4. [Google Scholar]
- Defries, R.S.; Rudel, T.; Uriarte, M.; Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 2010, 3, 178–181. [Google Scholar] [CrossRef]
- Ramankutty, N.; Graumlich, L.; Achard, F.; Alves, D.; Chhabra, A.; DeFries, R.S.; Foley, J.A.; Geist, H.; Houghton, R.A.; Goldewijk, K.K.; et al. Global land-cover change: Recent progress, remaining challenges. In Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 9–38. ISBN 9783540322016. [Google Scholar]
- Meneses, B.M.; Vale, M.J.; Reis, R. O uso e ocupação do solo. In Uso e Ocupação do Solo em Portugal Continental Avaliação e Cenário Futuros. Projeto LANDYN; DGT: Lisboa, Portugal, 2014; pp. 27–64. ISBN 978-989-98477-9-8. [Google Scholar]
- Hersperger, A.M.; Gennaio, M.-P.; Verburg, P.H.; Buergi, M. Linking land change with driving forces and actors: Four conceptual models. Ecol. Soc. 2010, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Morgado, P.; Gomes, E.; Costa, N. Competing visions? Simulating alternative coastal futures using a GIS-ANN web application. Ocean Coast. Manag. 2014, 101, 79–88. [Google Scholar] [CrossRef]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Land-Use and Land-Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 9783540322016. [Google Scholar]
- Lambin, E.F.; Geist, H.; Rindfuss, R.R. Introduction: Local processes with global impacts. In Land Use and Land Cover Change; Lambin, E.F., Geist, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–8. ISBN 9783540322016. [Google Scholar]
- Hersperger, A.M.; Bürgi, M. Going beyond landscape change description: Quantifying the importance of driving forces of landscape change in a Central Europe case study. Land Use Policy 2009, 26, 640–648. [Google Scholar] [CrossRef]
- Brandt, J.; Primdahl, J.; Reenberg, A. Rural land-use and landscape dynaamics—Analysis of “driving forces” in space and time. In Land-Use Changes and Their Environmental Impact in Rural Areas in Europe; Man and the Biosphere Series; Unesco: Paris, France, 1999; pp. 81–102. [Google Scholar]
- Souza, J.M.; Costa, E.M. Methodological proposal to analyze land use and land cover changes: The case of Santa Catarina state in Brazil from 2000 to 2010. Sustain. Debate 2020, 11, 485–517. [Google Scholar] [CrossRef]
- Souza, J.M.d.; Morgado, P.; Costa, E.M.d.; Vianna, L.F.d.N. Modeling of Land Use and Land Cover (LULC) change based on artificial neural networks for the Chapecó River Ecological Corridor, Santa Catarina/Brazil. Sustainability 2022, 14, 4038. [Google Scholar] [CrossRef]
- Verburg, P.H.; van Eck, J.R.R.; de Nijs, T.C.M.; Dijst, M.J.; Schot, P. Determinants of land-use change patterns in the Netherlands. Environ. Plan. B Plan. Des. 2004, 31, 125–150. [Google Scholar] [CrossRef]
- Abrantes, P.; Rocha, J.; Marques da Costa, E.; Gomes, E.; Morgado, P.; Costa, N. Modelling urban form: A multidimensional typology of urban occupation for spatial analysis. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 47–65. [Google Scholar] [CrossRef]
- Abrantes, P.; da Costa, E.M.; Queirós, M.; Padeiro, M.; Mousselin, G. Lezíria Do Tejo: Agriculture and urban sprawl on the Lisbon metropolitan fringes. Cah. Agric. 2013, 22, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographical Information Systems and Science, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005; ISBN 0470870001. [Google Scholar]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Gomes, E.J.d.C. Modéliser L’occupation du sol au prisme des intentions des agriculteurs: Une approche à base d’agents, ’Université Paris 1—Panthéon—Sorbonne et de l’Université de Lisbonne. 2019. Available online: https://www.semanticscholar.org/paper/Mod%C3%A9liser-l%27occupation-du-sol-au-prisme-des-des-%3A-%C3%A0-Gomes-Jonas/d218f2863cd428f8b775d7bf2f53de59ded61749 (accessed on 29 December 2022).
- Shahumyan, H.; Williams, B.; Petrov, L.; Foley, W. Regional development scenario evaluation through land use modelling and opportunity mapping. Land 2014, 3, 1180–1213. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, Y.; Ghosh, S.K. Urban growth and land use simulation using SLEUTH model for Adama City, Ethiopia. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering; Springer: Berlin/Heidelberg, Germany, 2020; Volume 308, pp. 279–293. [Google Scholar]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, L.; Cheng, L.; Zhou, X.; Cui, Y.; Li, H.; Liu, W. Urban growth simulation in different scenarios using the SLEUTH model:A case study of Hefei, East China. PLoS ONE 2019, 14, e0224998. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Cheng, L.-l.; Liu, M.; Zhan, J.-q. Land use scenario simulation of mountainous districts based on Dinamica EGO model. J. Mt. Sci. 2020, 17, 289–303. [Google Scholar] [CrossRef]
- Xie, Y.; Batty, M.; Zhao, K. Simulating emergent urban form using agent-based modeling: Desakota in the Suzhou-Wuxian Region in China. Ann. Assoc. Am. Geogr. 2007, 97, 477–495. [Google Scholar] [CrossRef]
- Alcamo, J. Scenarios as Tools for International Environmental Assessments; EEA: Copenhagen, Denmark, 2001.
- Padilha, D.G. Modelo de Apoio à Decisão Aplicado ao Planejamento Territorial de Silvicultura Baseado em Análise Multicritério de Redes Neurais Artificiais; Universidade Federal de Santa Maria/RS: Santa Maria, Brazil, 2014. [Google Scholar]
- Morgado, P.; da Costa, N.M.; da Gomes, E.J.C.; Mateus, R.; de Abreu, D. Solutions for Environmental Contrasts in Coastal Area—SECOA; In Depth Scenario Report: Lisbon, Portugal. 2013. Available online: https://www.cosmopolis.be/research/solutions-environmental-contrasts-coastal-areas-secoa (accessed on 29 December 2022).
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Schulte, R.P.O.; Arts, B.J.M.; Fernandes Filho, E.I. Land use and land cover scenarios: An interdisciplinary approach integrating local conditions and the global shared socioeconomic pathways. Land Use Policy 2020, 97, 104723. [Google Scholar] [CrossRef]
- Gomes, E.; Abrantes, P.; Banos, A.; Rocha, J.; Buxton, M. Farming under urban pressure: Farmers’ land use and land cover change intentions. Appl. Geogr. 2019, 102, 58–70. [Google Scholar] [CrossRef]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Perz, S.; Messina, J.P.; Reis, E.; Walker, R.; Walsh, S.J. Scenarios of future Amazonian landscapes: Econometric and dynamic simulation models. Geophys. Monogr. Ser. 2009, 186, 83–100. [Google Scholar] [CrossRef]
- Viana, C.M.; Santos, M.; Freire, D.; Abrantes, P.; Rocha, J. Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach. Ecol. Indic. 2021, 131, 108200. [Google Scholar] [CrossRef]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Kristensen, S.B.P.; Busck, A. Agricultural land fragmentation analysis in a peri-urban context: From the past into the future. Ecol. Indic. 2019, 97, 380–388. [Google Scholar] [CrossRef]
- Gomes, E.; Banos, A.; Abrantes, P.; Rocha, J.; Schläpfer, M. Future land use changes in a peri-urban context: Local stakeholder views. Sci. Total Environ. 2020, 718, 137381. [Google Scholar] [CrossRef] [PubMed]
- Peponi, A.; Morgado, P.; Trindade, J. Combining artificial neural networks and GIS fundamentals for coastal erosion prediction modeling. Sustainability 2019, 11, 975. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.P.; Xavier, A.P.C.; da Silva, R.M.; Santos, C.A.G. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Glob. Ecol. Conserv. 2020, 21, e00811. [Google Scholar] [CrossRef]
- Azari, M.; Tayyebi, A.; Helbich, M.; Reveshty, M.A. Integrating cellular automata, artificial neural network, and fuzzy set theory to simulate threatened orchards: Application to Maragheh, Iran. GIScience Remote Sens. 2016, 53, 183–205. [Google Scholar] [CrossRef]
- MapBiomas Coleção 4.1 da Série Anual de Mapas de Cobertura e Uso do Solo do Brasil 2019. Available online: https://mapbiomas.org/ (accessed on 1 August 2020).
- Scheibe, L.F.; Benedet, C.; Guilardi, L.; Nierdele, S.; Veiga, S.M. Cadernos Geográficos. Dinâmica territorial na região de Chapecó: Estratégias e Conflitos; Universidade Federal de Santa Catarina: Santa Catarina, Brazil, 2014; p. 155. [Google Scholar]
- Santa Catarina. Decreto no 2.957, de 20 de janeiro de 2010. Gov. do Estado St. Catarina, Florianópolis, SC/Brasil. 2010. Available online: http://server03.pge.sc.gov.br/LegislacaoEstadual/2010/002957-005-0-2010-002.htm (accessed on 1 August 2020).
- Socioambiental. Plano de Gestão Do Corredor Ecológico Chapecó, Santa Catarina. Relatório Técnico. Socioambiental Consult. Assoc. e Fundação do Meio Ambient. 2009. Available online: https://ima.sc.gov.br/index.php/biodiversidade/biodiversidade/corredores-ecologicos/669-apresentacao (accessed on 29 December 2022).
- Santa Catarina. Plano de Desenvolvimento de Santa Catarina 2030—Plano SC 2030. Gov. do Estado St. Catarina. 2018. Available online: https://www.sde.sc.gov.br/index.php/biblioteca/plano-sc-2030 (accessed on 29 December 2022).
- IBGE-Instituto Brasileiro de Geografia e Estatísitca. SIDRA—Sistema IBGE de Recuperação Automática. Available online: https://sidra.ibge.gov.br/home/pms/brasil (accessed on 30 June 2020).
- Klein, R. Mapa Fitogeográfico do Estado de Santa Catarina. In Flora Ilustrada Catarinense; Herbário Barbosa Rodrigues: Itajaí, Brazil, 1978; p. 24. [Google Scholar]
- Embrapa. Solos do Estado de Santa Catarina: Boletim de Pesquisa e Desenvolvimento; Embrapa Solos: Rio de Janeiro, Brazil, 2004; p. 745. [Google Scholar]
- Santa Catarina. Manual de Uso e Conservacao do Solo e da Agua: Projeto de Recuperacao, Conservacao e Manejo Dos Recursos Naturais em Microbacias Hidrograficas; EPAGRI: Florianópolis, Brazil, 1994; 384p.
- Pandolfo, C.; Braga, H.J.; Silva, V.P., Jr.; Massignam, A.M.; Pereira, E.S.; Thomé, V.M.R.; Valci, F.V. Atlas Climatológico Digital do Estado de Santa Catarina; EPAGRI: Florianópolis, Brazil, 2002.
- Centro de Socioeconomia e Planejamento Agrícola—Epagri/Cepa. Preço das Terras Agrícolas. Available online: https://cepa.epagri.sc.gov.br/index.php/produtos/mercado-agricola/precos-de-terra-agricola/ (accessed on 10 September 2020).
- National Imagery and Mapping Agency—NIMA e a National Aeronautics and Space Administration—NASA. SRTM—Shuttle Radar Topography Mission. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 25 June 2020).
- PNUD—Programa das Nações Para o Desenvolvimento. Atlas Do Desenvolvimento Hunano No Brasil. Available online: http://www.atlasbrasil.org.br/ (accessed on 21 July 2020).
- Ministério da Economia do Brasil. RAIS—Relação Anual de Informações Sociais. Available online: https://bi.mte.gov.br/bgcaged (accessed on 5 June 2020).
- IBM Corp. IBM SPSS Statistics for Windows, Version 24.0; IBM Corp.: Armonk, NY, USA, 2016. [Google Scholar]
- ESRI. ArcGIS, 10.7.; ESRI: Redlands, CA, USA, 2019. [Google Scholar]
- Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice; United States Department of Agriculture: Washington, DC, USA, 2002.
- Centro de Socioeconomia e Planejamento Agrícola—Epagri/Cepa. Infoagro. Available online: https://www.infoagro.sc.gov.br/ (accessed on 12 January 2022).
- IPCC. Climate Change and Land—Summary for Policy Makers; IPCC: Geneva, Switzerland, 2020. [Google Scholar]
- Campos, C.G.C. Padrões Climáticos Atuais e Futuros de Temperatura do ar na Região sul do Brasil e Seus Impactos Nos Cultivos de Pêssego e de Nectarina em Santa Catarina; INPE: São José dos Campos, Brazil, 2011.
- Camargo, C.G.C.; Braga, H.; Alves, R. Mudanças climáticas atuais e seus impactos no estado de Santa Catarina. Agropecuária Catarin. 2006, 19, 31–35. [Google Scholar]
- Minuzzi, R.B. Trends in climatic variability in the state of Santa Catarina, Brazil. Rev. Bras. Eng. Agric. Ambient. 2010, 14, 1288–1293. [Google Scholar] [CrossRef]
- Fundação do Meio Ambiente e Socioambiental Consultores Associados. Diagnóstico Socioeconômico do Corredor Ecológico Chapecó—SC; Relatório Técnico; Fundação do Meio Ambiente e Socioambiental Consultores Associados: Florianópolis, Brazil, 2007. [Google Scholar]
- Zuchiwschi, E. Fatores de Influência na Conservação e Manejo de Florestas Nativas em Unidades de Produção Agrícolas do Corredor Ecológico Chapecó; Universidade Federal de Santa Catarina: Santa Catarina, Brazil, 2013. [Google Scholar]
- IPCC. IPCC Global Warming of 1.5 °C Summary for Policymakers; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- MapBiomas Coleção 7 da Série Anual de Mapas de Cobertura e Uso do Solo do Brasil. 2022. Available online: https://mapbiomas.org/ (accessed on 1 September 2022).
- Pereira, M.C. Produção E Consumo de Produtos Florestais: Perspectivas Para a Região Sul Com Ênfase Em Santa Catarina; BRDE/AGFLO/GEPLA: Florianópolis, Brazil, 2003. [Google Scholar]
- Barbosa, I.P. A alta das commodities agrícolas e o estabelecimento do milagrinho na economia brasileira do governo Lula. Conjunt. Glob. 2020, 9, 1. [Google Scholar] [CrossRef]
- Majnik, M.; Bosnić, Z. ROC analysis of classifiers in machine learning: A survey. Intell. Data Anal. 2013, 17, 531–558. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Pontius, R.G.; Schneider, L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85, 239–248. [Google Scholar] [CrossRef]
- Pontius, R.G.; Si, K. The total operating characteristic to measure diagnostic ability for multiple thresholds. Int. J. Geogr. Inf. Sci. 2014, 28, 570–583. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Viana, C.M.; Rocha, J. Evaluating dominant land use/land cover changes and predicting future scenario in a rural region using a memoryless stochastic method. Sustainability 2020, 12, 4332. [Google Scholar] [CrossRef]
- Braimoh, A.K. Random and systematic land-cover transitions in northern Ghana. Agric. Ecosyst. Environ. 2006, 113, 254–263. [Google Scholar] [CrossRef]
- Lilburne, L.; Tarantola, S. Sensitivity analysis of spatial models. Int. J. Geogr. Inf. Sci. 2009, 23, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Pillar, V.D.; Tornquist, C.G.; Bayer, C. The southern Brazilian grassland biome: Soil carbon stocks, fluxes of greenhouse gases and some options for mitigation. Braz. J. Biol. 2012, 72, 673–681. [Google Scholar] [CrossRef] [PubMed]
- De Patta Pillar, V. Campos Sulinos-Conservação e Uso Sustentável da Biodiversidade; Ministério do Meio Ambiente—MMA: Brasília, Brazil, 2009; ISBN 978-85-7738-117-3.
- Yoshikawa, S.; Sanga-Ngoie, K. Deforestation dynamics in mato grosso in the southern Brazilian Amazon using GIS and NOAA/AVHRR data. Int. J. Remote Sens. 2011, 32, 523–544. [Google Scholar] [CrossRef]
- Lipp-Nissinen, K.H.; De Sá Piñeiro, B.; Miranda, L.S.; De Paula Alves, A. Temporal dynamics of land use and cover in Paurá Lagoon region, Middle Coast of Rio Grande do Sul (RS), Brazil. J. Integr. Coast. Zone Manag. 2018, 18, 25–35. [Google Scholar] [CrossRef] [Green Version]
- DGT. Uso e Ocupação do Solo em Portugal Continental: Avaliação e Cenários Futuros Projeto LANDYN; Direção-Geral do Território (DGT): Lisboa, Portugal, 2014; ISBN 9789899847798.
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Camargo, F.A.O.; Silva, L.S.; Merten, G.H.; Carlos, F.S.; Baveye, P.C.; Triplett, E.W. Brazilian agriculture in perspective: Great expectations vs reality. In Advances in Agronomy; University of Minnesota: Minneapolis, MI, USA, 2017; Volume 141, pp. 53–114. [Google Scholar]
- Cabral, L. Embrapa and the construction of scientific heritage in Brazilian agriculture: Sowing memory. Dev. Policy Rev. 2021, 39, 789–810. [Google Scholar] [CrossRef]
- Nehring, R. Yield of dreams: Marching west and the politics of scientific knowledge in the Brazilian Agricultural Research Corporation (Embrapa). Geoforum 2016, 77, 206–217. [Google Scholar] [CrossRef]
- Vianna, L.F. Pesquisa agropecuária: Uma análise histórica da produção científica da Epagri. Rev. Ciências Agroveterinárias 2022, 21, 315–323. [Google Scholar] [CrossRef]
- Bernardes, M.S.; Pinto, L.F.G.; Righi, C.A. Interações biofísicas em sistemas agroflorestais. In Alternativa Agroflorestal na Amazônia em Transformação; Embrapa: Brasília, Brazil, 2009; pp. 453–475. ISBN 978-8573834550. [Google Scholar]
- Silva, I.C. Sistemas Agroflorestais: Conceitos e Métodos; SBSAF-So.; SBSAF—Sociedade Brasileira de Sistemas Agroflorestais: Itabuna, Brazil, 2013. [Google Scholar]
- Frederico, S. Agricultura científica globalizada e fronteira agrícola moderna no Brasil. Confins 2013, 17, 1. [Google Scholar] [CrossRef]
Indicators | Chapecó EC | Santa Catarina | Brazil |
---|---|---|---|
Area (km2) | 7242 * | 95,346 | 8,516,000 |
Estimated population (2018) | 185,300 * | 7,075,500 | 211,755,692 |
Demographic density (2018) (inhab./km2) | 25.6 | 74.2 | 24.9 |
Urban population (2010) % | 64.6 * | 84.0 | 84.3 |
Agricultural area (2018) % | 67.6 * | 48.9 | 30.6 |
GVA of agriculture and cattle-raising (2018) % | 31.3 ** | 5.51 | 5.15 |
GDP (2018) BRL 1000 | 6,603,755 * | 298,227,090 | 7,004,141,000 |
LULC Class | Description |
---|---|
Forest (forest formation) | Dense, open and mixed ombrophilous forest, semi-deciduous and deciduous seasonal forest, and pioneer formation. |
Silviculture (forest plantation) | Planted tree species for commercial use (e.g., Eucalyptus, Pinus and Araucaria). |
Natural grassland | Savannas, park and grassland steppe savannas, steppe and shrub and herbaceous pioneers. |
Pasture | Pasture areas, natural or planted, related with farming activity. |
Agriculture (annual and perennial crop) | Areas predominantly occupied with annual crop (short to medium-term crops, usually with a vegetative cycle of less than one year, which after harvest needs to be re-planted) and in some regions with perennial crops (Areas occupied with crops with a long cycle (more than one year), which allow successive harvests without the need for new crop). |
Mosaic (mosaic of agriculture and pasture) | Farming areas where it was not possible to distinguish between pasture and agriculture. |
Artificial Area (urban infrastructure + other non vegeteded area) | Urban infrastructure: urban areas with predominance of non-vegetated surfaces, including roads, highways and constructions and other non vegetated areas Non-permeable surface areas (infrastructure, urban expansion or mining) not mapped into their classes and regions of exposed soil in natural or crop areas. |
Water bodies (river, lake and ocean) | Rivers, lakes, dams, reservoir and other water bodies. |
Dimension | Dependent Variables | Unit | Format | Scala/ Spatial Resolution |
Physical/natural | Land use and land cover (do nothing) | class | raster | 30 m |
Physical/natural | Land use and land cover (AreaNat) | class | raster | 30 m |
Dimension | Independent Variables—Year | Unit | Format | Scala/ Spatial Resolution |
Physical/natural | Land use and land cover—2000 | class | raster | 30 m |
Temperature—2002 | °C | vector | 1:500,000 | |
Accumulated precipitation—2002 | mm | vector | 1:500,000 | |
Type of soil—2004 | class | vector | 1:250,000 | |
Type of relief—2000 | class | raster | 30 m | |
Altitude—2000 Road network—2018 | m | raster | 30 m | |
km/km2 | vector | municipality | ||
Economic | Rural agribusiness—2006 and 2017 | % | table | municipality |
Cattle herd—2000 and 2018 | % | table | municipality | |
Swine herd—2000 and 2018 | % | table | municipality | |
Chicken herd—2000 and 2018 | % | table | municipality | |
Formal employment (commerce/service)—2006 and 2018 | nº | table | municipality | |
Formal employment (industry)—2006 and 2018 | nº | table | municipality | |
Formal employment (agriculture)—2006 and 2018 | nº | table | municipality | |
Financing (Pronaf)—2006 and 2017 | % | table | municipality | |
Processing industries—2006 and 2018 | nº | table | municipality | |
Gross Domestic Product (GDP)—2002 and 2017 | R$ | table | municipality | |
Agricultural land price—2000 and 2018 | R$/ha | table | municipality | |
Per capita income—2000 and 2010 | R$ | table | municipality | |
Log Production—2000 and 2018 | m3 | table | municipality | |
Gross value added of agriculture and cattle-raising—2000 and 2017 | % | table | municipality | |
Milk production value—2002 and 2017 | % | table | municipality | |
Sociocultural | Family agriculture—2006 and 2017 | % | table | municipality |
Schooling of the head farmer—2006 and 2017 | nº | table | municipality | |
Age of the head farmer—2006 and 2017 | nº | table | municipality | |
Municipal Human Development Index (HDI)—2000 and 2010 | index | table | municipality | |
Rural workers—2006 and 2017 Land structure—2006 and 2017 | nº | table | municipality | |
ha | table | municipality | ||
Technological | Use of agrochemicals—2006 and 2017 | % | table | municipality |
Mechanization in the rural property—2006 and 2017 | tractors/km2 | table | municipality | |
Technical orientation—2006 and 2017 | % | table | municipality | |
Maize yield—2002 and 2017 | kg/ha | table | municipality | |
Soybean yield—2002 and 2017 | kg/ha | table | municipality | |
Bean yield—2002 and 2017 | kg/ha | table | municipality | |
Tobacco yield—2002 and 2017 | kg/ha | table | municipality | |
Demographic | Population density—2000 and 2018 | inhab/km2 | table | municipality |
Rural population—2000 and 2010 | % | table | municipality |
Scenarios | ||||
---|---|---|---|---|
BAU | Optimistic | Pessimistic | ||
Action | Do Nothing | A1 | A2 | A3 |
AreaNat | B1 | B2 | B3 |
Public Policy | General Objective | ||
SC2030 Plan | To reduce inequalities and promote social equity, seek sustainable regional development, boost innovative development and the entrepreneurial capacity of the Santa Catarina society | ||
Guidelines | Indicators | Targets | Variables |
Protect, restore, and promote the sustainable use of terrestrial ecosystems | Percentage of territory with native vegetation cover | +1% | AreaNat action |
Combat climate change and its effects | Projections of increased temperature and precipitation [62,63,64,65] | +4 °C | Temperature |
+84 mm | Accumulated precipitation | ||
Add value to family farming | Number of family farming agroindustry enterprises | +55% | Family agriculture |
Municipal GDP growth [49] | +54 | GDP | |
Revitalize the rural world | Rural credit—participation of Pronaf in the total number of contracts | +0.3% | Financing (Pronaf) |
Ensure sustainable production | Maize yield (kg/ha) | +45% | Maize yield |
Soybean yield (kg/ha) | +53% | Soybean yield | |
Social problems in rural areas: rural exodus, aging of head farmers and family succession | Age of the head farmer [49] | +70% | Age of the head farmer |
Rural population [49] | −20% | Rural population | |
Public Policy | General Objective | ||
Management Plan of the Chapecó EC | Developing and implementing a model for the promotion, marketing and leveraging of native forests (and other natural environments) as environmental assets, promoting the maintenance and improvement of the permeability of the landscape’ | ||
Guideliness | Indicators | Targets | Variables |
Combat the expansion of productive areas (pasture, agriculture and silviculture) over areas of natural vegetation Combat the loss of natural vegetation Conservation of natural grasslands | LULC map | Natural areas recovered to the conservation status of the year 1990 | AreaNat action |
Scenarios | |||
---|---|---|---|
Optimistic | Pessimistic | ||
Independent Variable | Increase | Independent Variable | Increase |
Family agriculture—2017 | +55% | Family agriculture—2017 | +18% |
Financing (Pronaf)—2017 | +0.3% | GDP—2017 | +13.5% |
GDP—2017 | +54% | Maize yield—2017 | +15% |
Maize yield—2017 | +45% | Soybean yield—2017 | +17.5% |
Soybean yield | +53% | Temperature—2002 | +4 °C |
Accumulated precipitation—2002 | +84 mm | ||
Age of the head farmer—2017 | +70% | ||
Rural population—2010 | −20% |
Parameter | Parameterisation Object | Parameterisation Adopted |
---|---|---|
Input layer | Independent variables | 67 |
Rescaling method | Normalised | |
Sample | Training | 70% |
Testing | 20% | |
Holdout | 10% | |
Iterations | 500 | |
Hidden layer | Number of hidden layers | 1 |
Number of units (neurons) | 56 | |
Activation function | Hyperbolic tangent | |
Output layer | Dependent variable | LULC map* |
Activation function | Softmax | |
Error function | Cross-entropy |
LULC | Area (km2) | Predictive Scenarios (2036) | ||
---|---|---|---|---|
Base Year (LULC2018) (Do Nothing) | A1 | A2 | A3 | |
Forest | 2097.6 | 2418.2 | 2418.4 | 2418.6 |
Silviculture | 914.0 | 422.9 | 418.8 | 409.1 |
Natural grassland | 149.0 | 34,2 | 36.5 | 18.3 |
Pasture | 886.3 | 1306.1 | 1322.2 | 1324.3 |
Agriculture | 2416.3 | 2637,9 | 2661.8 | 2670.0 |
Mosaic | 677.7 | 363.7 | 327.2 | 340.7 |
Artificial Area | 50.1 | 31.6 | 31.9 | 31.9 |
Water bodies | 51.2 | 27.7 | 25.4 | 28.7 |
Total | 7242.3 | 7242.3 | 7242.3 | 7242.3 |
Predictive Scenarios | Driving Force | Normalized Importance (%) |
---|---|---|
A1 | Land use and land cover—2000 | 100.0 |
Type of soil—2004 | 44.8 | |
Road network—2018 | 31.6 | |
Type of relief—2000 | 30.1 | |
Per capita income—2010 ↑ | 21.9 | |
Agricultural land price—2000 ↓ | 20.8 | |
Cattle herd—2018 ↑ | 20.3 | |
Processing industries—2006 ↓ | 19.8 | |
Rural population—2000 ↑ | 19.0 | |
Chicken herd—2000 ↑ | 18.7 | |
A2 | Land use and land cover—2000 | 100.0 |
Type of soil—2004 | 38.5 | |
Road network—2018 | 38.2 | |
Type of relief—2000 | 26.1 | |
Processing industries—2006 ↓ | 19.3 | |
Use of agrochemicals—2017 ↑ | 18.7 | |
Agricultural land price—2000 ↓ | 18.7 | |
Cattle herd—2018 ↑ | 16.3 | |
Per capita income—2010 ↑ | 15.5 | |
Maize yield—2017 ↑ | 15.3 | |
A3 | Land use and land cover—2000 | 100.0 |
Type of soil—2004 | 44.8 | |
Road network—2018 | 43.5 | |
Type of relief—2000 | 24.9 | |
Financing (Pronaf)—2017 ↓ | 21.3 | |
Gross value added of agriculture and cattle-raising—2002 ↑ | 21.2 | |
Gross Domestic Product (GDP) –(pessimistic) ↑ | 20.2 | |
Agricultural land price—2018 ↑ | 19.2 | |
Land structure—2017↑ | 18.0 | |
Swine herd—2018 ↓ | 17.9 |
Predictive Scenario | Dimension | Average Normalized Importance (%) | Nº of Driving Forces |
---|---|---|---|
A1 | Physical/natural | 51.6 | 4 |
Economic | 20.3 | 5 | |
Demographic | 19.0 | 1 | |
Total | 10 | ||
A2 | Physical/natural | 50.7 | 4 |
Economic | 17.4 | 4 | |
Technological | 17.0 | 2 | |
Total | 10 | ||
A3 | Physical/natural | 53.3 | 4 |
Economic | 19.9 | 5 | |
Sociocultural | 18.0 | 1 | |
Total | 10 |
LULC | Area (km2) | Predictive Scenarios (2036) | ||
---|---|---|---|---|
Base Year (LULC2018) (Do Nothing) | B1 | B2 | B3 | |
Forest | 2097.6 | 3129.2 | 3151.8 | 3116.5 |
Silviculture | 914.0 | 304.8 | 314.8 | 338.8 |
Natural grassland | 149.0 | 624.0 | 628.3 | 622.2 |
Pasture | 886.3 | 944.0 | 930.8 | 916.1 |
Agriculture | 2416.3 | 2052.7 | 2033.8 | 2080.6 |
Mosaic | 677.7 | 135 | 130.9 | 113.4 |
Artificial Area | 50.1 | 31.4 | 32.9 | 34.1 |
Water bodies | 51.2 | 21.2 | 19.1 | 20.6 |
Total | 7242.3 | 7242.3 | 7242.3 | 7242.3 |
Predictive Scenarios | Driving Force | Normalized Importance (%) |
---|---|---|
B1 | Land use and land cover—2000 | 100.0 |
Type of soil—2004 | 43.8 | |
Road network—2018 | 30.2 | |
Type of relief—2000 | 23.6 | |
Use of agrochemicals—2017 ↑ | 20.8 | |
Technical orientation—2017 ↓ | 20.4 | |
Agricultural land price—2000 ↓ | 19.4 | |
Gross Domestic Product (GDP)—2017 ↑ | 18.6 | |
Tobacco yield—2002 ↑ | 18.3 | |
Formal employment (agriculture)—2006 ↑ | 18.1 | |
B2 | Land use and land cover—2000 | 100.0 |
Road network—2018 | 51.1 | |
Type of soil—2004 | 38.6 | |
Type of relief—2000 | 23.8 | |
Formal employment (commerce/service)—2006 ↓ | 21.4 | |
Altimetry—2000 | 20.9 | |
Agricultural land price—2000 ↓ | 19.9 | |
Swine Herd—2018 ↓ | 17.2 | |
Gross value added of agriculture and cattle-raising—2017 ↓ | 17.0 | |
Tobacco yield—2017 ↓ | 16.8 | |
B3 | Land use and land cover—2000 | 100.0 |
Road network—2018 | 49.5 | |
Type of soil—2004 | 40.3 | |
Type of relief—2000 | 26.9 | |
Altimetry—2000 | 22.6 | |
Agricultural land price—2000 ↓ | 21.8 | |
Cattle herd—2018 ↑ | 17.4 | |
Use of agrochemicals—2017 ↑ | 16.6 | |
Maize yield—2017 ↑ | 16.6 | |
Rural population—2010 ↓ | 15.4 |
Predictive Scenario | Dimension | Average Normalized Importance (%) | Nº of Driving Forces |
---|---|---|---|
B1 | Physical/natural | 49.4 | 4 |
Technological | 19.8 | 3 | |
Economic | 18.7 | 3 | |
Total | 10 | ||
B2 | Physical/natural | 46.9 | 5 |
Economic | 18.9 | 4 | |
Technological | 16.8 | 1 | |
Total | 10 | ||
B3 | Physical/natural | 47.9 | 5 |
Economic | 19.6 | 2 | |
Technological | 16.6 | 2 | |
Demographic | 15.4 | 1 | |
Total | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, J.M.d.; Morgado, P.; Costa, E.M.d.; Vianna, L.F.d.N. Predictive Scenarios of LULC Changes Supporting Public Policies: The Case of Chapecó River Ecological Corridor, Santa Catarina/Brazil. Land 2023, 12, 181. https://doi.org/10.3390/land12010181
Souza JMd, Morgado P, Costa EMd, Vianna LFdN. Predictive Scenarios of LULC Changes Supporting Public Policies: The Case of Chapecó River Ecological Corridor, Santa Catarina/Brazil. Land. 2023; 12(1):181. https://doi.org/10.3390/land12010181
Chicago/Turabian StyleSouza, Juliana Mio de, Paulo Morgado, Eduarda Marques da Costa, and Luiz Fernando de Novaes Vianna. 2023. "Predictive Scenarios of LULC Changes Supporting Public Policies: The Case of Chapecó River Ecological Corridor, Santa Catarina/Brazil" Land 12, no. 1: 181. https://doi.org/10.3390/land12010181
APA StyleSouza, J. M. d., Morgado, P., Costa, E. M. d., & Vianna, L. F. d. N. (2023). Predictive Scenarios of LULC Changes Supporting Public Policies: The Case of Chapecó River Ecological Corridor, Santa Catarina/Brazil. Land, 12(1), 181. https://doi.org/10.3390/land12010181