Effect of Pretreatments on the Distribution and Removal of Triclosan in Waste-Activated Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Waste-Activated Sludge (WAS)
2.2. Chemicals
2.3. Experimental Design
2.4. Analytical and Calculation Methods
3. Results
3.1. Hydrolysis of Waste-Activated Sludge with Various Pretreatment Conditions
3.2. Distribution and Removal of Triclosan Under Various Pretreatment Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Meng, X.-Z.; Bergman, A.; Halden, R.U. Nationwide reconnaissance of five parabens, triclosan, triclocarban and its transformation products in sewage sludge from China. J. Hazard. Mater. 2019, 365, 502–510. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Liu, H.; Zhou, T.; Li, J.; Li, Y.; Lin, C.S.K.; Wang, Q. Triclosan in sludge: Exploring its journey from the sewage treatment plants to land application and potential impacts on the environment. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1–24. [Google Scholar] [CrossRef]
- Cameron, A.; Barbieri, R.; Read, R.; Church, D.; Adator, E.H.; Zaheer, R.; McAllister, T.A. Functional screening for triclosan resistance in a wastewater metagenome and isolates of Escherichia coli and Enterococcus spp. from a large Canadian healthcare region. PLoS ONE 2019, 14, e0211144. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.-H.; Chen, L.; Zhang, X.-D.; Zhang, Q.; Pan, H.; Liu, L.-Y.; Liu, H.; Wang, A.-J. Recent advancements on the migration and transformation of hydrophobic pharmaceutically active compounds in anaerobic digestion process. Chem. Eng. J. 2022, 446, 136902. [Google Scholar] [CrossRef]
- Halden, R.U.; Lindeman, A.E.; Aiello, A.E.; Andrews, D.; Arnold, W.A.; Fair, P.; Fuoco, R.E.; Geer, L.A.; Johnson, P.I.; Lohmann, R. The florence statement on triclosan and triclocarban. Environ. Health Perspect. 2017, 125, 064501. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Zhu, Y.; Chen, W.; Pan, H.Y.; Guo, B.B.; Zhang, X.; Cao, Y.X.; Sweetman, A.J.; Lin, C.Y. The occurrence of home and personal care products in the Haihe River catchment and estimation of human exposure. Sci. Total Environ. 2018, 643, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Balakrishnan, P. Triclosan in Treated Wastewater from a City Wastewater Treatment Plant and its Environmental Risk Assessment. Water Air Soil. Pollut. 2019, 230, 1–13. [Google Scholar] [CrossRef]
- Lépesová, K.; Krahulcová, M.; Mackuľak, T.; Bírošová, L. Sewage sludge as a source of triclosan-resistant bacteria. Acta Chim. Slovaca 2019, 12, 34–40. [Google Scholar] [CrossRef]
- Hill, K.L.; Breton, R.L.; Manning, G.E.; Teed, R.S.; Capdevielle, M.; Slezak, B. Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment. Integr. Environ. Assess. Manag. 2018, 14, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.H.; Chen, L.; Zhang, Q.; Liu, L.Y.; Pan, H.; Liu, H.; Wang, A.J. Understanding the effects of sludge characteristics on the biosorption of triclosan. Sci. Total Environ. 2022, 842, 156665. [Google Scholar] [CrossRef] [PubMed]
- Sadino-Riquelme, C.; Hayes, R.E.; Jeison, D.; Donoso-Bravo, A. Computational fluid dynamic (CFD) modelling in anaerobic digestion: General application and recent advances. Crit. Rev. Environ. Sci. Technol. 2018, 48, 39–76. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.-Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Heidler, J.; Halden, R.U. Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling. J. Environ. Monit. 2009, 11, 2207–2215. [Google Scholar] [CrossRef]
- Chen, J.L.; Ravindran, S.; Swift, S.; Singhal, N. Changes in estrogenicity and micropollutant concentrations across unit processes in a biological wastewater treatment system. Water Sci. Technol. 2018, 77, 1673–1682. [Google Scholar] [CrossRef]
- Barber, W.P.F. Thermal hydrolysis for sewage treatment: A critical review. Water Res. 2016, 104, 53–71. [Google Scholar] [CrossRef] [PubMed]
- EPA. Standard Methods for the Examination of Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2002.
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F.J.A.C. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dwyer, J.; Starrenburg, D.; Tait, S.; Barr, K.; Batstone, D.J.; Lant, P. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability. Water Res. 2008, 42, 4699–4709. [Google Scholar] [CrossRef]
- Muir, D.D. The Maillard Reaction—Chemistry, Biochemistry and Implications. Int. J. Dairy. Technol. 2010, 60, 59. [Google Scholar] [CrossRef]
- Zhang, D.; Jiang, H.; Chang, J.; Sun, J.; Tu, W.; Wang, H. Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production. Bioresour. Technol. 2019, 279, 92–100. [Google Scholar] [CrossRef]
- Sapkaite, I.; Barrado, E.; Fdz-Polanco, F.; Perez-Elvira, S.I. Optimization of a thermal hydrolysis process for sludge pre-treatment. J. Environ. Manag. 2017, 192, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenes, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.R.; Meng, H.S.; Yang, X.Y.; Zhu, Y.Y.; Li, X.Y.; Xu, J.; Sheng, G.P. Insights into the interactions between triclosan (TCS) and extracellular polymeric substance (EPS) of activated sludge. J. Environ. Manag. 2018, 232, 219–225. [Google Scholar] [CrossRef]
- Quan, B.; Li, X.; Zhang, H.; Zhang, C.; Ming, Y.; Huang, Y.; Xi, Y.; Weihua, X.; Yunguo, L.; Tang, Y. Technology and principle of removing triclosan from aqueous media: A review. Chem. Eng. J. 2019, 378, 122185. [Google Scholar] [CrossRef]
- Balcioglu, I.A.; Oncu, N.B.; Mercan, N. Beneficial effects of treating waste secondary sludge with thermally activated persulfate. J. Chem. Technol. Biotechnol. 2017, 92, 1192–1202. [Google Scholar] [CrossRef]
- Armstrong, D.L.; Rice, C.P.; Ramirez, M.; Torrents, A. Influence of thermal hydrolysis-anaerobic digestion treatment of wastewater solids on concentrations of triclosan, triclocarban, and their transformation products in biosolids. Chemosphere 2017, 171, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Liu, H.; Xue, Y.; Wang, H.; Dai, X. Partition and fate analysis of fluoroquinolones in sewage sludge during anaerobic digestion with thermal hydrolysis pretreatment. Sci. Total Environ. 2017, 581–582, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, R. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: Degradation and solid-liquid distribution. Bioresour. Technol. 2018, 255, 266–272. [Google Scholar] [CrossRef]
- Yan, Z.R.; Zhu, Y.Y.; Meng, H.S.; Wang, S.Y.; Gan, L.H.; Li, X.Y.; Xu, J.; Zhang, W. Insights into thermodynamic mechanisms driving bisphenol A (BPA) binding to extracellular polymeric substances (EPS) of activated sludge. Sci. Total Environ. 2019, 677, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.; Zheng, Z.; Ma, H.; Yang, M.; Liu, H. Continuous liquid fermentation of pretreated waste activated sludge for high rate volatile fatty acids production and online nutrients recovery. Bioresour. Technol. 2018, 249, 962–968. [Google Scholar] [CrossRef]
Item | Value | Unit |
---|---|---|
Total suspended solids (TSSs) | 34–37 | g/L |
Volatile suspended solids | 18–20 | g/L |
Soluble chemical oxygen demand (sCOD) | 900–1400 | mg/L |
Soluble protein | 350–810 | mg/L |
Soluble total sugar | 85–125 | mg/L |
pH | 6.5–6.9 | - |
Property | Value |
---|---|
Common name | Triclosan |
Name | 5-Chloro-2-(2,4-dichlorophenoxy) phenol |
Tag | Antimicrobial agent/disinfectant |
CAS number | 3380-34-5 |
Purity | 97% |
Molecular formula | C12H7C13O2 |
Molecular weight | 289.54 |
pKa 1 | 7.8 |
Log Kow 2 | 4.76 |
Log Koc 3 | 4.265 |
Log Koa 4 | 11.45 |
Log BCF 5 | 2.565 |
Chemical structure |
Contaminant | Pretreatment Method * | Operational Parameters | Variation in Distribution | Removal Efficiency | Reference |
---|---|---|---|---|---|
Triclosan | THP | 170 °C, 90 min | - | 54% | This study |
Triclosan | TAP | pH = 13, 30 min | Solid–liquid distribution coefficient decreased by three orders of magnitude | - | |
Triclosan | Persulfate + heat + microwave | 0.87 g/g TS + 140 °C + 2.54 GHz, 15 min | - | 99% | [25] |
Oxytetracycline | 97% | ||||
Ciprofloxacin | 88% | ||||
Triclocarban | THP | 150–180 °C, 30 min | - | >98% | [26] |
Ofloxacin | THP | 160 °C, 1 h | Liquid portion increased from 2.7% to 10% | 24.30% | [27] |
Ciprofloxacin | THP | 120 °C, 1 h | Solubilization in increased by 2.46 ± 0.11 folds | - | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.-Y.; Wang, S.-Y.; Sangeetha, T.; Cui, M.-H. Effect of Pretreatments on the Distribution and Removal of Triclosan in Waste-Activated Sludge. Water 2025, 17, 490. https://doi.org/10.3390/w17040490
Ding H-Y, Wang S-Y, Sangeetha T, Cui M-H. Effect of Pretreatments on the Distribution and Removal of Triclosan in Waste-Activated Sludge. Water. 2025; 17(4):490. https://doi.org/10.3390/w17040490
Chicago/Turabian StyleDing, Hao-Yang, Si-Yu Wang, Thangavel Sangeetha, and Min-Hua Cui. 2025. "Effect of Pretreatments on the Distribution and Removal of Triclosan in Waste-Activated Sludge" Water 17, no. 4: 490. https://doi.org/10.3390/w17040490
APA StyleDing, H.-Y., Wang, S.-Y., Sangeetha, T., & Cui, M.-H. (2025). Effect of Pretreatments on the Distribution and Removal of Triclosan in Waste-Activated Sludge. Water, 17(4), 490. https://doi.org/10.3390/w17040490