Freshwater Chemistry Shaped by Periglacial Conditions at Lions Rump, King George Island (Maritime Antarctica)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area, Sample Collection and Storage
- Bystry Creek catchment, east of Godwin Cliff, in the foreground of White Eagle Glacier. Godwin Cliff is characterized by the dark gray andesitic lavas with crystal-rich rocks and display porphyritic [18]. The soil in this catchment area is characterized as loamy-skeletal, mixed, subgelic, Typic Haplorthels, according to the Soil Taxonomy. Moreover, in the upper part soils in this area have a loamy-sand textured moraine sediments prevailed. Vegetation covers 70% of its surface [2]. There is a large flow lake between the head of the glacier and Sukiennice Hills, while Bystry Creek ends its course in the bay. The stream drains into the bay in the north, forming mouth.
- Lions Rump Creek catchment, bounded to the east by Batke Point and Lions Rump; to the west by Sukiennice Hills and to the south by White Eagle Glacier. The stream flows from the eastern part of the glacier front and flows through three lakes. Lions Rump Creek then terminates at King George Bay. Moraine sediments prevailed in the surface geology, with the occurrence of volcanic rocks in the right side of the catchment [18]. Noteworthy is the lake closest to the mouth due to the immediate vicinity of the colonies of representatives of the Antarctic fauna. This area is home to the most colonies of penguins and Antarctic fur seals (Arctocephalus gazella). The soil in this area is rich in guano and feces of pinniped mammals, which are a carrier of organic matter.
2.2. Sample Preparation and Laboratory Methods
2.3. Quality Control
2.4. Data Interpretation
- (1)
- Selection and grouping of measured parameters.
- −
- Marine/atmospheric input: Cl−, Na+;
- −
- Lithogenic weathering: Ca2+, Mg2+, K+, Si;
- −
- Volcanic/halogen-derived sources: Br−, SO42− (if > LOD).
- −
- Long-range atmospheric transport (LRAT): low-molecular-weight PAHs;
- −
- Re-emission/sediment release: medium-molecular-weight PAHs;
- −
- Local anthropogenic contribution: high-molecular-weight PAHs.
- −
- Lithogenic weathering: Ca2+, Mg2+, K+, Si;
- −
- Halogen deposition: Cl−, Br−;
- −
- Meltwater dilution: SEC (25 °C), temperature.
- (2)
- Calculation of composite values.
- (3)
- Normalisation and ternary transformation.
3. Result and Discussion
3.1. Physicochemical Parameters of Bystry and Lions Rump Creeks: Patterns and Environmental Drivers
3.2. Volcanic, Marine, and Lithogenic Controls on Inorganic Chemistry and TOC in Stream Waters at Lions Rump
3.3. Spatial Variability and Sources of PAHs in Two Contrasting Antarctic Streams
3.4. Environmental Significance of Hydrochemical Patterns in Antarctic Periglacial Streams

4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szumińska, D.; Potapowicz, J.; Szopińska, M.; Czapiewski, S.; Falk, U.; Frankowski, M.; Polkowska, Ż. Sources and Composition of Chemical Pollution in Maritime Antarctica (King George Island), Part 2: Organic and Inorganic Chemicals in Snow Cover at the Warszawa Icefield. Sci. Total Environ. 2021, 796, 149054. [Google Scholar] [CrossRef]
- Almeida, I.C.C.; Schaefer, C.E.G.R.; Fernandes, R.B.A.; Pereira, T.T.C.; Nieuwendam, A.; Pereira, A.B. Active Layer Thermal Regime at Different Vegetation Covers at Lions Rump, King George Island, Maritime Antarctica. Geomorphology 2014, 225, 36–46. [Google Scholar] [CrossRef]
- Simas, F.N.B.; Schaefer, C.E.G.R.; Filho, M.R.A.; Francelino, M.R.; Filho, E.I.F.; da Costa, L.M. Genesis, Properties and Classification of Cryosols from Admiralty Bay, Maritime Antarctica. Geoderma 2008, 144, 116–122. [Google Scholar] [CrossRef]
- Simas, F.N.B.; Schaefer, C.E.G.R.; Melo, V.F.; Albuquerque-Filho, M.R.; Michel, R.F.M.; Pereira, V.V.; Gomes, M.R.M.; da Costa, L.M. Ornithogenic Cryosols from Maritime Antarctica: Phosphatization as a Soil Forming Process. Geoderma 2007, 138, 191–203. [Google Scholar] [CrossRef]
- Szopińska, M.; Szumińska, D.; Bialik, R.J.; Chmiel, S.; Plenzler, J.; Polkowska, Ż. Impact of a Newly-Formed Periglacial Environment and Other Factors on Fresh Water Chemistry at the Western Shore of Admiralty Bay in the Summer of 2016 (King George Island, Maritime Antarctica). Sci. Total Environ. 2018, 613–614, 619–634. [Google Scholar] [CrossRef]
- Olech, M.; Massalski, A. Plant Colonization and Community Development on the Sphinx Glacier Forefield. Geographia 2001, 25, 111–119. [Google Scholar]
- Korczak−Abshire, M.; Węgrzyn, M.; Angiel, P.J.; Lisowska, M. Pygoscelid Penguins Breeding Distribution and Population Trends at Lions Rump Rookery, King George Island. Pol. Polar Res. 2013, 34, 87–99. [Google Scholar] [CrossRef]
- Montone, R.C.; Alvarez, C.E.; Bícego, M.C.; Braga, E.S.; Brito, T.A.S.; Campos, L.S.; Fontes, R.F.C.; Castro, B.M.; Corbisier, T.N.; Evangelista, H.; et al. Environmental Assessment of Admiralty Bay, King George Island, Antarctica. In Adaptation and Evolution in Marine Environments; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2, pp. 157–175. [Google Scholar]
- Hughes, K.A. Reducing Sewage Pollution in the Antarctic Marine Environment Using a Sewage Treatment Plant. Mar. Pollut. Bull. 2004, 49, 850–853. [Google Scholar] [CrossRef]
- Salinas, C.X.; Cárdenas, C.A.; González-Aravena, M.; Rebolledo, L.; Cruz, F.S. Mapping Scientific Fieldwork Data: A Potential Tool for Improving and Strengthening Antarctic Specially Protected Areas as an Effective Measure for Protecting Antarctic Biodiversity. Biodivers. Conserv. 2024, 33, 929–948. [Google Scholar] [CrossRef]
- Cipro, C.V.Z.; Bustamante, P.; Taniguchi, S.; Montone, R.C. Persistent Organic Pollutants and Stable Isotopes in Pinnipeds from King George Island, Antarctica. Mar. Pollut. Bull. 2012, 64, 2650–2655. [Google Scholar] [CrossRef] [PubMed]
- Potapowicz, J.; Szumińska, D.; Szopińska, M.; Polkowska, Ż. The Influence of Global Climate Change on the Environmental Fate of Anthropogenic Pollution Released from the Permafrost: Part I. Case Study of Antarctica. Sci. Total Environ. 2019, 651, 1534–1548. [Google Scholar] [CrossRef]
- Bargagli, R.; Rota, E. Environmental Contamination and Climate Change in Antarctic Ecosystems: An Updated Overview. Environ. Sci. Adv. 2024, 3, 543–560. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, G.; Revell, L.E.; Zhang, J.; Zuo, C.; Wang, D.; Le Ru, E.C.; Wu, G.; Mitrano, D.M. Long-Range Atmospheric Transport of Microplastics across the Southern Hemisphere. Nat. Commun. 2023, 14, 7898. [Google Scholar] [CrossRef] [PubMed]
- Illuminati, S.; Notarstefano, V.; Tinari, C.; Fanelli, M.; Girolametti, F.; Ajdini, B.; Scarchilli, C.; Ciardini, V.; Iaccarino, A.; Giorgini, E.; et al. Microplastics in Bulk Atmospheric Deposition along the Coastal Region of Victoria Land, Antarctica. Sci. Total Environ. 2024, 949, 175221. [Google Scholar] [CrossRef] [PubMed]
- Nash, S.B. Persistent Organic Pollutants in Antarctica: Current and Future Research priorities. J. Environ. Monit. 2011, 13, 497–504. [Google Scholar] [CrossRef]
- Muir, D.; Gunnarsdóttir, M.J.; Koziol, K.; von Hippel, F.A.; Szumińska, D.; Ademollo, N.; Corsolini, S.; De Silva, A.; Gabrielsen, G.; Kallenborn, R.; et al. Local Sources versus Long-Range Transport of Organic Contaminants in the Arctic: Future Developments Related to Climate Change. Environ. Sci. Adv. 2025, 4, 355–408. [Google Scholar] [CrossRef]
- Pańczyk, M.; Nawrocki, J. Geochronology of Selected Andesitic Lavas from the King George Bay Area (SE King George Is Land). Geol. Q. 2011, 55, 323–334. [Google Scholar]
- Santos, I.R.; Silva-filho, E.V.; Schaefer, C.E.G.R. Heavy Metal Contamination in Coastal Sediments and Soils near the Brazilian Antarctic Station, King George Island. Mar. Pollut. Bull. 2005, 50, 185–194. [Google Scholar] [CrossRef]
- Almeida, I.C.C.; Schaefer, C.E.G.R.; Michel, R.F.M.; Fernandes, R.B.A.; Pereira, T.T.C.; de Andrade, A.M.; Francelino, M.R.; Fernandes Filho, E.I.; Bockheim, J.G. Long Term Active Layer Monitoring at a Warm-Based Glacier Front from Maritime Antarctica. Catena 2017, 149, 572–581. [Google Scholar] [CrossRef]
- Tatur, A.; Keck, A. Phosphates in Ornithogenic Soils of the Maritime Antarctic. In Proceedings of the NIPR Symposium on Polar Biology. National Institute of Polar Research, Tokyo, Japan, 6–8 December 1989; Volume 3, pp. 133–150. [Google Scholar]
- Anzano, J.; Abás, E.; Marina-Montes, C.; del Valle, J.; Galán-Madruga, D.; Laguna, M.; Cabredo, S.; Pérez-Arribas, L.-V.; Cáceres, J.; Anwar, J. A Review of Atmospheric Aerosols in Antarctica: From Characterization to Data Processing. Atmosphere 2022, 13, 1621. [Google Scholar] [CrossRef]
- Cincinelli, A.; Martellini, T.; Bittoni, L.; Russo, A.; Gambaro, A.; Lepri, L. Natural and Anthropogenic Hydrocarbons in the Water Column of the Ross Sea (Antarctica). J. Mar. Syst. 2008, 73, 208–220. [Google Scholar] [CrossRef]
- Vecchiato, M.; Argiriadis, E.; Zambon, S.; Barbante, C.; Toscano, G.; Gambaro, A.; Piazza, R. Persistent Organic Pollutants (POPs) in Antarctica: Occurrence in Continental and Coastal Surface Snow. Microchem. J. 2014, 119, 75–82. [Google Scholar] [CrossRef]
- Bates, M.L.; Bengtson Nash, S.M.; Hawker, D.W.; Shaw, E.C.; Cropp, R.A. The Distribution of Persistent Organic Pollutants in a Trophically Complex Antarctic Ecosystem Model. J. Mar. Syst. 2017, 170, 103–114. [Google Scholar] [CrossRef]
- Hodson, A.; Heaton, T.; Langford, H.; Newsham, K. Chemical Weathering and Solute Export by Meltwater in a Maritime Antarctic Glacier Basin. Biogeochemistry 2010, 98, 9–27. [Google Scholar] [CrossRef]
- Cooper, L.W.; Benner, R.; McClelland, J.W.; Peterson, B.J.; Holmes, R.M.; Raymond, P.A.; Hansell, D.A.; Grebmeier, J.M.; Codispoti, L.A. Linkages among Runoff, Dissolved Organic Carbon, and the Stable Oxygen Isotope Composition of Seawater and Other Water Mass Indicators in the Arctic Ocean. J. Geophys. Res. Biogeosci. 2005, 110, 1–14. [Google Scholar] [CrossRef]
- Monien, D.; Monien, P.; Brünjes, R.; Widmer, T.; Kappenberg, A.; Silva Busso, A.A.; Schnetger, B.; Brumsack, H.-J. Meltwater as a Source of Potentially Bioavailable Iron to Antarctica Waters. Antarct. Sci. 2017, 29, 277–291. [Google Scholar] [CrossRef]
- Draxler, R.; Rolph, G. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory); Air Resources Laboratory, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2003.
- Draxler, R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A. HYSPLIT4 User’s Guide; Version 4.9; Air Resources Laboratory, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2009.
- Hamilton, N.E.; Ferry, M. Ggtern: Ternary Diagrams Using Ggplot2. J. Stat. Softw. 2018, 87, 1–17. [Google Scholar] [CrossRef]
- Lopes, D.d.V.; Souza, J.J.L.L.; de Simas, F.N.B.; Oliveira, F.S.; de Schaefer, C.E.G.R. Hydrogeochemistry and Chemical Weathering in a Periglacial Environment of Maritime Antarctica. Catena 2021, 197, 104959. [Google Scholar] [CrossRef]
- Gunes, Y.; Balci, N. Sediment and Water Geochemistry Record of Water-Rock Interactions in King George Island, Antarctic Peninsula. Antarct. Sci. 2022, 34, 58–78. [Google Scholar] [CrossRef]
- Monien, P.; Schnetger, B.; Brumsack, H.-J.; Hass, H.C.; Kuhn, G. A Geochemical Record of Late Holocene Palaeoenvironmental Changes at King George Island (Maritime Antarctica). Antarct. Sci. 2011, 23, 255–267. [Google Scholar] [CrossRef]
- Domineé, F.; Shepson, P.B. Air-Snow Interactions and Atmospheric Chemistry. Science 2002, 297, 1506–1510. [Google Scholar] [CrossRef] [PubMed]
- Chesselet, R.; Morelli, J.; Buat-Menard, P. Variations in Ionic Ratios between Reference Sea Water and Marine Aerosols. J. Geophys. Res. 1972, 77, 5116–5131. [Google Scholar] [CrossRef]
- Silva, B.; Rivas, T.; Garciarodeja, E.; Prieto, B. Distribution of Ions of Marine Origin in Galicia (NW Spain) as a Function of Distance from the Sea. Atmos. Environ. 2007, 41, 4396–4407. [Google Scholar] [CrossRef]
- Kalacheva, E.; Taran, Y.; Kotenko, T.; Hattori, K.; Kotenko, L.; Solis-Pichardo, G. Volcano–Hydrothermal System of Ebeko Volcano, Paramushir, Kuril Islands: Geochemistry and Solute Fluxes of Magmatic Chlorine and Sulfur. J. Volcanol. Geotherm. Res. 2016, 310, 118–131. [Google Scholar] [CrossRef]
- Zelenski, M.; Taran, Y. Volcanic Emissions of Molecular Chlorine. Geochim. Cosmochim. Acta 2012, 87, 210–226. [Google Scholar] [CrossRef]
- Birkenmajer, K. Geological Relations at Lions Rump. King George Island (South Shetland Is Land, Antarctica). Stud. Geol. Pol. 1981, 72, 75–87. [Google Scholar]
- Szumińska, D.; Czapiewski, S.; Szopińska, M.; Polkowska, Ż. Analysis of Air Mass Back Trajectories with Present and Historical Volcanic Activity and Anthropogenic Compounds to Infer Pollution Sources in the South Shetland Islands (Antarctica). Bull. Geography. Phys. Geogr. Ser. 2018, 15, 111–137. [Google Scholar] [CrossRef]
- Wolff, E.W. Signals of Atmospheric Pollution in Polar Snow and Ice. Antarct. Sci. 1990, 2, 189–205. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-13511-3. [Google Scholar]
- Halsall, C.J.; Barrie, L.A.; Fellin, P.; Muir, D.C.G.; Billeck, B.N.; Lockhart, L.; Rovinsky, F.Y.; Kononov, E.Y.; Pastukhov, B. Spatial and Temporal Variation of Polycyclic Aromatic Hydrocarbons in the Arctic Atmosphere. Environ. Sci. Technol. 1997, 31, 3593–3599. [Google Scholar] [CrossRef]
- Masclet, P.; Hoyau, V.; Jaffrezo, J.L.; Cachier, H. Polycyclic Aromatic Hydrocarbon Deposition on the Ice Sheet of Greenland. Part I: Superficial Snow. Atmos. Environ. 2000, 34, 3195–3207. [Google Scholar] [CrossRef]
- Wania, F.; MacKay, D. Peer Reviewed: Tracking the Distribution of Persistent Organic Pollutants. Environ. Sci. Technol. 1996, 30, 390A–396A. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Namieśnik, J. PAH Diagnostic Ratios for the Identification of Pollution Emission Sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Szopińska, M.; Namieśnik, J.; Polkowska, Ż. How Important Is Research on Pollution Levels in Antarctica? Historical Approach, Difficulties and Current Trends. In Reviews of Environmental Contamination and Toxicology; Springer: Cham, Switzerland, 2016; pp. 79–156. [Google Scholar]
- Jaffrezo, J.L.; Clain, M.P.; Masclet, P. Polycyclic Aromatic Hydrocarbons in the Polar Ice of Greenland. Geochemical Use of These Atmospheric Tracers. Atmos. Environ. 1994, 28, 1139–1145. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, T.; Sun, H.; Li, R.; Liu, X.; Guo, Z.; Ma, X.; Yao, Z. Polycyclic Aromatic Hydrocarbons in Fildes Peninsula, Maritime Antarctica: Effects of Human Disturbance. Environ. Pollut. 2023, 318, 120768. [Google Scholar] [CrossRef]







| Parameter | January 2017 | February 2017 | Notes |
|---|---|---|---|
| Tmax (°C) | ~3 to 8 °C | ~2 to 11 °C | Highest peaks in early and mid-February |
| Tmean (°C) | ~0.5 to 3 °C | ~1 to 6 °C | Gradual warming trend in Feb, typical for late melt season |
| Tmin (°C) | ~−5 to 1 °C | ~−3 to 3 °C | Short cold spells; mostly above 0 °C in Feb |
| Daily precipitation (mm) | 0–10 mm/day | 0–8 mm/day | Several small rainfall events; few moderate peaks |
| Snowfall (cm) | Several events 1–6 cm | Occasional events 1–4 cm | Mostly early Jan and isolated Feb events |
| Dominant weather regime | Mixed rain–snow transitions | Predominantly melt and rainfall | Reflects seasonal shift into full melt period |
| Melt season status | Early melt season | Peak melt season | Sampling date (2 February) = stable late-summer hydrology |
| Analyte/Parameter | Median Bystry | Range Bystry | Median Lions | Range Lions | FC (LR/Bystry) | Unit |
|---|---|---|---|---|---|---|
| pH | 6.9 | 6.7–7.0 | 6.9 | 6.6–7.1 | 1.0 | - |
| SEC | 44.2 | 39.3–49.5 | 45.0 | 13.9–61.0 | 1.0 | µS/cm |
| t | 5.3 | 2.6–5.5 | 3.5 | 2.8–5.5 | 0.70 | °C |
| TOC | 0.23 | 0.041–0.27 | 0.17 | 0.12–0.29 | 0.74 | mg L−1 |
| F− | <LOD | <LOD | <LOD | <LOD | – | mg L−1 |
| Cl− | 7.5 | 5.2–15.00 | 8.2 | 0.89–15.00 | 1.09 | mg L−1 |
| NO2− | <LOD | <LOD | <LOD | <LOD | – | mg L−1 |
| Br− | <LOD | <LOD | <LOD | <LOD | – | mg L−1 |
| NO3− | <LOD | 0.80–2.2 | <LOD | <LOD–2.4 | – | mg L−1 |
| PO43− | <LOD | <LOD | <LOD | <LOD | – | mg L−1 |
| SO42− | <LOD | <LOD | <LOD | <LOD | – | mg L−1 |
| Na+ | 4.80 | 4.30–8.10 | 5.10 | 0.69–6.70 | 1.06 | mg L−1 |
| K+ | <LOD | <LOD–0.065 | <LOD | <LOD–1.20 | – | mg L−1 |
| Ca2+ | 0.185 | 0.0084–4.00 | 0.41 | 0.075–2.90 | 2.22 | mg L−1 |
| Mg2+ | <LOD | <LOD–0.069 | <LOD | <LOD | – | mg L−1 |
| Fe | 12.05 | 5.20–72.00 | 27 | 14–52 | 2.24 | µg L−1 |
| Mn | 0.35 | 0.052–0.85 | 0.34 | 0.28–1.00 | 0.97 | µg L−1 |
| Zn | 0.975 | 0.53–1.20 | 1.25 | 0.77–3.10 | 1.28 | µg L−1 |
| Pb | 1.10 | 1.10 | 1.1 | 1.10 | 1.00 | µg L−1 |
| Cu | <LOD | <LOD | <LOD | <LOD | – | µg L−1 |
| As | 0.51 | 0.36–0.64 | 0.41 | 0.19–0.90 | 0.79 | µg L−1 |
| Ag | 0.62 | 0.12–1.00 | 0.15 | 0.11–0.27 | 0.24 | µg L−1 |
| Al | 10.65 | 6.40–47.00 | 23.00 | 17.00–39.00 | 2.16 | µg L−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potapowicz, J.; Szopińska, M.; Szumińska, D.; Bialik, R.J.; Frankowski, M.; Zioła-Frankowska, A.; Lehmann-Konera, S.; Sulej-Suchomska, A.M.; Wołyński, M.; Polkowska, Ż. Freshwater Chemistry Shaped by Periglacial Conditions at Lions Rump, King George Island (Maritime Antarctica). Water 2025, 17, 3549. https://doi.org/10.3390/w17243549
Potapowicz J, Szopińska M, Szumińska D, Bialik RJ, Frankowski M, Zioła-Frankowska A, Lehmann-Konera S, Sulej-Suchomska AM, Wołyński M, Polkowska Ż. Freshwater Chemistry Shaped by Periglacial Conditions at Lions Rump, King George Island (Maritime Antarctica). Water. 2025; 17(24):3549. https://doi.org/10.3390/w17243549
Chicago/Turabian StylePotapowicz, Joanna, Małgorzata Szopińska, Danuta Szumińska, Robert Józef Bialik, Marcin Frankowski, Anetta Zioła-Frankowska, Sara Lehmann-Konera, Anna Maria Sulej-Suchomska, Mieszko Wołyński, and Żaneta Polkowska. 2025. "Freshwater Chemistry Shaped by Periglacial Conditions at Lions Rump, King George Island (Maritime Antarctica)" Water 17, no. 24: 3549. https://doi.org/10.3390/w17243549
APA StylePotapowicz, J., Szopińska, M., Szumińska, D., Bialik, R. J., Frankowski, M., Zioła-Frankowska, A., Lehmann-Konera, S., Sulej-Suchomska, A. M., Wołyński, M., & Polkowska, Ż. (2025). Freshwater Chemistry Shaped by Periglacial Conditions at Lions Rump, King George Island (Maritime Antarctica). Water, 17(24), 3549. https://doi.org/10.3390/w17243549

