The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Establishment of Multifunctional Cultivated Land Evaluation Index System
- Production function
- Social function
- Ecological function
2.3.2. Indicator Standardization and Weight Calculation
- Standardization of Indicators
- Calculation of indicator and function weight
2.3.3. Assessment of Multifunctional Cultivated Land
- Calculation of evaluation value of multifunctional cultivated land
- Calculation of multifunctional coupling coordination degree of cultivated land
2.3.4. Identification of Driving Forces of the Multifunctional Coupling Coordination Degree of Cultivated Land
2.3.5. Summary
3. Results
3.1. Spatial-Temporal Evolution Characteristics of Multifunctional Cultivated Land
3.1.1. Production Function of Cultivated Land
3.1.2. Social Function of Cultivated Land
3.1.3. Ecological Function of Cultivated Land
3.2. Spatial-Temporal Evolution of Multifunctional Coupling Coordination Degree of Cultivated Land
3.3. Driving Forces behind the Multifunctional Coupling Coordination Degree of Cultivated Land
3.3.1. Single Factor Detection
3.3.2. Dual-Factor Detection
3.3.3. Influence Mechanism
4. Discussion
4.1. Policy Implications for Utilization and Management of Multifunctional Cultivated Land
4.2. Contribution to Research, Limitations, and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [PubMed]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1556. [Google Scholar]
- Gong, H.; Zhao, Z.; Chang, L.; Li, G.; Li, Y.; Li, Y. Spatiotemporal Patterns in and Key Influences on Cultivated-Land Multi-Functionality in Northeast China’s Black-Soil Region. Land 2022, 11, 1101. [Google Scholar] [CrossRef]
- Yang, H.; Li, X.B. Cultivated land and food supply in China. Land Use Policy 2000, 17, 73–88. [Google Scholar]
- Granvik, M.; Lindberg, G.; Stigzelius, K.A.; Fahlbeck, E.; Surry, Y. Prospects of multifunctional agriculture as a facilitator of sustainable rural development: Swedish experience of Pillar 2 of the Common Agricultural Policy (CAP). Nor. Geogr. Tidsskr. 2012, 66, 155–166. [Google Scholar]
- OECD. Multifunctionality: Towards an Analytical Framework; OECD Pulications: Paris, France, 2001. [Google Scholar]
- Song, X.Q.; Ouyang, Z. Connotation of multifunctional cultivated land and its implications for cultivated land protection. Prog. Geogr. 2012, 31, 859–868. [Google Scholar]
- Grafton, R.Q.; Daugbjerg, C.; Qureshi, M.E. Towards food security by 2050. Food Secur. 2015, 7, 179–183. [Google Scholar]
- Qiang, W.; Liu, A.; Cheng, S.; Kastner, T.; Xie, G. Agricultural trade and virtual land use: The case of China’s crop trade. Land Use Policy 2013, 33, 141–150. [Google Scholar]
- Siciliano, G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar]
- Jiang, G.H.; Wang, M.Z.; Qu, Y.B.; Zhou, D.Y.; Ma, W.Q. Towards cultivated land multifunction assessment in China: Applying the “influencing factors-functions-products-demands” integrated framework. Land Use Policy 2020, 99, 104982. [Google Scholar]
- Vrebos, D.; Bampa, F.; Creamer, R.E.; Gardi, C.; Ghaley, B.B.; Jones, A.; Meire, P. The impact of policy instruments on soil multifunctionality in the European Union. Sustainability 2017, 9, 407. [Google Scholar]
- Jongeneel, R.; Slangen, L.; Brouwer, F. Multifunctionality in agriculture and the contestable public domain in The Netherlands. In Sustaining Agriculture and the Rural Environment: Governance, Policy and Multifunctionality; Brouwer, F., Ed.; Edward Elgar Publishing: Cheltenham, UK, 2004; pp. 183–203. [Google Scholar]
- Aldington, T.J. Multifunctional Agriculture: A Brief Review from Developed and Developing Country Perspectives; Internal Document; FAO: Rome, Italy, 1998; Volume 2. [Google Scholar]
- Vereijken, P.H. Transition to multifunctional land use and agriculture. NJAS Wagening. J. Life Sci. 2003, 50, 171–179. [Google Scholar]
- Global Land Project (GLP). Global Land Project: Science Plan and Implementation Strategy; IGBP Secretariat: Stockholm, Sweden, 2005. [Google Scholar]
- de Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar]
- Van der Ploeg, J.D.; Laurent, C.; Blondeau, F.; Bonnafous, P. Farm diversity, classification schemes and multifunctionality. Environ. Manag. 2009, 90, 124–131. [Google Scholar]
- He, L.; Min, D.; Zhang, D. Assessment models for multifunctionality of agriculture and their applications: A case study on Qingtian County in Zhejiang Province. China Resour. Sci. 2010, 32, 1057–1064. [Google Scholar]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar]
- Sheng, J.; Chen, L.; Zhu, P. Assessment of ecological service value of rice-wheat rotation ecosystem. Chin. J. Eco Agric. 2008, 16, 1541–1545. [Google Scholar]
- Li, C.; Kong, X.; Sun, X. Cultivated land resources value system and its assessment in Beijing. Acta Geogr. Sin. 2008, 63, 321–329. [Google Scholar]
- Guo, S.; Shen, G.Q.; Chen, Z.; Yu, R. Embodied cultivated land use in China 1987–2007. Ecol. Indic. 2014, 47, 198–209. [Google Scholar]
- Han, H.; Zhang, X. Exploring environmental efficiency and total factor productivity of cultivated land use in China. Sci. Total Environ. 2020, 726, 138–434. [Google Scholar]
- Wei, X.D.; Lin, L.G.; Luo, P.P.; Wang, S.N.; Yang, J.; Guan, J.M. Analysis on the spatial-temporal pattern and driving force of multi-functional coupling and coordinated development of cultivated land. J. Agric. Eng. 2022, 38, 260–269. (In Chinese) [Google Scholar]
- Bian, Z.; Kang, M.; Liu, L.; Zhu, R.; Yang, Z. Analysis on farmland multifunction in urban fringe area of Shenyang. Chin. J. Soil Sci. 2015, 3, 533–538. [Google Scholar]
- Luo, C.; Cai, Y. The stage characteristics and spatial heterogeneity of cultivated land resource function evolution in agricultural producing areas of Hubei Province. Econ. Geogr. 2016, 36, 153–161. [Google Scholar]
- Zhang, W.B.; Zhang, Z.B.; Dong, J.H.; Zhang, H.L.; Gao, W.W.; Gong, W.M. Analysis of functional transformation and driving forces of cultivated land use from a multi-scale perspective-taking Gansu Province as an example. Geogr. Sci. 2021, 41, 900–910. (In Chinese) [Google Scholar]
- Kang, R.; Ren, Y.; Wu, H.; Zhang, S. Changes in the nutrients and fertility of black soil over 26 years in Northeast China. Sci. Agric. Sin. 2016, 49, 2113–2125. [Google Scholar]
- Yuan, H. A Study on cultivated land quality protection and agricultural sustainable development in the main grain producing areas of northeast China. Econ. Rev. 2017, 11, 106–111. [Google Scholar]
- Peng, J.; Liu, Z.C.; Liu, Y.X.; Hu, X.X.; Wang, A. Multifunctionality assessment of urban agriculture in Beijing City, China. Sci. Total Environ. 2015, 537, 343–351. [Google Scholar]
- Jiang, G.; Zhang, R.; Ma, W.; Zhou, D.; Wang, X.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar]
- Xiong, C.S.; Zhang, Y.L.; Wang, Y.J.; Luan, Q.L.; Liu, X. Multi-functional evaluation and zoning control of cultivated land in China. China Land Sci. 2021, 35, 104–114. (In Chinese) [Google Scholar]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Muller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecol. Indic. 2006, 6, 238–249. [Google Scholar]
- Chai, J.; Wang, Z.; Yang, J.; Zhang, L. Analysis for spatial-temporal changes of grain production and farmland resource: Evidence from Hubei Province, central China. Clean. Prod. 2019, 20710, 474–482. [Google Scholar] [CrossRef]
- Chen, L.; Qu, F.; Shi, X. The social value of cultivated land resources: A case in Liulin County of Shanxi Province. Resour. Sci. 2006, 28, 86–90. [Google Scholar]
- Xu, D.Y.; Pu, L.J.; Huang, S.H.; Nie, M.X.; Qie, L.; Zhu, M. Multi-functional spatial-temporal dynamic analysis of cultivated land in Jiangsu Province and research on the response to the change of cultivated land quantity. Resour. Environ. Yangtze River Basin 2022, 31, 575–587. (In Chinese) [Google Scholar]
- Klein, T.; Holzkämper, A.; Calanca, P. Adaptation options under climate change for multifunctional agriculture: A simulation study for western Switzerland. Reg. Environ. Chang. 2014, 14, 167–184. [Google Scholar] [CrossRef]
- Luuk, F.; Duarte, F.; Irmgard, E. A conceptual framework for the assessment of multiple functions of agro-ecosystems: A case study of Tras-os-Montes olive groves. Rural. Study 2009, 25, 141–155. [Google Scholar]
- Niu, S.D.; Lyu, X.; Gu, G.Z. A New Framework of Green Transition of Cultivated Land-Use for the Coordination among the Water-Land-Food-Carbon Nexus in China. Land 2022, 11, 933. [Google Scholar] [CrossRef]
- Xiang, J.W.; Liao, X.L.; Song, X.Q.; Xiong, J.H.; Ma, W.R.; Huang, J.M. Regional Convergence of Multifunctional Cultivated Land in China. Resour. Sci. 2019, 41, 1959–1971. (In Chinese) [Google Scholar]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Du, G.M.; Chun, X.; Yu, F.R.; Zhang, Y.; Zhao, Y.Q.; Guan, T.T. Spatial-temporal change analysis of paddy field distribution pattern in Northeast China. Agric. Mod. Res. 2017, 38, 728–736. (In Chinese) [Google Scholar]
- Lyu, X.; Wang, Y.N.; Niu, S.D.; Peng, W.L. Spatio-temporal Pattern and Influence Mechanism of Cultivated Land System Resilience: Case from China. Land 2022, 11, 11. [Google Scholar] [CrossRef]
- Rodríguez Sousa, A.A.; Parra-López, C.; Sayadi-Gmada, S.; Barandica, J.M.; Rescia, A.J. A multifunctional assessment of integrated and ecological farming in olive agroecosystems in southwestern Spain using the Analytic Hierarchy Process. Ecol. Econ. 2020, 173, 106658. [Google Scholar] [CrossRef]
Function | Indicator | Calculation Method | Trend | Indicator Weight (%) | Function Weight (%) |
---|---|---|---|---|---|
Production function | Cultivated land reclamation rate | Cultivated land area/total land area (%) | + | 20.1 | 46.2 |
Per capita cultivated land area | Cultivated land area/total population (hm2/person) | + | 26.5 | ||
Grain crop yield | Grain output/total sown area of grain crops (kg/hm2) | + | 20.5 | ||
Per hectare agricultural output | Gross agricultural output/cultivated land area (CNY 10,000/hm2) | + | 17.6 | ||
Per hectare mechanization level | Total power of agricultural machinery/cultivated land area (kW/hm2) | + | 15.3 | ||
Social function | Food self-sufficiency rate | Grain output × (permanent resident population × 400 kg/person)−1 (%) | + | 35.9 | 26.2 |
Agriculture contribution to GDP | Gross agricultural output/regional GDP (%) | + | 25.1 | ||
The income ratio between urban and rural residents | Rural per capita disposable income/urban per capita disposable income (%) | + | 12.7 | ||
The land-bearing capacity for the rural labor force | Number of rural agricultural employees/cultivated land area (person/hm2) | + | 26.3 | ||
Ecological function | The ecological advantage of cultivated land | Paddy field area/cultivated land area (%) | + | 33.3 | 27.6 |
Farmland eco-diversity index | is the ratio (%) between the sown area of various crops and the total area sown with farm crops | + | 38.3 | ||
Fertilizer load of cultivated land | Fertilizer application amount/cultivated land area (t/hm2) | - | 28.4 |
Influencing Factors | Indicators | Unit | Symbol |
---|---|---|---|
Cultivated land resource endowment | Slope | ° | X1 |
Altitude | m | X2 | |
Annual precipitation | mm | X3 | |
Agricultural development level | Contribution of primary industry to GDP | % | X4 |
Average salary level of agriculture, stockbreeding, forestry, and fishery | CNY | X5 | |
Rural per capita disposable income level | CNY | X6 | |
Effective irrigation rate of cultivated land | % | X7 | |
Socioeconomic factors | Fiscal expenditure related to agriculture | % | X8 |
Contribution of industry to GDP | % | X9 | |
Urbanization level | % | X10 |
Functional Grade | Functional Level | |
---|---|---|
(0.0~0.2) | 1 | Low level |
(0.2~0.4) | 2 | Relatively low level |
(0.4~0.6) | 3 | Middle level |
(0.6~0.8) | 4 | Relatively high level |
(0.8~1.0) | 5 | High level |
Coupling Coordination Degree D | Coordinated Grade | Coupling Coordination Level | 2005 | 2010 | 2015 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HLJ | JL | LN | HLJ | JL | LN | HLJ | JL | LN | HLJ | JL | LN | |||
(0.0~0.2) | 1 | Serious disorder | 4 | 2 | 4 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 1 | 3 |
(0.2~0.4) | 2 | Moderate disorder | 9 | 2 | 4 | 6 | 3 | 3 | 5 | 2 | 1 | 0 | 2 | 1 |
(0.4~0.6) | 3 | Barely coordinated | 0 | 5 | 6 | 5 | 5 | 10 | 7 | 5 | 7 | 4 | 6 | 7 |
(0.6~0.8) | 4 | Basically coordinated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 7 | 0 | 3 |
(0.8~1.0) | 5 | Well-coordinated | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2005 | 2010 | 2015 | 2020 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ranking | q Statistic | p Value | Ranking | q Statistic | p Value | Ranking | q Statistic | p Value | Ranking | q Statistic | p Value |
X1 | 0.2986 ** | 0.0166 | X1 | 0.3279 ** | 0.0114 | X6 | 0.2114 ** | 0.0216 | X7 | 0.2706 ** | 0.0165 |
X10 | 0.2265 ** | 0.0467 | X6 | 0.2215 ** | 0.0362 | X10 | 0.1809 ** | 0.0257 | X6 | 0.1859 ** | 0.0411 |
X4 | 0.1920 * | 0.0921 | X4 | 0.1782 | 0.4243 | X7 | 0.1267 ** | 0.0480 | X4 | 0.1317 ** | 0.0362 |
X8 | 0.1587 | 0.2102 | X10 | 0.1373 | 0.4056 | X1 | 0.1204 | 0.4848 | X1 | 0.0887 | 0.2969 |
X3 | 0.1363 | 0.2099 | X7 | 0.1654 | 0.5118 | X4 | 0.1175 | 0.6644 | X2 | 0.0806 | 0.6780 |
X2 | 0.1058 | 0.5346 | X8 | 0.1615 | 0.1965 | X3 | 0.0908 | 0.6252 | X8 | 0.0448 | 0.9114 |
X9 | 0.0856 | 0.4660 | X2 | 0.1212 | 0.6708 | X2 | 0.0649 | 0.8626 | X3 | 0.0371 | 0.5930 |
X6 | 0.0853 | 0.8518 | X9 | 0.0794 | 0.8596 | X9 | 0.0608 | 0.9053 | X10 | 0.0258 | 0.9198 |
X5 | 0.0790 | 0.8319 | X5 | 0.0722 | 0.8470 | X8 | 0.0407 | 0.8204 | X5 | 0.0251 | 0.9486 |
X7 | 0.0614 | 0.7363 | X3 | 0.0329 | 0.9882 | X5 | 0.0053 | 0.7302 | X9 | 0.0128 | 0.9430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Zhu, Y.; Zhao, R.; Sui, H. The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces. Land 2022, 11, 1476. https://doi.org/10.3390/land11091476
Gao J, Zhu Y, Zhao R, Sui H. The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces. Land. 2022; 11(9):1476. https://doi.org/10.3390/land11091476
Chicago/Turabian StyleGao, Jia, Yaohui Zhu, Rongrong Zhao, and Hongjun Sui. 2022. "The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces" Land 11, no. 9: 1476. https://doi.org/10.3390/land11091476