Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Processing and Processing of Satellite Images to Obtain LULCC
2.2. Landscape Fragmentation with FRAGSTAT Analysis
- (a)
- the total patch areas measured in ha,
- (b)
- the patch number,
- (c)
- medium proximity index, which is the difference between the size and the proximity of all patches within 200 m (about 656.17 ft),
- (d)
- the bigger patch area, which is the percentage of landscape covered by the biggest patch,
- (e)
- the patch density, which is the patch number observed in 100 ha,
- (f)
- the aggregation index, which is the percentage of adjacency between pixels of distinct types of land cover,
- (g)
- the adjacency index, which corresponds to the edge length between the adult native forest and the other types of land cover measured in km.
2.3. Description of the Study Area
3. Results
3.1. Accuracy Assessment of LULCC Classifications
3.2. LULCC Analysis for 1976–2001 and 2001–2016 in Arauco Province
3.3. Changes into Spatial Patterns of Native Forests in Arauco Province: Fragmentation Analysis of Native Forests Using Landscape Metrics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | For the most recent satellite image (2016), the training points were taken at fieldwork. For the oldest satellite images (1976–2001), aerial photographs and native forest surveys made by CONAF (1999) were used. |
References
- Davidson, C. Issues in Measuring Landscape Fragmentation. Wildl. Soc. Bull. 1998, 26, 32–37. [Google Scholar]
- Opdam, P.; Apeldoorn, R.V.; Schotman, A.; Kalkhoven, J. Population responses to landscape fragmentation. In Landscape Ecology of a Stressed Environment; Springer: Dordrecht, The Netherlands, 1993; pp. 147–171. [Google Scholar]
- Nagendra, H.; Munroe, D.K.; Southworth, J. From pattern to process: Landscape fragmentation and the analysis of land use/land cover change. Agric. Ecosyst. Environ. 2004, 101, 111–115. [Google Scholar] [CrossRef]
- Entwisle, B.; Walsh, S.J.; Rindfuss, R.R.; Chamratrithirong, A. Land-use/land-cover and population dynamics, Nang Rong, Thailand. In People and Pixels: Linking Remote Sensing and Social Science; Liverman, D., Moran, E.F., Rindfuss, R.R., Stern, P.C., Eds.; National Academy Press: Washington, DC, USA, 1998; pp. 121–144. [Google Scholar]
- McIntyre, S.; Hobbs, R. A framework for conceptualizing human effects on landscapes and their relevance to management and research models. Conserv. Biol. 1999, 13, 1282–1292. [Google Scholar] [CrossRef]
- Riitters, K.H.; Oneill, R.V.; Hunsaker, C.T.; Wickman, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995, 10, 23–39. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Jaeger, J.A. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- Renetzeder, C.; Schindlera, S.; Peterseila, J.; Prinza, M.A.; Mücher, S.; Wrbka, T. Can we measure ecological sustainability? Landscape pattern as an indicator for naturalness and land use intensity at regional, national, and European level. Ecol. Indic. 2010, 10, 39–48. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Veldkampa, A.; Lambin, E.F. Predicting land-use change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Aguayo, M.; Pauchard, A.; Azócar, G.; Parra, O. Cambio del uso del suelo en el centro sur de Chile a fines del siglo XX: Entendiendo la dinámica espacial y temporal del paisaje. Rev. Chil. De Hist. Nat. 2009, 82, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Hajek, E. Patterns for landscape modification in relation to agricultural practice in central Chile. Environ. Conserv. 1979, 6, 265–271. [Google Scholar] [CrossRef]
- Centro De Análisis De Políticas Públicas Universidad De Chile. Informe País. Estado del Medio Ambiente en Chile. Comparación 1999–2015; Gligo, V.N., Ed.; MAVAL Impresores: Santiago de Chile, Chile, 2016; Available online: http://www.uchile.cl/documentos/informe-pais-estado-del-medio-ambiente-en-chile-comparacion-1999-2015_129586_0_1412.pdf (accessed on 23 September 2022).
- Nahuelhual, L.; Carmona, A.; Lara, A.; Echeverría, C.; González, M.E. Land-cover change to forest plantations: Proximate causes and implications for the landscape in south-central Chile. Landsc. Urban 2012, 107, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Hojman, D.E. Change in the Chilean Countryside: From Pinochet to Aylwin and beyond; Springer: New York, NY, USA, 1993. [Google Scholar]
- Echeverría, C.; Coomes, D.; Salas, J.; Rey-Benayas, J.M.; Lara, A.; Newton, A. Rapid deforestation, and fragmentation of Chilean Temperate Forests. Biol. Conserv. 2006, 4, 481–494. [Google Scholar] [CrossRef]
- Becerra, P.I.; Simonetti, J.A. Patterns of exotic species richness of different taxonomic groups in a fragmented landscape of Central Chile. Bosque 2013, 34, 11e12. [Google Scholar] [CrossRef] [Green Version]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Pincheira, F.; Lara, A. Different times, same Story: Native Forest loss and landscape homogenization in three physiographical areas of south-central of Chile. Appl. Geogr. 2015, 60, 20e28. [Google Scholar] [CrossRef]
- Muñoz-Pedreros, A.; Larraín, A. Impacto de la actividad silvoagropecuaria sobre la calidad del paisaje en un transecto del sur de Chile. Rev. Chil. De Hist. Nat. 2002, 75, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Altamirano, A.; Lara, A. Deforestation in temperate ecosystems of pre- Andean range of south-central Chile. Bosque 2010, 31, 53e64. [Google Scholar]
- Miranda, A.; Altamirano, A.; Cayuela, L.; Lara, A.; González, M. Native Forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Reg. Environ. Change 2017, 17, 285–297. [Google Scholar] [CrossRef]
- McFadden, T.N.; Dirzo, R. Opening the silvicultural toolbox: A new framework for conserving biodiversity in Chilean timber plantations. For. Ecol. Manag. 2018, 425, 75–84. [Google Scholar] [CrossRef]
- Toro, J.; Gessel, S. Radiata pine plantations in Chile. New For. 1999, 18, 33. [Google Scholar] [CrossRef]
- Wright, J.A.; Di Nicola, A.; Gaitan, E. Latin American Forest Plantations: Opportunities for Carbon Sequestration, Economic Development, and Financial Returns. J. For. 2000, 98, 20–23. [Google Scholar] [CrossRef]
- Lara, A.; Veblen, T. Forest plantations in Chile: A successful model? In Afforestation: Policies, Planning and Progress; Mather, A.S., Ed.; Belhaven Press: London, UK, 1993. [Google Scholar]
- Kjær, E.D.; Lobo, A.; Myking, T. The role of exotic tree species in Nordic forestry. Scand. J. For. Res. 2014, 29, 323–332. [Google Scholar] [CrossRef]
- Clapp, R.A. The unnatural history of the Monterey pine. Geogr. Rev. 1995, 85, 1–19. [Google Scholar] [CrossRef]
- Harvey, D. Spaces of Neoliberalization: Towards a Theory of Uneven Geographical Development; Franz Steiner Verlag: Berlin, Germany, 2005. [Google Scholar]
- Seguel, A. Modelo Forestal Chileno y Movimiento Autónomo Mapuche: Las Posiciones Irreconciliables de un Conflicto Territorial. 2005. Available online: http://www.ibcperu.org/doc/isis/5645.pdf (accessed on 23 September 2022).
- Schmidt, C.; Rose, J. Environmental and cultural changes under Chilean neoliberalism: An ethnography of forestry and the Mapuche in Valle Elicura. Local Environ. 2017, 22, 1019–1034. [Google Scholar] [CrossRef]
- Montalba-Navarro, R.; Carrasco, N.; Araya, J. Contexto Económico y Social de las Plantaciones Forestales en Chile: El Caso de la Comuna de Lumaco, Región de la Araucanía; Movimiento Mundial por los Bosques: Montevideo, Uruguay, 2005; Available online: https://wrm.org.uy/es/files/2013/03/Contexto_economico_y_social_de_las_plantaciones_forestales_en_Chile_ch.pdf (accessed on 23 September 2022).
- Reyes, R.; Nelson, H. A tale of two forests: Why forests and forest conflicts are both growing in Chile. Int. For. Rev. 2014. Available online: http://www.bioone.org/doi/full/10.1505/146554814813484121 (accessed on 23 September 2022). [CrossRef] [Green Version]
- Little, C.; Lara, A.; McPhee, J.; Urrutia, R. Revealing the impact of forest exotic plantations on water yield in large scale watersheds in south-Central Chile. J. Hydrol. 2009, 374, 162–170. [Google Scholar] [CrossRef]
- Huber, A.; Iroumé, A.; Bathurst, J. Effect of Pinus radiata plantations on water balance in Chile. Hydrol. Processes 2008, 22, 142–148. [Google Scholar] [CrossRef]
- Cid, B. Peasant economies, forestry industry and fires: Socio-natural instabilities and agriculture as means of resistance. Ambiente Soc. 2015, XVII, 93–114. [Google Scholar]
- Ubeda, X.; Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Change 2016, 146, 152–161. [Google Scholar] [CrossRef]
- Chuvieco, E. Teledetección Ambiental. La observación de la Tierra Desde el Espacio; Ariel: Barcelona, Spain, 2002. [Google Scholar]
- Chávez, P. Image-based atmospheric corrections. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Vicente-Serrano, S.M.; Pérez-Cabello, F.; Lasanta, T. Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens. Environ. 2008, 112, 3916–3934. [Google Scholar] [CrossRef]
- Matricardi, E.A.T.; Skole, D.L.; Pedlowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2010, 114, 1117–1129. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B. Revised Landsat-5 Radiometric Calibration Procedures and Post calibration Dynamic Ranges. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2.674–2.677. [Google Scholar] [CrossRef] [Green Version]
- Vagen, T.-G. Remote sensing of complex land use change trajectories-a case study from the highlands of Madagascar. Agric. Ecosyst. Environ. 2006, 115, 219–228. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guidon, B.; Goodenough, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 691–700. [Google Scholar] [CrossRef]
- Reese, H.; Olsson, H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter. Remote Sens. Environ. 2011, 115, 1387–1400. [Google Scholar] [CrossRef] [Green Version]
- Clark, L. IDRISI Andes. Guide to GIS and Image Processing; Clark University: New York, NY, USA, 2006; p. 327. [Google Scholar]
- Segura, R.; Trincado, G. Cartografía digital de la Reserva Nacional Valdivia a partir de imágenes satelitales Landsat TM. Rev. Bosque 2003, 24, 43–52. [Google Scholar] [CrossRef]
- CONAF, CONAMA, BIRF, UA CHILE, PUC Chile, UC Temuco. Catastro y Evaluación de los Recursos Vegetacionales Nativos de Chile; CONAF: Santiago, Chile, 1999. [Google Scholar]
- FAO. Forest Resources Assessment 1990; Global Synthesis: Rome, Italy, 1995. [Google Scholar]
- Mcgarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. Software FRAGSTATS Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2002; Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed on 2 November 2022).
- Balej, M. Landscape metrics as indicators of the structural landscape changes—Two case studies from the Czech Republic after 1948. J. Land Use Sci. 2012, 7, 443–458. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera, M.J.; Meseguer-Ruiz, O. Climatic regionalization of continental Chile. J. Maps 2016, 17, 114–124. [Google Scholar]
- Lara, A.; Donoso, C.; Donoso, P.; Núñez, P.; Cavieres, A. Normas de manejo para raleo de renovales del tipo forestal roble-raulí-coigüe. In Silvicultura de los Bosques Nativos de Chile; Donoso, C., Lara, A., Eds.; Editorial Universitaria: Santiago, Chile, 1998; pp. 129–144. [Google Scholar]
- Echeverría, C.; Lara, A. Growth patterns of secondary Nothofagus obliqua -N. alpina forests in southern Chile. For. Ecol. Manag. 2004, 195, 29–43. [Google Scholar] [CrossRef]
- Gezan, S.A.; Ortega, A.; Andenmatten, E. Diagramas de manejo de densidad para renovales de roble, raulí y coigüe en Chile. Bosque 2007, 28, 97–105. [Google Scholar] [CrossRef]
- Morales, F. Los bosques nativos chilenos y la "política forestal" en la primera mitad del siglo XX. Cuadernos De Historia 2007, 26, 135–167, Disponible en. Available online: https://cuadernosdehistoria.uchile.cl/index.php/CDH/article/view/47150 (accessed on 23 September 2022).
- Bustamante, R.O.; Simonetti, J.A. Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol. Invasions 2005, 7, 243–249. [Google Scholar] [CrossRef]
- Smith-Ramírez, C.; Squeo, F.A. (Eds.) Biodiversidad y Ecología de los Bosques Costeros de Chile; Editorial Universidad de Los Lagos: Puerto Montt, Chile, 2019. [Google Scholar]
- Armesto, J.; Villagrán, C.; Donoso, C. Desde la era glacial a la industrial: La historia del bosque templado chileno. Ambiente Y Desarro. 1994, 66–72. Available online: https://www.pichimahuida.info/publications_files/La%20historia%20del%20Bq%20templado%20de%20Chile_Armesto_1994.pdf (accessed on 2 November 2022).
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Heilmayr, R.; Echeverría, C.; Fuentes, R.; Lambin, E.F. A plantation-dominated forest transition in Chile. Appl. Geogr. 2016, 75, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Heilmayr, R.; Lambin, E.F. Impacts of nonstate, market-driven governance on Chilean forests. Proc. Natl. Acad. Sci. USA 2016, 113, 2910e2915. [Google Scholar] [CrossRef] [Green Version]
- Frêne Conget, C.; Núñez Ávila, M. Hacia un nuevo Modelo Forestal en Chile. Rev. Bosque Nativ. 2010, 47, 25–35. Available online: http://www.sendadarwin.cl/espanol/wp-content/uploads/2011/06/frene-y-nunez1.pdf (accessed on 23 September 2022).
- Niklitschek, M.E. Trade liberalization and land use Changes: Explaining the expansion of afforested land in Chile. For. Sci. 2007, 53, 385–394. [Google Scholar] [CrossRef]
- Instituto Nacional Forestal (INFOR). Informe Forestal 2018. Available online: http://wef.infor.cl (accessed on 23 September 2022).
- Simberloff, D.; Nuñez, M.A.; Ledgard, N.J.; Pauchard, A.; Richardson, D.M.; Sarasola, M.; Ziller, S.R. Spread and impact of introduced conifers in South America: Lessons from other southern hemisphere regions. Austral Ecol. 2010, 35, 489–504. [Google Scholar] [CrossRef]
- Licata, J.A.; Gyenge, J.E.; Fernández, M.E.; Schlichter, T.M.; Bond, B.J. Increased water uses by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation. For. Ecol. Manag. 2008, 255, 753–764. [Google Scholar] [CrossRef]
- Bucała-Hrabia, A. Long-term impact of socio-economic changes on agricultural land use in the Polish Carpathians. Land Use Policy 2017, 64, 391–404. [Google Scholar] [CrossRef]
- Lira, P.K.; Tambosi, L.R.; Ewers, R.M.; Metzger, J.P. Land-use and land-cover change in Atlantic Forest landscapes. For. Ecol. Manag. 2012, 278, 80–89. [Google Scholar] [CrossRef]
- Instituto Nacional de Derechos Humanos (INDH). Mapa de Conflictos Socioambientales en Chile; INDH: Santiago, Chile, 2021; Available online: https://mapaconflictos.indh.cl/#/ (accessed on 23 September 2022).
- Uribe, S.V.; García, N.; Estades, C.F. Effect of Land Use History on Biodiversity of Pine Plantations. Front. Ecol. Evol. 2021, 9, 609627. [Google Scholar] [CrossRef]
Year | Number of Validation Points | Source and Methodology for Assessment |
---|---|---|
1976 | 200 | Digitized panchromatic aerial photographs. |
2001 | 300 | Native forest cadaster developed by CONAF [50], which corresponds to maps in vector format with a scale of 1:50,000. |
2016 | 350 | Fieldwork and Google Earth(c) maps for the areas of difficult access. |
Period | Land Cover/Land Use | Net Change Detail | Overall Trend |
---|---|---|---|
1976–2001 | Native forest | Substituted by exotic plantations (77,000 ha) | 🔽 |
Degraded into grassland or shrublands (14,000 ha) | 🔽 | ||
Habilitated into agricultural lands (10,000 ha) | 🔽 | ||
Exotic plantations (pines and eucalyptus) | Added surface from native forest (77,000 ha), agricultural lands (37,000 ha), shrublands (33,000 ha), and bare soil (4000 ha) | 🔼 | |
Agricultural lands | Loss of surface due to forestry (38,000 ha) and abandonment which convert them into shrublands (19,000 ha) | 🔽 | |
Added surface from native forest (10,000 ha) | 🔼 | ||
Urban areas | Added surface in the populated areas and roads, accumulating surface from shrubland (577 ha), agricultural lands (477 ha), bare soil (127 ha) and urbanization (85 ha) | 🔼 | |
2001–2016 | Native forest | Substitution of 58,000 ha for exotic plantations | 🔽 |
Degradation of 11,000 ha of native forest into shrublands | 🔽 | ||
Converted into agricultural lands (8000 ha) | 🔽 | ||
Exotic plantations (pines and eucalyptus) | Added 59,000 ha converted from the native forest, 27,000 ha from shrublands, 22,000 ha from agricultural lands, and 720 ha from urban areas | 🔼 | |
Agricultural lands | Habilitated surface from shrublands (11,000 ha) and native forests (8000 ha) | 🔼 | |
Converted into exotic plantations (22,000 ha) and urban areas (500 ha) | 🔽 | ||
Urban areas | Expanded its surface with housing development over shrublands (1146 ha), agricultural lands (466 ha), bare soil (518 ha), and wetlands (21 ha) | 🔼 |
Patch Characteristics | 1976 | 2001 | 2016 | Overall Trend |
---|---|---|---|---|
Structure | Typical structure of inverted J, which means that a dominance of small patches of > 1 ha. existed | Typical structure of an inverted J. The increase of small patches in the period suggests the existence of native forest fragmentation processes. | Typical structure of an inverted J. The decrease of small patches in the period suggests the existence of native forest deforestation. processes. | 🔽 |
Number of patches between 1–100 ha | 7500 ha | 8500 ha | 6500 ha | 🔽 |
Number of patches between 100–1000 ha | 0 | 5 ha | 4 ha | 🔽 |
Number of patches between 5000–10,000 ha | 3 ha | 1 ha | 0 | 🔽 |
Number of patches over 10,000 | 3 ha | 0 | 0 | 🔽 |
LULCC | 1976 | 2001 | 2016 | Overall Trend |
---|---|---|---|---|
Bare soil | 91.3% | 69.6% | 60.9% | 🔽 |
Shrubland | 67.9% | 56.4% | 48.2% | 🔽 |
Agricultural lands | 83.2% | 72.8% | 64.5% | 🔽 |
Native forest | 76.5% | 73.0% | 68.0% | 🔽 |
Urban areas | 77.4% | 82.4% | 83.8% | 🔼 |
Exotic plantations | 77.7% | 81.3% | 90.3% | 🔼 |
Water bodies | 95.7% | 94.3% | 95.0% | = |
Wetlands | 93.6% | 81.3% | 59.3% | 🔽 |
LULCC | 1976 | 2001 | 2016 | Overall Trend |
---|---|---|---|---|
Exotic plantations | 578.9 | 1209.5 | 350.5 | 🔼 |
Shrubland | 966.5 | 277.6 | 150.5 | 🔽 |
Agricultural lands | 509.7 | 266.3 | 44.4 | 🔽 |
Urban areas | 0.1 | 0.2 | 0.0 | = |
Bare soil | 10.4 | 3.2 | 0.6 | 🔽 |
Wetlands | 0.2 | 0.9 | 0.0 | 🔽 |
Water bodies | 5.8 | 3.7 | 0.0 | 🔽 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaque Castillo, E.; Ojeda, C.G.; Fuentes Robles, R. Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016). Land 2022, 11, 1992. https://doi.org/10.3390/land11111992
Jaque Castillo E, Ojeda CG, Fuentes Robles R. Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016). Land. 2022; 11(11):1992. https://doi.org/10.3390/land11111992
Chicago/Turabian StyleJaque Castillo, Edilia, Carolina G. Ojeda, and Rodrigo Fuentes Robles. 2022. "Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016)" Land 11, no. 11: 1992. https://doi.org/10.3390/land11111992
APA StyleJaque Castillo, E., Ojeda, C. G., & Fuentes Robles, R. (2022). Landscape Fragmentation at Arauco Province in the Chilean Forestry Model Context (1976–2016). Land, 11(11), 1992. https://doi.org/10.3390/land11111992