Microbially Induced Calcium Carbonate Precipitation (MICP): Bibliometric Analysis, Research Hotspot Evolution, and Mechanistic Insights (2005–2024)
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Retrieval
2.2. Publication Volume and Keyword Co-Occurrence Analysis
2.3. Trend Analysis
2.3.1. Annual Average Growth Rate
2.3.2. Normalized Cumulative Frequency and Trend Factor
3. Results
3.1. Evolution and Distribution of BC-Related Scientific Publications
3.2. Journal and Author Contributions
3.2.1. Journal Publications
3.2.2. Author Contributions
3.3. BC Research Progress
3.4. Evolution of BC Research Popularity
Increasing Popularity of BC
3.5. Mechanisms of Calcium Carbonate Precipitation Induced by Different Types of Microorganisms
3.5.1. Calcium Carbonate Precipitation Mechanisms Induced by Bacteria and Fungi Based on Nitrogen and Sulfur Cycles
- (1)
- Urea Hydrolysis
- (2)
- Ammonification
- (3)
- Denitrification
- (4)
- Sulfur Reduction Process Based on Sulfur Cycle
- (5)
- Methane Oxidation Process
3.5.2. Algae-Based Photosynthesis
3.6. Factors and Mechanisms Influencing Microbial Calcium Carbonate Precipitation
3.7. Mechanisms and Challenges of MICP in Sediment Remediation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Li, T. New insights into microbial induced calcium carbonate precipitation using Saccharomyces cerevisiae. Front. Microbiol. 2022, 13, 904095. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Su, J.; Ali, A.; Zhang, R.; Yang, W.; Xu, L.; Zhao, T. Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. J. Hazard. Mater. 2021, 416, 125914. [Google Scholar] [CrossRef] [PubMed]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Liu, Y.; Ali, A.; Su, J.-F.; Li, K.; Hu, R.-Z.; Wang, Z. Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. Sci. Total Environ. 2023, 860, 160439. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A bibliometric analysis of emerging contaminants (ECs) (2001−2021): Evolution of hotspots and research trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef]
- Zhu, J.-J.; Dressel, W.; Pacion, K.; Ren, Z.J. ES&T in the 21st Century: A Data-Driven Analysis of Research Topics, Interconnections, And Trends in the Past 20 Years. Environ. Sci. Technol. 2021, 55, 3453–3464. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Marcal, J.; Bishop, T.; Hofman, J.; Shen, J. From pollutant removal to resource recovery: A bibliometric analysis of municipal wastewater research in Europe. Chemosphere 2021, 284, 131267. [Google Scholar] [CrossRef]
- Hammes, F.; Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. 2002, 1, 3–7. [Google Scholar] [CrossRef]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Huang, X.; Zhou, L.; Zhang, L.; Zheng, X.; Luo, W. Effects of trehalose and sodium alginate on microbially induced carbonate precipitation. Environ. Res. 2024, 263, 120145. [Google Scholar] [CrossRef]
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef]
- Turick, C.E.; Berry, C.J. Review of concrete biodeterioration in relation to nuclear waste. J. Environ. Radioact. 2016, 151, 12–21. [Google Scholar] [CrossRef]
- Erşan, Y.; Boon, N.; De Belie, N. Microbial self-healing concrete: Denitrification as an enhanced and environment-friendly apporach. In Proceedings of the 5th International conference on Self-Healing Materials (ICSHM 2015), Durham, NC, USA, 22–24 June 2015. [Google Scholar]
- Singh, R.; Yoon, H.; Sanford, R.A.; Katz, L.; Fouke, B.W.; Werth, C.J. Metabolism-Induced CaCO3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration. Environ. Sci. Technol. 2015, 49, 12094–12104. [Google Scholar] [CrossRef] [PubMed]
- Perito, B.; Mastromei, G. Molecular Basis of Bacterial Calcium Carbonate Precipitation. In Molecular Biomineralization: Aquatic Organisms Forming Extraordinary Materials; Müller, W.E.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 113–139. [Google Scholar]
- Sakaguchi, T.; Arakaki, A.; Matsunaga, T. Desulfovibrio magneticus sp. nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. Int. J. Syst. Evol. Microbiol. 2002, 52, 215–221. [Google Scholar] [CrossRef]
- Alshalif, A.; Irwan, J.M.; Othman, N.; Anneza, L. Isolation of Sulphate Reduction Bacteria (SRB) to Improve Compress Strength and Water Penetration of Bio-Concrete. MATEC Web Conf. 2016, 47, 01016. [Google Scholar] [CrossRef]
- Tambunan, T.; Irwan, J.M.; Othman, N. Mechanical properties of sulphate reduction bacteria on the durability of concrete in chloride condition. MATEC Web Conf. 2019, 258, 01024. [Google Scholar] [CrossRef]
- O’Connell, M.; McNally, C.; Richardson, M.G. Biochemical attack on concrete in wastewater applications: A state of the art review. Cem. Concr. Compos. 2010, 32, 479–485. [Google Scholar] [CrossRef]
- Ersan, Y.C. Overlooked Strategies in Exploitation of Microorganisms in the Field of Building Materials. In Ecological Wisdom Inspired Restoration Engineering; Achal, V., Mukherjee, A., Eds.; Springer: Singapore, 2019; pp. 19–45. [Google Scholar]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Application of calcifying bacteria for remediation of stones and cultural heritages. Front. Microbiol. 2014, 5, 304. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Kumari, D.; Zhang, Q. Biomineralization for sustainable construction—A review of processes and applications. Earth-Sci. Rev. 2015, 148, 1–17. [Google Scholar] [CrossRef]
- Srinivas, K.; Alengaram, U.J.; Ibrahim, S.; Vello, V.; Phang, S.-M. Feasibility study on the use of microalgae as an external crack healing agent for cement mortar rehabilitation. J. Sustain. Cem.-Based Mater. 2023, 13, 17–32. [Google Scholar] [CrossRef]
- Seifan, M.; Samani, A.K.; Berenjian, A. Bioconcrete: Next generation of self-healing concrete. Appl. Microbiol. Biotechnol. 2016, 100, 2591–2602. [Google Scholar] [CrossRef]
- Gao, X.; Pan, Z.; Gong, P.; Jiang, Y.; Li, C. Microbially induced carbonate precipitation process and mechanism. Carsologica Sin. 2022, 41, 441–452. [Google Scholar]
- Weiner, S.; Dove, P.M. An Overview of Biomineralization Processes and the Problem of the Vital Effect. Biomineralization 2003, 54, 1–29. [Google Scholar] [CrossRef]
- Dupraz, C.; Reid, R.P.; Braissant, O.; Decho, A.W.; Norman, R.S.; Visscher, P.T. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 2009, 96, 141–162. [Google Scholar] [CrossRef]
- Sun, L.; Qin, S.; Liu, Z.; Zhao, H. Research progress on algal biomineralization. Trans. Oceanol. Limnol. 2023, 45, 164–171. [Google Scholar] [CrossRef]
- Frankel, R.B.; Bazylinski, D.A. Biologically Induced Mineralization by Bacteria. Rev. Mineral. Geochem. 2003, 54, 95–114. [Google Scholar] [CrossRef]
- Arias, D.; Cisternas, L.A.; Rivas, M. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. Crystals 2017, 7, 345. [Google Scholar] [CrossRef]
- Drew, G.H. The Action of some Denitrifying Bacteria in Tropical and Temperate Seas, and the Bacterial Precipitation of Calcium Carbonate in the Sea. J. Mar. Biol. Assoc. UK 1911, 9, 142–155. [Google Scholar] [CrossRef]
- Kellerman, K.F.; Smith, N.R. Bacterial precipitation of calcium carbonate. J. Wash. Acad. Sci. 1914, 4, 400–402. [Google Scholar]
- Zhang, J.; Shi, X.; Chen, X.; Huo, X.; Yu, Z. Microbial-Induced Carbonate Precipitation: A Review on Influencing Factors and Applications. Adv. Civ. Eng. 2021, 2021, 9974027. [Google Scholar] [CrossRef]
- Su, J.; Zhang, R.; Hu, X.; Ali, A.; Wang, Z. Calcium precipitation to remove fluorine in groundwater: Induced by Acinetobacter sp. H12 as a template. Korean J. Chem. Eng. 2022, 39, 655–663. [Google Scholar] [CrossRef]
- Dang, Y.; Zhang, R.; Wu, S.; Liu, Z.; Qiu, B.; Fang, Y.; Sun, D. Calcium effect on anaerobic biological treatment of fresh leachate with extreme high calcium concentration. Int. Biodeterior. Biodegrad. 2014, 95, 76–83. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Ali, A.; Su, J.; Huang, T.; Hou, C.; Li, X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. Chemosphere 2024, 362, 142762. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Lyu, J.; Li, F. Comparison of carbonate precipitation induced by Curvibacter sp. HJ-1 and Arthrobacter sp. MF-2: Further insight into the biomineralization process. J. Struct. Biol. 2020, 212, 107609. [Google Scholar] [CrossRef]
- Nurmi, J.T.; Tratnyek, P.G. Electrochemical Properties of Natural Organic Matter (NOM), Fractions of NOM, and Model Biogeochemical Electron Shuttles. Environ. Sci. Technol. 2002, 36, 617–624. [Google Scholar] [CrossRef]
- Yan, H.; Cao, J.; Teng, M.; Meng, L.; Zhao, L.; Chi, X.; Han, Z.; Tucker, M.E.; Zhao, H. Calcium ion removal at different sodium chloride concentrations by free and immobilized halophilic bacteria. Water Res. 2023, 229, 119438. [Google Scholar] [CrossRef]
- Bai, H.; Liu, D.; Zheng, W.; Ma, L.; Yang, S.; Cao, J.; Lu, X.; Wang, H.; Mehta, N. Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments. Int. Biodeterior. Biodegrad. 2021, 165, 105311. [Google Scholar] [CrossRef]
- Hao, Z.; Su, Y.; Liu, S.; Zhang, X. Roles of bacteria and extracellular polymeric substance in calcium carbonate formation: Insights from the effects of calcium source and deposition rate on nucleation. Biochem. Eng. J. 2024, 202, 109160. [Google Scholar] [CrossRef]
- Li, X.; He, X.; Ren, K.; Dong, H.; Lian, B. Mechanisms of carbonate precipitation induced by two model bacteria. Chem. Geol. 2023, 628, 121461. [Google Scholar] [CrossRef]
- Qian, X.; Fang, C.; Huang, M.; Achal, V. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J. Clean. Prod. 2017, 164, 198–208. [Google Scholar] [CrossRef]
- Luo, J.; Chen, X.; Crump, J.; Zhou, H.; Davies, D.G.; Zhou, G.; Zhang, N.; Jin, C. Interactions of fungi with concrete: Significant importance for bio-based self-healing concrete. Constr. Build. Mater. 2018, 164, 275–285. [Google Scholar] [CrossRef]
- Menon, R.R.; Luo, J.; Chen, X.; Zhou, H.; Liu, Z.; Zhou, G.; Zhang, N.; Jin, C. Screening of Fungi for Potential Application of Self-Healing Concrete. Sci. Rep. 2019, 9, 2075. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Cao, J.; Yu, F.; Ma, J.; Zhang, D.; Tang, Y.; Zheng, J. Microbial biomanufacture of metal/metallic nanomaterials and metabolic engineering: Design strategies, fundamental mechanisms, and future opportunities. J. Mater. Chem. B 2021, 9, 6491–6506. [Google Scholar] [CrossRef] [PubMed]
- Sokol, N.W.; Slessarev, E.; Marschmann, G.L.; Nicolas, A.; Blazewicz, S.J.; Brodie, E.L.; Firestone, M.K.; Foley, M.M.; Hestrin, R.; Hungate, B.A.; et al. Life and death in the soil microbiome: How ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 2022, 20, 415–430. [Google Scholar] [CrossRef]
- Li, Q.; Csetenyi, L.; Gadd, G.M. Biomineralization of Metal Carbonates by Neurospora crassa. Environ. Sci. Technol. 2014, 48, 14409–14416. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Csetenyi, L.; Paton, G.; Gadd, G. CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ. Microbiol. 2015, 17, 3082–3097. [Google Scholar] [CrossRef]
- Zhao, J.; Csetenyi, L.; Gadd, G.M. Fungal-induced CaCO3 and SrCO3 precipitation: A potential strategy for bioprotection of concrete. Sci. Total Environ. 2022, 816, 151501. [Google Scholar] [CrossRef]
- Ye, P.; Xiao, F.; Wei, S. Biomineralization and Characterization of Calcite and Vaterite Induced by the Fungus Cladosporium sp. YPLJS-14. Minerals 2023, 13, 1344. [Google Scholar] [CrossRef]
- Creaser, E.H.; Porter, R.L. The purification of urease from Aspergillus nidulans. Int. J. Biochem. 1985, 17, 1339–1341. [Google Scholar] [CrossRef]
- Smith, P.T.; King Jr, A.D.; Goodman, N. Isolation and characterization of urease from Aspergillus niger. Microbiology 1993, 139, 957–962. [Google Scholar] [CrossRef]
- Ariyanti, D.; Handayani, N.; Hadiyanto, H. Feasibility of Using Microalgae for Biocement Production through Biocementation. Bioprocess. Biotech. 2012, 2, 2. [Google Scholar] [CrossRef]
- Irfan, M.F.; Hossain, S.M.Z.; Khalid, H.; Sadaf, F.; Al-Thawadi, S.; Alshater, A.; Hossain, M.M.; Razzak, S.A. Optimization of bio-cement production from cement kiln dust using microalgae. Biotechnol. Rep. 2019, 23, e00356. [Google Scholar] [CrossRef]
- De Muynck, W.; Verbeken, K.; De Belie, N.; Verstraete, W. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol. Eng. 2010, 36, 99–111. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Yao, D.; Wang, S. Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration. Ecol. Eng. 2020, 152, 105883. [Google Scholar] [CrossRef]
- Paasche, E.; Brubak, S.J.P. Enhanced calcification in the coccolithophorid Emiliania huxleyi (Haptophyceae) under phosphorus limitation. Phycologia 1994, 33, 324–330. [Google Scholar] [CrossRef]
- Gal, A. Looking away from the streetlight—New insights into marine calcification. New Phytol. 2018, 220, 5–7. [Google Scholar] [CrossRef]
- Nur, M.M.A.; Dewi, R.N. Opportunities and challenges of microalgae in biocement production and self-repair mechanisms. Biocatal. Agric. Biotechnol. 2024, 56, 103048. [Google Scholar] [CrossRef]
- Santomauro, G.; Baier, J.; Huang, W.; Pezold, S.; Bill, J. Formation of Calcium Carbonate Polymorphs Induced by Living Microalgae. J. Biomater. Nanobiotechnol. 2012, 3, 413–420. [Google Scholar] [CrossRef]
- Xu, P.; Fan, H.; Leng, L.; Fan, L.; Liu, S.; Chen, P.; Zhou, W. Feasibility of microbially induced carbonate precipitation through a Chlorella-Sporosaricina co-culture system. Algal Res. 2020, 47, 101831. [Google Scholar] [CrossRef]
- Arumugam, K.; Mohamad, R.; Ashari, S.E.; Tan, J.S.; Mohamed, M.S. Bioprospecting microalgae with the capacity for inducing calcium carbonate biomineral precipitation. Asia-Pac. J. Chem. Eng. 2022, 17, e2767. [Google Scholar] [CrossRef]
- Borowitzka, M.A.; Larkum, A.W.D.; Nockolds, C.E. A scanning electron microscope study of the structure and organization of the calcium carbonate deposits of algae. Phycologia 1974, 13, 195–203. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Morphological and Cytological Aspects of Algal Calcification. In International Review of Cytology; Bourne, G.H., Danielli, J.F., Jeon, K.W., Eds.; Academic Press: Cambridge, MA, USA, 1982; Volume 74, pp. 127–162. [Google Scholar]
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, UK, 1989. [Google Scholar]
- Mann, S. Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Decho, A.W. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecol. Eng. 2010, 36, 137–144. [Google Scholar] [CrossRef]
- Benzerara, K.; Skouri-Panet, F.; Li, J.; Férard, C.; Gugger, M.; Laurent, T.; Couradeau, E.; Ragon, M.; Cosmidis, J.; Menguy, N.; et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 10933–10938. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, S.M.; Mulligan, C.N.; Neculita, C.M. Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste. Toxics 2024, 12, 107. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, R.; Jiang, G.; Chai, W.; Jin, Z.; Du, R.; Khan, M.; Liu, Z.; Yin, H.; Xu, L. Microbially Induced Calcium Carbonate Precipitation (MICP): Bibliometric Analysis, Research Hotspot Evolution, and Mechanistic Insights (2005–2024). Water 2025, 17, 3332. https://doi.org/10.3390/w17233332
Xiao R, Jiang G, Chai W, Jin Z, Du R, Khan M, Liu Z, Yin H, Xu L. Microbially Induced Calcium Carbonate Precipitation (MICP): Bibliometric Analysis, Research Hotspot Evolution, and Mechanistic Insights (2005–2024). Water. 2025; 17(23):3332. https://doi.org/10.3390/w17233332
Chicago/Turabian StyleXiao, Rui, Guoping Jiang, Wenbo Chai, Zhengyu Jin, Runbao Du, Mumtaz Khan, Zhenghua Liu, Huaqun Yin, and Lechang Xu. 2025. "Microbially Induced Calcium Carbonate Precipitation (MICP): Bibliometric Analysis, Research Hotspot Evolution, and Mechanistic Insights (2005–2024)" Water 17, no. 23: 3332. https://doi.org/10.3390/w17233332
APA StyleXiao, R., Jiang, G., Chai, W., Jin, Z., Du, R., Khan, M., Liu, Z., Yin, H., & Xu, L. (2025). Microbially Induced Calcium Carbonate Precipitation (MICP): Bibliometric Analysis, Research Hotspot Evolution, and Mechanistic Insights (2005–2024). Water, 17(23), 3332. https://doi.org/10.3390/w17233332
