Wolfgang Cyclone Landfall in October 2023: Extreme Sea Level and Erosion on the Southern Baltic Sea Coasts
Abstract
1. Introduction
2. Study Area
3. Material and Methods
- Digital analysis of meteorological and hydrological data obtained from institutions;
- Field measurements of coast retreat, SL range on the coast (run-up), and destruction of infrastructure using GPS RT K, GPS positioning, and levelling of morphology in selected areas and comparison with sea level;
- Remote analysis of sea level impact on the coast, including erosion and infrastructure destruction, based on internet cameras and different internet media sources;
- Analysis of coast retreat and its relation to other variables.
3.1. Hydro-Meteorological Data
3.2. Coast Erosion Estimate Techniques
- Beach (be) height (Hbe) and width (Wbe) change;
- Coast retreat for dune (fr) and cliff sections (cl) of given height (Hfr, Hcl);
- Sea level, including max. (HSL);
- Water run-up on the coast(HSLr), marked as wreck or litter material;
- Visible infrastructure damage.
3.3. Remote Data from Internet Media
- (a)
- Local newspapers, web pages, and websites of seaside towns and local governments containing descriptions of surge damages, photos, short videos, and information about erosion,
- (b)
- Coast-located video cameras with data presented on the internet during and after the surge landfall;
- (c)
- Different internet social networks with fresh data on ongoing surge, flooding, erosion, or infrastructure destruction, including private material on an ongoing surge.
4. Results: Storm Development and Its Impact on the Coast
4.1. Hydro-Meteorological Analysis of Surge
4.1.1. Situation over the Baltic Sea During the Wolfgang Low
4.1.2. Wind Direction and Velocity vs. Sea Level
4.1.3. Sea Level vs. Run-Up Height
4.2. Scale of Coast Erosion and Threats
4.2.1. Surge Destruction Effects
4.2.2. Coast Exposure to the Direction of Undulation by Sea Run-Up (SLr)
4.2.3. Coast Erosion vs. the Beach Height (Hbe) and Sea Level (HSL)
5. Discussion
6. Conclusions
- The position of the given area in relation to the cyclone and the inflow of air masses that caused a surge in the sea level and undulation height;
- The orientation of the coast to the main direction of the wind and undulation;
- The sea level and the maximum run-up resulting from the pressure and the direction and the velocity of the wind;
- The fetch length and wind and the wave height on the open shore;
- Morphological conditions such as beach height, and, partly, its width, and the resistance of sediment to erosion (cohesive rocks or silt, clay, gravel, peat, or sand).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mcinnes, K.L.; Walsh, K.J.E.; Hubbert, G.D.; Beer, T. Impact of sea-level rise and storm surges on a coastal community. Nat. Hazards 2003, 30, 187–207. [Google Scholar] [CrossRef]
- Fritz, H.M.; Blount, C.; Sokoloski, R.; Singleton, J.; Fuggle, A.; McAdoo, B.G.; Moore, A.; Grass, C.; Tate, B. Hurricane Katrina storm surge distribution and field observations on the Mississippi Barrier Islands. Estuar. Coast. Shelf S. 2007, 74, 12–20. [Google Scholar] [CrossRef]
- Houser, C.; Hapke, C.; Hamilton, S. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Prime, T.; Brown, J.M.; Plater, A.J. Physical and economic impacts of sea-level rise and low probability flooding events on coastal communities. PLoS ONE 2015, 10, e117030. [Google Scholar] [CrossRef]
- Bilskie, M.V.; Hagen, S.C.; Alizad, K.; Medeiros, S.C.; Passeri, D.L.; Needham, H.F.; Cox, A. Dynamic simulation and numerical analysis of hurricane storm surge under sea level rise with geomorphologic changes along the northern Gulf of Mexico. Earth’s Future 2016, 4, 177–193. [Google Scholar] [CrossRef]
- Yin, K.; Xu, S.; Huang, W.; Xie, Y. Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary. Ocean Eng. 2017, 136, 80–93. [Google Scholar] [CrossRef]
- Guan, S.; Li, S.; Hou, Y.; Hu, P.; Liu, Z.; Feng, J. Increasing threat of landfalling typhoons in the western North Pacific between 1974 and 2013. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 279–286. [Google Scholar] [CrossRef]
- Du, M.; Hou, Y.; Hu, P.; Wang, K. Effects of Typhoon Paths on Storm Surge and Coastal Inundation in the Pearl River Estuary, China. Remote Sens. 2020, 12, 1851. [Google Scholar] [CrossRef]
- Arnell, N.W.; Livermore, M.J.L.; Kovats, S.; Levy, P.E.; Nicholls, R.; Parry, M.L.; Gaffin, S.R. Climate and socio-economic scenarios for global-scale climate change impact assessments: Characterizing the SRES storylines. Glob. Environ. Chang. 2004, 14, 3–20. [Google Scholar] [CrossRef]
- Menéndez, M.; Woodworth, P.L. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 2010, 115, C10011. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar]
- Jiménez, J.A.; Sancho-García, A.; Bosom, E.; Valdemoro, H.I.; Guillén, J. Storm-induced damages along the Catalan coast (NW Mediterranean) during the period 1958–2008. Geomorphology 2012, 143–144, 24–33. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Muis, S.; Apecechea, M.I.; Dullaart, J.; de Lima Rego, J.; Madsen, K.S.; Su, J.; Yan, K.; Verlaan, M.A. High-Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections. Front. Mar. Sci. 2020, 07, 263. [Google Scholar] [CrossRef]
- Pye, K.; Neal, A. Coastal dune erosion at Formby Point, north Merseyside, England: Causes and mechanisms. Mar. Geol. 1994, 119, 39–56. [Google Scholar] [CrossRef]
- Van de Graaff, J. Coastal and dune erosion under extreme conditions. J. Coast. Res. 1994, SI 12, 253–262. [Google Scholar]
- Morton, R.A.; Sallenger, A.H. Morphological impact of extreme storms on sand beaches and barriers. J. Coast. Res. 2003, 19, 560–574. [Google Scholar]
- Esteves, L.S.; Brown, J.M.; Williams, J.J.; Lymbery, G. Quantifying thresholds for significant dune erosion along the Sefton Coast, Northwest England. Geomorphology 2011, 143–144, 52–61. [Google Scholar] [CrossRef]
- Kandrot, S.; Farrell, E.; Devoy, R. The morphological response of foredunes at a breached barrier system to winter 2013/2014 storms on the southwest coast of Ireland. Earth Surf. Proc. Land. 2016, 41, 2123–2136. [Google Scholar] [CrossRef]
- Jarmalavicius, D.; Šmatas, V.; Stankunavicius, G.; Pupienis, D.; Žilinskas, G. Factors controlling coastal erosion during storm events. J. Coast. Res. 2016, SI 75, 1112–1116. [Google Scholar] [CrossRef]
- Castelle, B.; Marieu, V.; Bujan, S.; Splinter, K.D.; Robinet, A.; Sénéchal, N.; Ferreira, S. Impact of the winter 2013–2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments. Geomorphology 2015, 238, 135–148. [Google Scholar] [CrossRef]
- Masselink, G.; Scott, T.; Poate, T.; Russell, P.; Davidson, M.E.; Conley, D.C. The extreme 2013/2014 winter storms: Hydrodynamic forcing and coastal response along the southwest coast of England. Earth Surf. Proc. Land. 2016, 41, 378–391. [Google Scholar] [CrossRef]
- Nielsen, P.; Hanslow, D. Wave run-up distributions on natural beaches. J. Coast. Res. 1991, 7, 1139–1153. [Google Scholar]
- Stockton, H.; Holman, R.; Howd, P.; Sallenger, A. Empirical parametrization of setup, swash and runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Melby, J.; Caraballo-Nadal, N.; Kobayashi, N. Wave runup prediction for flood mapping. Coast. Eng. Proc. 2012, 1, 79. [Google Scholar] [CrossRef]
- Andersson, H.C. Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level. Tellus A Dyn. Meteorol. Oceanogr. 2002, 54, 76–88. [Google Scholar] [CrossRef]
- Sztobryn, M.; Stigge, H.J.; Wielbińska, D.; Weidig, B.; Stanisławczyk, I.; Kańska, A.; Krzysztofik, K.; Kowalska, B.; Letkiewicz, B.; Mykita, M. Storm Surges in the Southern Baltic (Western and Central Parts); Report 39; Bundesamt für Seeschifffahrt und Hydrographie: Rostock/Hamburg, Germany, 2005. [Google Scholar]
- Wolski, T.; Wiśniewski, B.; Giza, A.; Kowalewska-Kalkowska, H.; Boman, H.; Grabbi-Kaiv, S.; Hammarklint, T.; Holfort, J.; Lydeikaitė, Ž. Extreme sea levels at selected stations on the Baltic Sea coast. Oceanologia 2014, 56, 259–290. [Google Scholar] [CrossRef]
- Surkova, G.; Arkhipkin, V.; Kislov, A. Atmospheric circulation and storm events in the Baltic Sea. Open Geosci. 2015, 7, 332–341. [Google Scholar] [CrossRef]
- Weisse, R.; von Storch, H.; Feser, F. Northeast Atlantic and North Sea storminess as simulated by a regional climate model during 1958–2001 and comparison with observations. J. Clim. 2005, 18, 465–479. [Google Scholar] [CrossRef]
- Madsen, K.S.; Høyer, J.L.; Suursaar, Ü.; She, J.; Knudsen, P. Sea level trends and variability of the Baltic Sea from 2D statistical reconstruction and altimetry. Front. Earth Sci. 2019, 7, 243. [Google Scholar] [CrossRef]
- Kowalewska-Kalkowska, H. Storm-surge induced water level changes in the Odra River mouth area (southern Baltic coast). Atmosphere 2021, 12, 1559. [Google Scholar] [CrossRef]
- Hünicke, B.; Zorita, E.; Soomere, T.; Madsen, K.S.; Johansson, M.; Suursaar, Ü. Recent Change—Sea Level and Wind Waves. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Regional Climate Studies; Springer: Cham, Switzerland, 2015; pp. 155–185. Available online: https://link.springer.com/chapter/10.1007/978-3-319-16006-1_9 (accessed on 16 October 2023).
- Weisse, R.; Weidemann, H. Baltic Sea extreme sea levels 1948-2011: Contributions from atmospheric forcing. Procedia IUTAM 2017, 25, 65–69. [Google Scholar] [CrossRef]
- Kowalewska-Kalkowska, H. Frequency and strength of storm surges in the Oder River mouth area. Acta Sci. Pol. Form. Cir. 2018, 17, 55–65. [Google Scholar] [CrossRef]
- Wolski, T.; Wiśniewski, B. Geographical diversity in the occurrence of extreme sea levels on the coasts of the Baltic Sea. J. Sea Res. 2020, 159, 101890. [Google Scholar] [CrossRef]
- Łabuz, T.A. Environmental Impacts—Coastal erosion and coastline changes. In Second Assessment of Climate Change for the Baltic Sea Basin; The BACC II Author Team, Ed.; Regional Climate Studies; Springer: Cham, Switzerland, 2015; pp. 381–396. [Google Scholar] [CrossRef]
- Trzeciak, S. Storm Winds on the Polish Baltic Coast; Wydawnictwa Wyższej Szkoły Morskiej: Szczecin, Poland, 2001; Volume 36. (In Polish) [Google Scholar]
- Andrée, E.; Su, J.; Dahl Larsen, M.A.; Drews, M.; Stendel, M.; Skovgaard Madsen, K. The role of preconditioning for extreme storm surges in the western Baltic Sea. Nat. Hazards Earth Syst. Sci. 2023, 23, 1817–1834. [Google Scholar] [CrossRef]
- Lefebvre, C.; Rosenhagen, G. The climate in the North and Baltic Sea Region. In Die Küste 74; Archive for Research and Technology on the North Sea and Baltic Coast; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2008; pp. 45–59. Available online: https://izw.baw.de/publikationen/die-kueste/0/k074_Inhalt.pdf (accessed on 20 March 2024).
- Hallin, C.; Hofstede, J.L.A.; Martinez, G.; Jensen, J.; Baron, N.; Heimann, T.; Kroon, A.; Arns, A.; Almström, B.; Sørensen, P.; et al. Comparative Study of the Effects of the 1872 Storm and Coastal Flood Risk Management in Denmark, Germany, and Sweden. Water 2021, 13, 1697. [Google Scholar] [CrossRef]
- Rosenhagen, G.; Bork, I. Rekonstruktion der Sturmwetterlage vom 13 November 1872. In Die Küste 75; Boyens: Heide, Germany; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2009; pp. 51–70. Available online: https://henry.baw.de/items/50f61305-775b-41a1-997e-189ce93a0fed (accessed on 20 March 2024).
- Bork, I. Results of some investigations by A. Colding on the storm surge in the Baltic Sea from November 12 to 14, 1872 and on the relationships of the winds to the currents and water levels. In Die Küste 92; Bundesanstalt für Wasserbau: Karlsruhe, Germany; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2022; pp. 117–124. [Google Scholar] [CrossRef]
- Baensch, O. Sturmfluth vom 12/13 November 1872 an den OstseeKüsten des Preußschen Staates. Z. Bauwes. 1875, XXV, 156–220. [Google Scholar]
- Jensen, J.; Habib, M.; Beckmann, S. Best estimates for historical storm surge water level and MSL development at the Travemünde/Baltic Sea gauge over the last 1000 years. In Die Küste 92; Bundesanstalt für Wasserbau: Karlsruhe, Germany; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2022; pp. 5–39. [Google Scholar] [CrossRef]
- Lampe, R. Holocene evolution and coastal dynamics of the Fischland Darss Zingst peninsula. Greifswald Geographische Arb. 2002, 27, 155–163. [Google Scholar]
- Zeiler, M.; Schwarzer, K.; Ricklefs, K. Seabed morphology and sediment dynamics. In Die Küste 74; Archive for Research and Technology on the North Sea and Baltic Coast; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2008; pp. 31–44. Available online: https://izw.baw.de/die-kueste/0/k074_ICCE_2008.pdf (accessed on 20 March 2024).
- Harff, J.; Meyer, M. Coastlines of the Baltic Sea—Zones of competition between geological processes and a changing climate: Examples from the southern Baltic. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 149–164. [Google Scholar] [CrossRef]
- Łabuz, T.A. Polish coastal dunes—Affecting factors and morphology. Landf. Anal. 2013, 22, 33–59. [Google Scholar] [CrossRef]
- Borówka, R.K. Coastal dunes in Poland. In Dunes of the European Coasts; Bakker, T.W., Jungerius, P.D., Klijn, J.A., Eds.; Catena Supplementary 18; Schweizerbart Science Publishers: Stuttgart, Germany, 1990; pp. 25–30. [Google Scholar]
- Pruszak, Z.; Zawadzka, E. Potential implications of sea level rise for Poland. J. Coast. Res. 2008, 24, 410–422. [Google Scholar] [CrossRef]
- Lampe, R.; Naumann, M.; Meyer, H.; Janke, W.; Ziekur, R. Holocene Evolution of the Southern Baltic Sea Coast and Interplay of Sea-Level Variation, Isostasy, Accommodation and Sediment Supply. In The Baltic Sea Basin; Harff, J., Björck, S., Hoth, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 233–251. [Google Scholar] [CrossRef]
- Łabuz, T.A.; Grunewald, R.; Bobykina, V.; Chubarenko, B.; Česnulevičius, A.; Bautrėnas, A.; Morkūnaitė, R.; Tõnisson, H. Coastal dunes of the Baltic Sea shores: A review. Quaest. Geogr. 2018, 37, 47–71. [Google Scholar] [CrossRef]
- Hoffmann, G. Postglacial to holocene sedimentation history and palaeogeographical development of a barrier spit (Pudagla lowland, Usedom Island, SW Baltic coast). Pol. Geol. Inst. 2004, SI 11, 83–90. [Google Scholar]
- Hoffmann, G.; Lampe, R.; Barnasch, J. Postglacial evolution of coastal barriers along the West Pomeranian coast, NE Germany. Quat. Int. 2005, 133–134, 47–59. [Google Scholar] [CrossRef]
- Hoffmann, G.; Lampe, R. Sediment budget calculation to estimate Holocene coastal changes on the southwest Baltic Sea (Germany). Mar. Geol. 2007, 243, 143–156. [Google Scholar] [CrossRef]
- Gurwell, B. Coastal protection along the Baltic Sea coast—Mecklenburg-Vorpommern. In Die Küste 74; Archive for Research and Technology on the North Sea and Baltic Coast; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2008; pp. 179–188. Available online: https://izw.baw.de/die-kueste/0/k074_ICCE_2008.pdf (accessed on 15 March 2024).
- Schüttrumpf, H. Sea dikes in Germany. In Die Küste 74; Archive for Research and Technology on the North Sea and Baltic Coast; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2008; pp. 189–199. Available online: https://izw.baw.de/die-kueste/0/k074115.pdf (accessed on 20 March 2024).
- Christiansen, C.; Dalsgaard, K.; Moller, J.T.M.; Browman, D. Coastal dunes in Denmark: Chronology in relation to sea level. In Dunes of the European Coasts; Bakker, T.W., Jungerius, P.D., Klijn, J.A., Eds.; Catena Supplementary 18; Schweizerbart Science Publishers: Stuttgart, Germany, 1990; pp. 61–70. [Google Scholar]
- Hansen, K.; Vestergaard, P. Initial establishment of vegetation in a man-made coastal area in Denmark. Nord. J. Bot. 1986, 6, 479–495. [Google Scholar] [CrossRef]
- Isermann, M.; Krisch, H. Dunes in contradiction with different interests. An example: The camping ground Prerow (Darss/Baltic Sea). In Coastal Management and Habitat Conservation; Salman, A.H.P.M., Berends, H., Bonazountas, M., Eds.; EUCC: Marathon, Greece, 1995; pp. 439–449. [Google Scholar]
- Institute of Meteorology and Water Management, National Research Institute (IMGW-PIB). 2023. Available online: https://www.imgw.pl/ (accessed on 5 November 2023).
- Federal Office for Maritime Navigation and Hydrography (Bundesamt für Seeschifffahrt und Hydrographie), BSH, Germany. 2024. Available online: www.bsh.de (accessed on 10 March 2024).
- Swedish Meteorological and Hydrological Institute (SMHI). 2023. Available online: https://www.smhi.se/en/weather/sea-weather/sea-levels-and-waves (accessed on 30 October 2023).
- Danish Meteorological Institute (Stormflodsvarsling), DMI. 2023. Available online: https://www.dmi.dk/hav-og-is/temaforside-stormflod/stormflodsvarsling (accessed on 30 October 2023).
- Pegelalarm from SOBOS GMBH, Germany. 2023. Available online: https://pegelalarm.com/country.php (accessed on 25 October 2023).
- Institute of Meteorology of the Free University of Berlin. 2023. Available online: http://www.met.fu-berlin.de/wetterpate/ (accessed on 5 November 2023).
- Meteorological Service in Germany, Wetterzentrale. 2023. Available online: https://wetterzentrale.de (accessed on 27 October 2023).
- Windy: Multimodel Forecast & LIVE Satellite Visualization. 2023. Available online: https://windy.com (accessed on 16 October 2023).
- Wave Hindcast Service Provided by Copernicus Marine Service. 2025. Available online: https://data.marine.copernicus.eu/product/BALTICSEA_MULTIYEAR_WAV_003_015 (accessed on 15 June 2025).
- Dawson, A.G. Geomorphological effects of tsunami run-up and backwash. Geomorpology 1994, 10, 83–94. [Google Scholar] [CrossRef]
- Davidson, M.A.; van Koningsveld, M.; de Kruif, A.; Holman, R.A. Developing coastal video monitoring systems in support of coastal zone management. Coast. Eng. J. Coast. Res. 2004, SI 39, 49–56. [Google Scholar] [CrossRef]
- Smit, M.W.J.; Aarninkhof, S.G.J.; Wijnberg, K.M.; González, M.; Kingston, K.S.; Southgate, H.N.; Ruessink, B.G.; Holman, R.A.; Siegle, E.; Davidson, M.; et al. The role of video imagery in predicting daily to monthly coastal evolution. Coast. Eng. 2007, 54, 539–555. [Google Scholar] [CrossRef]
- Łabuz, T.A. Coastal dunes landscape change in Poland—Research method based on photography studies. In Photogeomorphology and Landscape Change; Thornbush, M.J., Ed.; Zeitschrift für Geomorphologie; Gebrüder Bornträger Verlagsbuchhandlung: Stuttgart, Germany, 2016; pp. 79–98. [Google Scholar] [CrossRef]
- Gräwe, U.; Burchard, H. Storm surges in the Western Baltic Sea: The present and a possible future. Clim. Dyn. 2012, 39, 165–183. [Google Scholar] [CrossRef]
- Łabuz, T.A. Storm surges versus shore erosion: 21 years (2000–2020) of observations on the Świna Gate Sandbar (southern Baltic coast). Quaest. Geogr. 2022, 41, 5–31. [Google Scholar] [CrossRef]
- Hofstede, J.; Hamann, M. The 1872 catastrophic storm surge at the Baltic Sea coast of Schleswig-Holstein; lessons learned? In Die Küste 92; Bundesanstalt für Wasserbau: Karlsruhe, Germany; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2022; pp. 141–161. [Google Scholar] [CrossRef]
- Bork, I.; Rosenhagen, G.; Müller-Navarra, S. Modelling the extreme storm surge in the western Baltic Sea on 13 November 1872, revisited. In Die Küste 92; Bundesanstalt für Wasserbau: Karlsruhe, Germany; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2022; pp. 163–195. [Google Scholar] [CrossRef]
- Aakjær, P.; Buch, E. The 1872 super-storm surge in the Baltic—The Danish perspective. In Die Küste 92; Bundesanstalt für Wasserbau: Karlsruhe, Germany, 2022; pp. 125–139. [Google Scholar] [CrossRef]
- Jensen, J.; Müller-Navarra, S. Storm surges on the German coast. In Die Küste 74; Archive for Research and Technology on the North Sea and Baltic Coast; German Coastal Engineering Research Council (KFKI): Hamburg, Germany, 2008; pp. 92–124. Available online: https://henry.baw.de/items/c69c9330-730e-4af7-bcc3-5e3ebbed9358 (accessed on 20 March 2024).
- Zeidler, R.B.; Wróblewski, A.; Miętus, M.; Dziadziuszko, Z.; Cyberski, J. Wind, wave, and storm surge regime at the Polish Baltic coast. In Polish Coast Past, Present and Future; Rotnicki, K., Ed.; Coastal Education & Research Foundation, Inc.: Charlot, NC, USA, 1995; Volume SI 22, pp. 33–55. [Google Scholar]
- Łabuz, T.A. Causes and effects of coastal dunes erosion during storm surge Axel in January 2017 on the southern Baltic Polish coast. Quaest. Geogr. 2023, 42, 67–87. [Google Scholar] [CrossRef]
- Łabuz, T.A.; Kalkowska-Kowalewska, H. Coastal abrasion of the Swina Gate Sandbar (Pomeranian Bay coast) caused by the heavy storm surge on 15 October 2009. In Proceedings of the Abstracts Storm Surges Congress 2010, University of Hamburg, Hamburg, Germany, 13–17 September 2010; p. 115. [Google Scholar] [CrossRef]
- Łabuz, T.A.; Kowalewska-Kalkowska, H. Coastal erosion caused by the heavy storm surge of November 2004 in the southern Baltic Sea. Clim. Res. 2011, SI 48, 93–101. [Google Scholar] [CrossRef]
- Łabuz, T.A. Erosion and its rate on an accumulative Polish dune coast: The effects of the January 2012 storm surge. Oceanologia 2014, 56, 307–326. [Google Scholar] [CrossRef]
- Łabuz, T.A. Coastal dune erosion under the influence of the Marie and Nadine storms in January 2022 on the Southern Baltic Sea coast. Front. Mar. Sci. 2025, 12, 1634257. [Google Scholar] [CrossRef]












| Location | Sea Level, (m AMSL) | Run-Up, (m AMSL) | Coast Erosion (Dune Cliff Retreat, m) | Infrastructure, Protection Measures, Damage, and Flooding |
|---|---|---|---|---|
| East Polish coast (Gdańsk-Łeba) | 0.57–0.60 | 0.7–1.0 | No erosion, only where beach < SLr | No damage |
| Middle Polish coast (Ustka-Kołobrzeg) | 0.74–0.80 | 0.9–1.2 | No erosion, only where beach < SLr | No damage |
| Pomeranian Bay, Polish part | 0.68–0.94 | 1.3–1.6 | Minor dune retreat, ≤1.5 m | No damage, disruption of ferry traffic |
| Pomeranian Bay, German part | 0.94–1.06 | 1.6–2.7 | Minor dune retreat, 2–4 m | No significant damage, artificial dune erosion |
| Rügen Island | 1.06–1.13 | 2.5–2.9 | Dune erosion 2–18 m, cliffs damaged 1–2 m | Destroyed promenade in Sassnitz, flooding of lowlands, seawalls flooded |
| East and middle German coast (Zingst–Wismar) | 1.4–2.2 | 3.4–3.7 | Severe dune erosion 5–18 m, cliff retreat 2–7 m | Damage to infrastructure, seawalls overtopped, flooding of lowlands |
| Fehmarn Island and Mecklenburg Bay | 1.5–2.2 | 4.0–4.8 | Heavy dune erosion 4–18 m, cliff retreat 1–9 m | Damage to infrastructure, roads, and marinas, flooding of lowlands |
| West German coast (Kiel-Eckernförde) | 2.15 | 4.6–5.0 | Heavy dune and cliff erosion 3–20 m, low land overtopping | Damage to infrastructure and marinas, no access to roads, flooding of lowlands, disruption of ferry traffic |
| West German coast (Flensburg-Kappeln) | 2.27 | 4.9–5.4 | Dune erosion in bays, erosion of cliffs | Damage to buildings, harbour piers, and transport infrastructure, flooding of lowlands, overtopping of seawalls and dykes |
| Denmark (Jutland, Fyn, Sealand, Bornholm) | 1.67–2.20 | 3.4–4.5 | Dune erosion (3–7 m), flooding of harbours, overtopping of low land | Damage to infrastructure and harbours, flooding, overtopping of seawalls and dykes, disruption of ferry traffic |
| Sweden (Scania) | 1.30–1.50 | 3.5–4.0 | Dune erosion (2–3.5 m), flooding of harbours, overtopping of low land | Flooding and damage to infrastructure areas, disruption of ferry traffic |
| Year | 1872 | 1914 | 2017 | 2019 | 2020 | 2022 | 2023 | 2024 | 2025 |
|---|---|---|---|---|---|---|---|---|---|
| Day | 11–13 | 8–9 | 3–6 | 1–3 | 14–15 | 29–31 | 19–21 | 2–4 | 9–13 |
| Month | Nov | Jan | Jan | Jan | Oct | Jan | Oct | Feb | Jan |
| Name of surge | - | - | Axel | Zeetje | Gisela | Nadine | Wolfgang | Annielle | Charly |
| Wind azimuth | E-ENE | NE | NW-NE | W-NNE | NE | W-NNE | ENE-E | E-NNE | NNE-N |
| Flensburg | 327 | nd | 94 | 104 | 116 | 150 | 227 | 128 | 106 |
| Travemünde | 330 | 195 | 101 | 123 | 139 | 123 | 181 | 125 | 127 |
| Warnemünde | 270 | nd | 99 | 128 | 126 | 131 | 150 | 123 | 115 |
| Sasnitz | 200 | nd | 97 | 101 | 99 | 105 | 113 | 83 | 103 |
| Świnoujście | 140 | 196 | 142 | 133 | 110 | 99 | 94 | 94 | 121 |
| Kołobrzeg | 150 | 195 | 150 | 137 | 71 | 120 | 76 | 72 | 120 |
| Ustka | 200 | nd | 145 | 121 | 46 | 102 | 74 | 62 | 117 |
| Władysławowo | no gauge | no gauge | 136 | 135 | 54 | 128 | 57 | 57 | 111 |
| Gdańsk | 105 | 156 | 118 | 128 | 49 | 121 | 60 | 54 | 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łabuz, T.A.; Łabuz, K.E. Wolfgang Cyclone Landfall in October 2023: Extreme Sea Level and Erosion on the Southern Baltic Sea Coasts. Water 2025, 17, 3155. https://doi.org/10.3390/w17213155
Łabuz TA, Łabuz KE. Wolfgang Cyclone Landfall in October 2023: Extreme Sea Level and Erosion on the Southern Baltic Sea Coasts. Water. 2025; 17(21):3155. https://doi.org/10.3390/w17213155
Chicago/Turabian StyleŁabuz, Tomasz Arkadiusz, and Kacper Eryk Łabuz. 2025. "Wolfgang Cyclone Landfall in October 2023: Extreme Sea Level and Erosion on the Southern Baltic Sea Coasts" Water 17, no. 21: 3155. https://doi.org/10.3390/w17213155
APA StyleŁabuz, T. A., & Łabuz, K. E. (2025). Wolfgang Cyclone Landfall in October 2023: Extreme Sea Level and Erosion on the Southern Baltic Sea Coasts. Water, 17(21), 3155. https://doi.org/10.3390/w17213155

