Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface
Abstract
:1. Introduction
2. Materials and Methods
- A characterisation of the strategies implemented by the two organisations and a description of the different types of modelling tools, which is used to explore the influence of these strategies and the potential use and utility embedded in the structure of the model (Section 3);
- Systematic observation and analysis of the interactions and perceptions of the different producers and users of modelling tools, which allows us to form tentative linkages (Section 4) and;
- A characterisation of the different model uses (ranging from direct to indirect), which is shown to inform their utility (and vice versa) (Section 5).
2.1. Document Analysis
2.2. Semi-Structured Interviews and Observation of Engagement
3. Retracing the History of (Co-) Production in France and Australia
3.1. The PIREN-Seine, France
3.2. PIREN-Seine Models: From Aggregation to Integration
3.2.1. ProSe
3.2.2. Seneque
3.2.3. MODCOU
3.2.4. STICS
3.3. The CRC for Water Sensitive Cities, Australia
3.4. Water Sensitive City (WSC) Models: New Tools for New Strategies
3.4.1. MUSIC
3.4.2. Water Sensitive Cities (WSC) Toolkit
3.4.3. DAnCE4Water
4. Influence of Organisational Configurations and Context-Specific Drivers
4.1. Objective and Expertise
4.2. Knowledge and Tools
“Tools are available if [partners] want to use them as is but they don’t have the human resources and they don’t finance the interfacing either…We think more in terms of services, where the user defines what they want to do or what they want to evaluate and we [researchers] will perform the simulations and deliver the results”.(PIREN researcher, 29 June 2017)
4.3. Support Structures
5. Moving Beyond the ‘Usability Approach’
5.1. Use vs. Utility
5.2. User Involvement
- Direct++, which indicates total mastery of the model;
- Direct+, which refers to independent model use without being able to change the model itself;
- Direct, which refers to a good understanding of what is being modelled while retaining limited involvement in the modelling process; to
- Non-Direct, which refers to complete detachment from modelling activities.
5.3. Integration and Application of Concepts
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. Interview Question Guide
Background/History |
What is your involvement in the PIREN-Seine/CRC for Water Sensitive Cities? How did you get involved? How long have you been involved? |
How did the program get started? (Ex. Demand from researchers, industry or government?) |
What is your background/training/experience? |
How would you describe the relationship between researchers and partners in the program? |
Do you think science should play a role in influencing policy? |
How is the program funded? Who finances it? How much funding does the program have in total? How much does each partner contribute? What are the financial obligations from both sides? |
In general, do you think there’s a large gap between research and policy? How does the program help to overcome this? What could be improved? |
Models: Development, Evolution, Use |
Were you involved in the development of any modelling tools? Which ones? How were you involved? (Ex. did you develop the code, a module, provide feedback, etc.) |
Who was involved in the development? (Ex. research teams, universities, institutions, partners, etc.) How were the different actors involved? (Ex. funding, feedback, research, etc.) |
What was the reason/need for developing this model? |
Were there other models that existed at the time that could have done the same thing? If so, why develop a new model instead of using the existing one? |
What were the main challenges in developing this model? |
How has the model evolved? (Ex. different modules, more functionality, etc.) |
What are the advantages/limits of the model? |
Who uses the model? Which actors? (Ex. Specific researchers, partners) |
How do you use the model? What does the model allow you to do, that you could not do (or not as easily do) without? Do you run the model yourself or do you use the results? |
What are some of the challenges in using this model? Would you say it is easy to use for someone without training/expertise in modelling? |
Would you prefer to be able to use the model yourself or just use the results? |
Is the model used outside of the context of this program? |
Do the outputs of the model meet the needs/demands of the user? If not, what could be improved? |
Would you say it’s more of a research model or an operational model? What do you consider to be a ‘research’ or ‘operational’ model? |
What type of user is the model designed for? |
What type of use is the model designed for? |
Can you think of any models that were developed within the context of the program but were not used or forgotten over time? |
Would you say there’s a big industry demand for modelling tools? What types of tools are they looking for? (Ex. deterministic models, planning and visualisation tools, etc.) |
Trust/Uncertainty |
What do you need in order to ‘trust’ a model? |
How is uncertainty taken into account in the modelling process/decision-making process? |
Do partners ask for specific information on uncertainty? |
What is considered to be an ‘acceptable’ level of uncertainty and how is this determined? |
Can you think of a time where modelling results or the model itself were put into question? |
Does the lack of available/reliable data pose a problem for you in trusting the model? |
Would you say there is generally a lot of trust in modelling? |
Would you prefer to have a model with a high level of associated uncertainty or to not have a model at all? |
Scenarios |
What simulations/scenarios were made with this model? |
Who is involved in the construction of a scenario? |
How do you determine which scenarios to test? Out of an infinite number of possible future scenarios, how do you decide on the plausible scenarios to test? |
Role of Modelling in Decision-Making |
When are models used/their results taken into account in the decision-making process? |
Besides modelling, what other factors influence the final decision? |
Do you use this model more for daily management, or long-term planning? |
Is it required by the regulating authority to use this model? |
Can you give me specific examples of when the model (or its results) was used to make a decision? |
Do you think that the knowledge/tools produced by this program have a big influence on policy in the country? |
References
- Liu, Y.; Gupta, H.; Springer, E.; Wagener, T. Linking science with environmental decision making: Experiences from an integrated modeling approach to supporting sustainable water resources management. Environ. Model. Softw. 2008, 23, 846–858. [Google Scholar] [CrossRef]
- McNie, E.C. Reconciling the supply of scientific information with user demands: An analysis of the problem and review of the literature. Environ. Sci. Policy 2007, 10, 17–38. [Google Scholar] [CrossRef]
- Haas, P. When Does Power Listen to Truth? A Constructivist Approach to the Policy Process. Available online: http://www.ingentaconnect.com/content/routledg/rjpp/2004/00000011/00000004/art00001 (accessed on 30 October 2017).
- Cash, D.; Clark, W.C. From Science to Policy: Assessing the Assessment Process. John F. Kennedy School of Government Faculty Research Working Papers Series 2001. [Google Scholar] [CrossRef]
- Cash, D.; Clark, W.C.; Alcock, F.; Dickson, N.; Eckley, N.; Jäger, J. Salience, Credibility, Legitimacy and Boundaries: Linking Research, Assessment and Decision Making. SSRN Electron. J. 2003. [Google Scholar] [CrossRef]
- Guston, D. Boundary Organizations in Environmental Policy and Science: An Introduction. Sci. Technol. Hum. Values 2001, 26, 399–408. [Google Scholar] [CrossRef]
- Sarkki, S.; Niemela, J.; Tinch, R.; van den Hove, S.; Watt, A.; Young, J. Balancing credibility, relevance and legitimacy: A critical assessment of trade-offs in science-policy interfaces. Sci. Public Policy 2014, 41, 194–206. [Google Scholar] [CrossRef]
- White, D.D.; Wutich, A.; Larson, K.L.; Gober, P.; Lant, T.; Senneville, C. Credibility, salience and legitimacy of boundary objects: Water managers’ assessment of a simulation model in an immersive decision theater. Sci. Public Policy 2010, 37, 219–232. [Google Scholar] [CrossRef]
- Lemos, M.C.; Kirchhoff, C.; Ramprasad, V. Narrowing the Climate Information Usability Gap. Nat. Clim. Chang. 2012, 2, 789–794. [Google Scholar] [CrossRef]
- Nutley, S.M.; Walter, I.; Davies, H.T.O. Using Evidence: How Research Can Inform Public Services; Policy Press: Bristol, England, 2007; ISBN 978-1-86134-664-3. [Google Scholar]
- van den Hove, S. A rationale for science–policy interfaces. Futures 2007, 39, 807–826. [Google Scholar] [CrossRef]
- Young, J.C.; Waylen, K.A.; Sarkki, S.; Albon, S.; Bainbridge, I.; Balian, E.; Davidson, J.; Edwards, D.; Fairley, R.; Margerison, C.; et al. Improving the science-policy dialogue to meet the challenges of biodiversity conservation: having conversations rather than talking at one-another. Biodivers. Conserv. 2014, 23, 387–404. [Google Scholar] [CrossRef] [Green Version]
- Jasanoff, S.S. Contested Boundaries in Policy-Relevant Science. Soc. Stud. Sci. 1987, 17, 195–230. [Google Scholar] [CrossRef]
- Gieryn, T.F. Boundaries of Science; Springer: Berlin, Germany, 1995; pp. 293–332. [Google Scholar] [CrossRef]
- Jasanoff, S. Procedural choices in regulatory science. Technol. Soc. 1995, 17, 279–293. [Google Scholar] [CrossRef]
- Star, S.L.; Griesemer, J.R. Institutional Ecology, “Translations” and Boundary Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–39. Soc. Stud. Sci. 1989, 19, 387–420. [Google Scholar] [CrossRef]
- Leigh Star, S. This is Not a Boundary Object: Reflections on the Origin of a Concept. Sci. Technol. Hum. Values 2010, 35, 601–617. [Google Scholar] [CrossRef]
- Argent, R.M.; Perraud, J.-M.; Rahman, J.M.; Grayson, R.B.; Podger, G.M. A new approach to water quality modelling and environmental decision support systems. Environ. Model. Softw. 2009, 24, 809–818. [Google Scholar] [CrossRef]
- Dictionary by Merriam-Webster: America’s Most-Trusted Online Dictionary. Available online: https://www.merriam-webster.com/ (accessed on 30 October 2017).
- Sarewitz, D.; Pielke, R.A. The neglected heart of science policy: Reconciling supply of and demand for science. Environ. Sci. Policy 2007, 10, 5–16. [Google Scholar] [CrossRef]
- Jacobs, K. Connecting Science, Policy and Decision-making: A Handbook for Researchers and Science Agencies; National Oceanic and Atmospheric Administration, Office of Global Programs: Silver Spring, MD, USA, 2002. [Google Scholar]
- Xu, Y.-P.; Booij, M.J.; Mynett, A.E. An appropriateness framework for the Dutch Meuse decision support system. Environ. Model. Softw. 2007, 22, 1667–1678. [Google Scholar] [CrossRef]
- Castelletti, A.; Soncini-Sessa, R. A procedural approach to strengthening integration and participation in water resource planning. Environ. Model. Softw. 2006, 21, 1455–1470. [Google Scholar] [CrossRef]
- Brown Gaddis, E.J.; Vladich, H.; Voinov, A. Participatory modeling and the dilemma of diffuse nitrogen management in a residential watershed. Environ. Model. Softw. 2007, 22, 619–629. [Google Scholar] [CrossRef]
- Dilling, L.; Lemos, M.C. Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Chang. 2011, 21, 680–689. [Google Scholar] [CrossRef]
- Jacobs, K.; Garfin, G.; Lenart, M. More than just Talk: Connecting science and decision making. Environ. Sci. Policy Sustain. Dev. 2005, 47, 6–21. [Google Scholar] [CrossRef]
- Weichselgartner, J.; Kasperson, R. Barriers in the science-policy-practice interface: Toward a knowledge-action-system in global environmental change research. Glob. Environ. Chang. 2010, 20, 266–277. [Google Scholar] [CrossRef]
- Holmes, J.; Clark, R. Enhancing the use of science in environmental policy-making and regulation. Environ. Sci. Policy 2008, 11, 702–711. [Google Scholar] [CrossRef]
- Callahan, B.; Miles, E.; Fluharty, D. Policy implications of climate forecasts for water resources management in the Pacific Northwest. Policy Sci. 1999, 32, 269–293. [Google Scholar] [CrossRef]
- Buizer, J.; Jacobs, K.; Cash, D. Making short-term climate forecasts useful: Linking science and action. Proc. Natl. Acad. Sci. USA 2016, 113, 4597–4602. [Google Scholar] [CrossRef] [PubMed]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Jäger, J.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef] [PubMed]
- Boezeman, D.; Vink, M.; Leroy, P. The Dutch Delta Committee as a Boundary Organization. Environ. Sci. Policy 2013, 27, 162–171. [Google Scholar] [CrossRef]
- Glaser, B.G.; Strauss, A.L.; Strutzel, E. The Discovery of Grounded Theory; Strategies for Qualitative Research. Nurs. Res. 1968, 17, 364. [Google Scholar] [CrossRef]
- Glaser, B.G.; Holton, J. Remodeling Grounded Theory. Forum Qual. Sozialforschung 2004, 5. [Google Scholar] [CrossRef]
- Corbin, J.; Strauss, A. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Billen, G. Le PIREN-Seine: Un Programme De Recherche Né Du Dialogue Entre Scientifiques Et Gestionnaires; CNRS Éditions; La Revue pour l’histoire du CNRS: Paris, France, 2001. [Google Scholar] [CrossRef]
- Conseil Scientifique du Comité de Bassin Seine-Normandie. Evaluation du Programme de Recherche PIREN-Seine; Agence de l’Eau Seine-Normandie: Nanterre, France, 2008. [Google Scholar]
- Wong, T.H.F.; Allen, R.; Brown, R.; Deletic, A.; Gangadharan, L.; Gernjak, W.; Jakob, C.; Johnstone, P.; Reeder, M.; Tapper, N.; Vietz, G.; Walsh, C. Blueprint 2013—Stormwater Management in a Water Sensitive City; Cooperative Research Centre for Water Sensitive Cities: Melbourne, Australia, 2013; ISBN 978-1-921912-01-6. [Google Scholar]
- de Haan, F.J.; Ferguson, B.C.; Adamowicz, R.C.; Johnstone, P.; Brown, R.R.; Wong, T.H.F. The needs of society: A new understanding of transitions, sustainability and liveability. Technol. Forecast. Soc. Chang. 2014, 85, 121–132. [Google Scholar] [CrossRef]
- Low, K.G.; Grant, S.B.; Hamilton, A.J.; Gan, K.; Saphores, J.-D.; Arora, M.; Feldman, D.L. Fighting drought with innovation: Melbourne’s response to the Millennium Drought in Southeast Australia: Fighting drought with innovation. Wiley Interdiscip. Rev. Water 2015, 2, 315–328. [Google Scholar] [CrossRef]
- Grant, S.B.; Fletcher, T.D.; Feldman, D.; Saphores, J.-D.; Cook, P.L.M.; Stewardson, M.; Low, K.; Burry, K.; Hamilton, A.J. Adapting Urban Water Systems to a Changing Climate: Lessons from the Millennium Drought in Southeast Australia. Environ. Sci. Technol. 2013, 47, 10727–10734. [Google Scholar] [CrossRef] [PubMed]
- Heberger, M. Australia’s millennium drought: Impacts and responses. In The World’s Water; Island Press: Washington, DC, USA, 2012; pp. 97–125. ISBN 978-1-61091-048-4. [Google Scholar]
- Brown, R.R.; Keath, N.; Wong, T.H.F. Urban water management in cities: Historical, current and future regimes. Water Sci. Technol. 2009, 59, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.C.; Brown, R.R.; Frantzeskaki, N.; de Haan, F.J.; Deletic, A. The enabling institutional context for integrated water management: Lessons from Melbourne. Water Res. 2013, 47, 7300–7314. [Google Scholar] [CrossRef] [PubMed]
- Qu’est-ce Que le PIREN Seine? Programme Interdisciplinaire de Recherche sur l’Environnement de la Seine. Available online: http://www.metis.upmc.fr/piren/?q=presentation_PIREN-Seine (accessed on 6 March 2017).
- Loi n° 92–3 du 3 Janvier 1992 sur l’eau; Assemblée Nationale: Paris, France.
- Le SDAGE 2010–2015 du Bassin de la Seine et des Cours d’Eau Côtiers Normands; Agence de l’Eau Seine-Normandie: Nanterre, France, 2010.
- European Union. Water Framework Directive; European Commission: Brussels, Belgium, 2000. [Google Scholar]
- Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. A critical review of integrated urban water modelling—Urban drainage and beyond. Environ. Model. Softw. 2014, 54, 88–107. [Google Scholar] [CrossRef]
- Carre, C.; Haghe, J.P.; De Coninck, A.; Becu, N.; Deroubaix, J.; Pivano, C.; Flipo, N.; Le Pichon, C.; Tallec, G. How to integrate scientific models in order to switch from, flood control river management to multifunctional river management? Int. J. River Basin Manag. 2014, 12, 231–249. [Google Scholar] [CrossRef]
- Mouchel, J.-M. Rapport de Synthèse 2007–2010—Introduction Générale; PIREN-Seine: Paris, France, 2010. [Google Scholar]
- Even, S.; Poulin, M.; Billen, G.; Garnier, J. Modèles PROSE Et SENEQUE: Établissement De Versions De Référence Applicables Aux Études De Gestion; PIREN-Seine: Paris, France, 1998. [Google Scholar]
- Garnier, J.; Mouchel, J.-M. Man and River Systems: The Functioning of River Systems at the Basin Scale; Springer: Cham, The Netherlands, 1999; ISBN 978-94-017-2163-9. [Google Scholar]
- Billen, G.; Garnier, J.; Mariotti, A. Bilan Des Transferts D’azote Dans Le Bassin De La Seine: L’approche Du Modèle SENEQUE; PIREN-Seine: Paris, France, 1998. [Google Scholar]
- Ledoux, E. Modélisation Intégrée des Écoulements de Surface et des Écoulements Souterrains sur un Bassin Hydrologique. Doctoral Dissertation, Ecole des Mines, Paris, France, 1980. [Google Scholar]
- Ledoux, E.; Girard, G.; de Marsily, G.; Villeneuve, J.P.; Deschenes, J. Spatially distributed modeling: Conceptual approach, coupling surface water and groundwater. In Unsaturated Flow in Hydrologic Modeling; Morel-Seytoux, H.J., Ed.; NATO ASI Series; Springer: Cham, The Netherlands, 1989; pp. 435–454. ISBN 978-94-010-7559-6. [Google Scholar]
- Brisson, N.; Mary, B.; Ripoche, D.; Jeuffroy, M.H.; Ruget, F.; Nicoullaud, B.; Gate, P.; Devienne-Barret, F.; Antonioletti, R.; Durr, C.; et al. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agron. Sustain. Dev. 1998, 18, 36. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Bilen, G.; Garnier, J.; Mouchel, J.-M.; Silvestre, M. The Seine system: Introduction to a multidisciplinary approach of the functioning of a regional river system. Sci. Total Environ. 2007, 375, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Even, S. Description Du Logiciel ProSe, Version 4.1—Logiciel De Simulation De L’hydrodynamique, Du Transport Et Du Fonctionnement Biochimique D’un Écosystème Fluvial; PIREN-Seine: Paris, France, 2007. [Google Scholar]
- Even, S.; Poulin, M.; Garnier, J.; Billen, G.; Servais, P.; Chesterikoff, A.; Coste, M. River ecosystem modelling: Application of the PROSE model to the Seine river (France). Hydrobiologia 1998, 373, 27–45. [Google Scholar] [CrossRef]
- Ruelland, D.; Billen, G. Riverstrahler, SENEQUE and SENECAM: Modelling tools for water resources management from regional to local scales. In Proceedings of the 6th International Conference of EWRA, France, Menton, 7–10 September 2005. [Google Scholar]
- Thouvenot, M.; Billen, G.; Garnier, J. Denitrification in the Riverstrahler Model. In Proceedings of the Denitrification Modeling Workshop Agenda, New York, NY, USA, 28–30 November 2006. [Google Scholar]
- Ruelland, D.; Billen, G.; Brunstein, D.; Garnier, J. SENEQUE: A multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Sci. Total Environ. 2007, 375, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Ruelland, D.; Silvestre, M.; Thieu, V.; Billen, G. Applicatif SENEQUE 3.4: Notice D’utilisation; PIREN-Seine: Paris, France, 2007. [Google Scholar]
- Thieu, V.; Billen, G.; Silvestre, M.; Garnier, J. SENEQUE and Co: Développements Logiciels Et Améliorations Des Outils; Rapport PIREN-Seine; PIREN-Seine: Paris, France, 2006. [Google Scholar]
- Ledoux, E.; Gomez, E.; Monget, J.M.; Viavattene, C.; Viennot, P.; Ducharne, A.; Benoit, M.; Mignolet, C.; Schott, C.; Mary, B. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS–MODCOU modelling chain. Sci. Total Environ. 2007, 375, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Viennot, P.; Ledoux, E. Influence De L’augmentation Des Prélèvements Anthropiques En Formations Aquifères Sur Le Fonctionnement Hydrodynamique Du Bassin De La Seine; PIREN-Seine: Paris, France, 2007. [Google Scholar]
- Viennot, P.; Monget, J.-M.; Ledoux, E.; Schott, C. Modélisation De La Pollution Nitrique Des Aquifères Du Bassin De La Seine: Intégration Des Bases De Données Actualisées Des Practiques Agricoles, Validation Des Simulations Sur La Période 1971–2004, Simulations Prospectives De Measures Agro-Environnementales; PIREN-Seine: Paris, France, 2006. [Google Scholar]
- Habets, F.; Flipo, N.; Goblet, P.; Ledoux, E.; Monteil, C.; Philippe, E.; Querel, W.; Saleh, F.; Souhar, O.; Stouls, A.; et al. Le Développement Du Modèle Intégré Des Hydrosystèmes Eau-Dyssée; PIREN-Seine: Paris, France, 2009. [Google Scholar]
- Saleh, F.; Ducharne, A.; Oudin, L.; Flipo, N.; Ledoux, E. Hydraulic Modeling of Flow, Water Levels and Inundations: Serein River Case Study; PIREN-Seine: Paris, France, 2009. [Google Scholar]
- Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; Andrianarisoa, K.S.; et al. Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Environ. Model. Softw. 2015, 64, 177–190. [Google Scholar] [CrossRef]
- Gomez, E.; Ledoux, E.; Mary, B. La Démarche De Modélisation Régionale Des Écoulements D’eau, De La Production Et Du Transfert D’azote Sure Le Bassin De La Seine, Structure Du Modèle D’écoulement; PIREN-Seine: Paris, France, 1998. [Google Scholar]
- Gomez, E.; Ledoux, E.; Monget, J.-M.; De Marsily, G. Distributed surface-groundwater coupled model applied to climate or long term water management impacts at basin scale. Eur. Water 2003, 1, 3–8. [Google Scholar]
- About the CRCWSC. CRC Water Sensitive Cities. Available online: https://watersensitivecities.org.au/about-the-crcwsc/ (accessed on 2 August 2017).
- Howe, C.; Mitchell, C. Water Sensitive Cities; International Water Association (IWA) Publishing: London, UK, 2011; ISBN 978-1-84339-364-1. [Google Scholar]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Geiger, W.F. Sponge city and lid technology—Vision and tradition. Landsc. Archit. Front. 2015, 3, 10–22. [Google Scholar]
- Li, X.; Li, J.; Fang, X.; Gong, Y.; Wang, W. Case studies of the sponge city program in China. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FL, USA, 22–26 May 2016. [Google Scholar]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Malekpour, S.; de Haan, F.J.; Brown, R.R. Marrying Exploratory Modelling to Strategic Planning: Towards Participatory Model Use. In Proceedings of the 20th International Congress on Modelling and Simulation (MODSIM2013), Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Walker, W.E.; Haasnoot, M.; Kwakkel, J.H. Adapt or Perish: A Review of Planning Approaches for Adaptation under Deep Uncertainty. Sustainability 2013, 5, 955–979. [Google Scholar] [CrossRef]
- Tewdwr-Jones, M.; Allmendinger, P. Deconstructing Communicative Rationality: A Critique of Habermasian Collaborative Planning. Environ. Plan. A 1998, 30, 1975–1989. [Google Scholar] [CrossRef]
- Klosterman, R.E. Planning Support Systems: A New Perspective on Computer-Aided Planning. J. Plan. Educ. Res. 1997, 17, 45–54. [Google Scholar] [CrossRef]
- Wong, T.H.; Fletcher, T.D.; Duncan, H.P.; Coleman, J.R.; Jenkins, G.A. A model for urban Stormwater improvement: Conceptualization. In Global Solutions for Urban Drainage; American Society of Civil Engineers: Reston, VA, USA, 2002; pp. 1–14. [Google Scholar]
- Rauch, W.; Urich, C.; Bach, P.M.; Rogers, B.C.; de Haan, F.J.; Brown, R.R.; Mair, M.; McCarthy, D.T.; Kleidorfer, M.; Sitzenfrei, R.; et al. Modelling transitions in urban water systems. Water Res. 2017, 126, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.F.; Fletcher, T.D.; Duncan, H.P.; Jenkins, G.A. Modelling Urban Stormwater Treatment—A Unified Approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- eWater Water Quality Objectives—MUSIC Version 6 Documentation and Help—eWater Wiki. Available online: https://wiki.ewater.org.au/display/MD6/Water+Quality+Objectives (accessed on 16 May 2017).
- eWater Annual Report 2011–12; eWater: Canberra, Australia, 2012.
- Water sensitive cities modelling toolkit-CRC for Water sensitive cities. Available online: https://watersensitivecities.org.au/wp-content/uploads/2017/06/Fact-Sheet_Water-Sensitive-Cities-modelling-toolkit_Project-D1.5_V3.pdf (accessed on 2 August 2017).
- Fletcher, T.D.; Walsh, C.J.; Bos, D.; Nemes, V.; RossRakesh, S.; Prosser, T.; Hatt, B.; Birch, R. Restoration of stormwater retention capacity at the allotment-scale through a novel economic instrument. Water Sci. Technol. 2011, 64, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, T.D.; Mitchell, V.G.; Deletic, A.; Ladson, T.R.; Séven, A. Is stormwater harvesting beneficial to urban waterway environmental flows? Water Sci. Technol. 2007, 55, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.J.; Fletcher, T.D.; Bos, D.; RossRakesh, S.; Nemes, V.; Edwards, C.; O’Keefe, A. Little Stringybark Creek: Environmental Benefit Calculator Technical Notes; Melbourne Water; Department of Water and Environment, University of Melbourne: Melbourne, Australia, 2012. [Google Scholar]
- Walsh, C.J.; Fletcher, T.D.; Ladson, A.R. Stream restoration in urban catchments through redesigning stormwater systems: Looking to the catchment to save the stream. J. N. Am. Benthol. Soc. 2005, 24, 690–705. [Google Scholar] [CrossRef]
- Brookes, K.; Wong, T.H.F. The adequacy of stream erosion index as an alternate indicator of geomorphic stability in urban waterways. In Proceedings of the 6th Water Sensitive Urban Design Conference and Hydropolis, Perth, Australia, 5–8 May 2009. [Google Scholar]
- Coutts, A.; Harris, R. A Multi-Scale Assessment of Urban Heating in Melbourne during an Extreme Heat Event: Policy Approaches for Adaptation; Monash University: Clayton, Australia, 2013. [Google Scholar]
- Raut, B.; de la Fuente, L.; Seed, A.; Jakob, C.; Reeder, M. Application of a space-time stochastic model for downscaling future rainfall projections. In Hydrology and Water Resources Symposium; Engineers Australia: Barton, Australia, 2012; pp. 579–586. [Google Scholar]
- Zhang, K.; Manuelpillai, D.; Raut, B.; Jakob, C.; Reeder, M.; Deletic, A.; Bach, P.M. Impact of future rainfall projections from ensemble GCMs on stormwater management. In Proceedings of the 14th International Conference on Urban Drainage (14ICUD), Prague, Czech Republic, 10–15 September 2017. [Google Scholar]
- Rauch, W.; Bach, P.M.; Brown, R.; Rogers, B.; de Haan, F.J.; McCarthy, D.T.; Kleidorfer, M.; Mair, M.; Sitzenfrei, R.; Urich, C.; et al. Enabling change: Institutional adaptation. In Climate Change, Water Supply and Sanitation; IWA Publishing: London, UK, 2015. [Google Scholar]
- Urich, C.; Bach, P.; Sitzenfrei, R.; Kleidorfer, M.; Mccarthy, D.; Deletic, A.; Rauch, W. Modelling cities and water infrastructure dynamics. Proc. Inst. Civ. Eng. Eng. Sustain. 2013, 166, 301–308. [Google Scholar] [CrossRef]
- de Haan, F.J.; Rogers, B.C.; Brown, R.R.; Deletic, A. Many roads to Rome: The emergence of pathways from patterns of change through exploratory modelling of sustainability transitions. Environ. Model. Softw. 2016, 85, 279–292. [Google Scholar] [CrossRef]
- Urich, C.; Rauch, W. Exploring critical pathways for urban water management to identify robust strategies under deep uncertainties. Water Res. 2014, 66, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Rossman, L.A. EPANET 2 User Manual; US Environmental Protection Agency: Cincinnati, OH, USA, 2000.
- Rossman, L.A. Storm Water Management Model—User’s Manual; Version 5.1; US Environmental Protection Agency: Cincinnati, OH, USA, 2004. [Google Scholar]
- Löwe, R.; Urich, C.; Domingo, N.S.; Mark, O.; Deletic, A.; Arnbjerg-Nielsen, K. Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations—A new generation of urban planning tools. J. Hydrol. 2017, 550, 355–367. [Google Scholar] [CrossRef]
- Chesterfield, C.; Urich, C.; Beck, L.; Berge, K.; Charette-Castonguay, A.; Brown, R.; Dunn, G.; De Haan, F.; Lloyd, S.; Rogers, B. A Water Sensitive Cities Index—Benchmarking cities in developed and developing countries. In Proceedings of the International Low Impact Development Conference, Beijing, China, 26–29 June 2016. [Google Scholar]
- Vogel, C.; Moser, S.C.; Kasperson, R.E.; Dabelko, G.D. Linking vulnerability, adaptation and resilience science to practice: Pathways, players and partnerships. Glob. Environ. Chang. 2007, 17, 349–364. [Google Scholar] [CrossRef]
- Baker, R.; McKenzie, N. Troubled Waters: What is the Office of Living Victoria up to? The Age, 28 February 2014. [Google Scholar]
- Department of Environment and Resource Management (DERM). Urban Stormwater Quality Planning Guidlines 2010; Queensland Government: Brisbane, Australia, 2010.
- Department of Environment, Land, Water and Planning (DELWP). Victoria Planning Provisions; Department of Environment, Land, Water and Planning: Melbourne, Australia, 2017.
- Evolving Water Management—eWater. Available online: http://ewater.org.au/ (accessed on 24 November 2017).
- Argent, R.M. An overview of model integration for environmental applications—Components, frameworks and semantics. Environ. Model. Softw. 2004, 19, 219–234. [Google Scholar] [CrossRef]
- Nilsson, M.; Jordan, A.; Turnpenny, J.; Hertin, J.; Nykvist, B.; Russel, D. The use and non-use of policy appraisal tools in public policy making: An analysis of three European countries and the European Union. Policy Sci. 2008, 41, 335–355. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Brugnach, M.; Tagg, A.; Keil, F.; de Lange, W.J. Uncertainty Matters: Computer Models at the Science–Policy Interface. Water Resour. Manag. 2007, 21, 1075–1090. [Google Scholar] [CrossRef]
- Hipel, K.W.; Ben-Haim, Y. Decision making in an uncertain world: Information-gap modeling in water resources management. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1999, 29, 506–517. [Google Scholar] [CrossRef]
- Marlow, D.R.; Moglia, M.; Cook, S.; Beale, D.J. Towards sustainable urban water management: A critical reassessment. Water Res. 2013, 47, 7150–7161. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.C.; Tomich, T.P.; van Noordwijk, M.; Guston, D.; Catacutan, D.; Dickson, N.M.; McNie, E. Boundary work for sustainable development: Natural resource management at the Consultative Group on International Agricultural Research (CGIAR). Proc. Natl. Acad. Sci. 2011, 113, 4615–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, S.; Bechky, B.A. Boundary organizations: Enabling collaboration among unexpected allies. Adm. Sci. Q. 2008, 53, 422–459. [Google Scholar] [CrossRef]
- Chong, N.; Bonhomme, C.; Deroubaix, J.-F.; Moilleron, R. Production Et Usages Des Modèles Dans Le Cadre Du PIREN-Seine; PIREN-Seine: Paris, France, 2016. [Google Scholar]
- Johri, A. Boundary spanning knowledge broker: An emerging role in global engineering firms. In Proceedings of the 38th Annual Frontiers in Education Conference (FIE 2008), Saratoga Springs, NY, USA, 22–25 October 2008; p. S2E-7. [Google Scholar]
- Turnhout, E.; Stuiver, M.; Klostermann, J.; Harms, B.; Leeuwis, C. New roles of science in society: Different repertoires of knowledge brokering. Sci. Public Policy 2013, 40, 354–365. [Google Scholar] [CrossRef]
- Sverrisson, Á. Translation Networks, Knowledge Brokers and Novelty Construction: Pragmatic Environmentalism in Sweden. Acta Sociol. 2016, 44, 313–327. [Google Scholar] [CrossRef]
- Meyer, M. The Rise of the Knowledge Broker. Sci. Commun. 2010, 32, 118–127. [Google Scholar] [CrossRef] [Green Version]
PIREN-Seine | CRC for Water Sensitive Cities | |
---|---|---|
Duration | (1989–) | (2012–2021) |
Level/Scale | Territory; Basin | Urban; City |
Interest | Seine River basin | Cities in Australia and abroad |
Research Priority | Quality/Quantity | Quantity/Quality |
Main Objective | To produce research to better understand river system functioning that can also support decisions | To produce research and tools for industry use to achieve water sensitive cities |
Types of Actors | National research institutes, universities, mixed research groups, research laboratories, public institutions, regulating authorities | Universities, public utilities, governments (local, state), regulating authorities, capacity-building organisations, consulting companies, software companies |
Model | Type | Key References |
---|---|---|
ProSe | River quality model | Even et al. [52]; Garnier and Mouchel [53] |
Seneque | Catchment quality model | Garnier and Mouchel [53]; Billen et al. [54] |
MODCOU | Surface-groundwater model | Ledoux [55]; Ledoux et al. [56] |
STICS | Agronomic model | Brisson et al. [57,58] |
Model | Type | Key References |
---|---|---|
MUSIC | Stormwater quality model | Wong et al. [85]; http://www.ewater.org.au/products/music/ |
Water Sensitive Toolkit | Infrastructure planning tool | https://watersensitivecities.org.au/solutions/water-sensitive-cities-toolkit/ |
DAnCE4Water | Cloud-based city modelling platform | Rauch et al. [86]; www.dance4water.org |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, N.; Bach, P.M.; Moilleron, R.; Bonhomme, C.; Deroubaix, J.-F. Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface. Water 2017, 9, 983. https://doi.org/10.3390/w9120983
Chong N, Bach PM, Moilleron R, Bonhomme C, Deroubaix J-F. Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface. Water. 2017; 9(12):983. https://doi.org/10.3390/w9120983
Chicago/Turabian StyleChong, Natalie, Peter M. Bach, Régis Moilleron, Céline Bonhomme, and José-Frédéric Deroubaix. 2017. "Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface" Water 9, no. 12: 983. https://doi.org/10.3390/w9120983
APA StyleChong, N., Bach, P. M., Moilleron, R., Bonhomme, C., & Deroubaix, J.-F. (2017). Use and Utility: Exploring the Diversity and Design of Water Models at the Science-Policy Interface. Water, 9(12), 983. https://doi.org/10.3390/w9120983