Machine Learning Prediction of Phosphate Adsorption on Red Mud Modified Biochar Beads: Parameter Optimization and Experimental Validation
Abstract
1. Introduction
2. Materials and Methodology
2.1. Materials and Chemicals
2.2. Preparation of Red Mud Modified Biochar Beads (RM/CSBC)
2.3. Batch Adsorption Experiments
2.4. Prediction and Analysis Methods of Machine Learning Model
2.4.1. Machine Learning Model Construction
2.4.2. Performance Evaluation of Machine Learning Model
2.4.3. Interpretability Analysis of Machine Learning Model
2.5. Prediction of Phosphate Adsorption Capacity
3. Results and Discussion
3.1. Analysis of Data Distribution Characteristics
3.2. Pearson Correlation Analysis
3.3. Comparative Analysis of Predictive Model Performance
3.4. Feature Importance Analysis
3.5. SHAP Value Analysis
3.6. Feature Partial Dependence Analysis
3.7. Experimental Verification of SVR and RF Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Biochar |
RM | Red mud |
RM/CSBC | Red mud modified biochar beads |
References
- Cao, J.; Zhao, W.; Wang, S.; Xu, R.; Hao, L.; Sun, W. Effects of Calcium on Phosphorus Recovery from Wastewater by Vivianite Crystallization: Interaction and Mechanism Analysis. J. Environ. Chem. Eng. 2023, 11, 110506. [Google Scholar] [CrossRef]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef]
- He, D.; Zhang, Z.; Zhang, W.; Zhang, H.; Liu, J. Municipal Sludge Biochar Skeletal Sodium Alginate Beads for Phosphate Removal. Int. J. Biol. Macromol. 2024, 261, 129732. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Wang, Y.; Hua, L.; Fan, M.-Y.; Ren, X.-H.; Zhang, L. Mg-Fe Bimetallic Oxide Nanocomposite for Superior Phosphate Removal and Recovery from Aquatic Environment: Synergistic Effects of Sorption and Struvite Crystallization. J. Environ. Chem. Eng. 2024, 12, 112132. [Google Scholar] [CrossRef]
- Yi, X.-H.; Wang, T.-Y.; Chu, H.-Y.; Gao, Y.; Wang, C.-C.; Li, Y.-J.; Chen, L.; Wang, P.; Fu, H.; Zhao, C.; et al. Effective Elimination of Tetracycline Antibiotics via Photoactivated SR-AOP over Vivianite: A New Application Approach of Phosphorus Recovery Product from WWTP. Chem. Eng. J. 2022, 449, 137784. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Zhao, Y.; Qi, M.; Wang, L.; Feng, J. Phosphate Recovery from Wastewater via Vivianite Crystallization Using Separable Ferrous Modified Biochar Beads. Chem. Eng. J. 2024, 498, 155453. [Google Scholar] [CrossRef]
- Li, H.; Wei, Y.; Wang, Y.; Zhao, Y.; Wang, L.; Feng, J.; Sun, F. Cooperative Adsorption of Sb(V) in Water by Magnetic MgFe2O4-Biochar Composite Beads. Colloids Surf. A. Physicochem. Eng. Asp. 2024, 684, 133133. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate Adsorption on Metal Oxides and Metal Hydroxides: A Comparative Review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Cai, G.; Ye, Z. Concentration-Dependent Adsorption Behaviors and Mechanisms for Ammonium and Phosphate Removal by Optimized Mg-Impregnated Biochar. J. Clean Prod. 2022, 349, 131453. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Z.; Zhang, Y.; Li, B.; Chen, C.; Shen, K. Effects of Biochars Combined with Ferrous Sulfate and Pig Manure on the Bioavailability of Cd and Potential Phytotoxicity for Wheat in an Alkaline Contaminated Soil. Sci. Total Environ. 2021, 753, 141832. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.; Zhao, Y.; Sun, R.; Qi, M.; Wu, S.; Wang, L. A Review of Biochar-Industrial Waste Composites for Sustainable Soil Amendment: Mechanisms and Perspectives. Water 2025, 17, 2184. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar Modification to Enhance Sorption of Inorganics from Water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, Y.; Qi, M.; Wang, L.; Feng, J.; Li, B. Struvite-Loaded Biochar Beads Fertilizer for Different Soils: Nutrient Slow Release, Soil Properties Improvement and Heavy Metal Remediation. Front. Environ. Sci. Eng. 2025, 19, 73. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhao, Y.; Wang, L.; Feng, J.; Sun, F. Efficient Simultaneous Phosphate and Ammonia Adsorption Using Magnesium-Modified Biochar Beads and Their Recovery Performance. J. Environ. Chem. Eng. 2023, 11, 110875. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Liu, Z.; Ren, Z. Frontier Research and Prospect of Phosphate Adsorption in Wastewater by Red Mud: A Review. Desalination Water Treat. 2023, 310, 86–108. [Google Scholar] [CrossRef]
- Kang, K.; Loebsack, G.; Sarchami, T.; Klinghoffer, N.B.; Papari, S.; Yeung, K.K.-C.; Berruti, F. Production of a Bio-Magnetic Adsorbent via Co-Pyrolysis of Pine Wood Waste and Red Mud. Waste Manag. 2022, 149, 124–133. [Google Scholar] [CrossRef]
- Pan, X.; Wu, H.; Lv, Z.; Yu, H.; Tu, G. Recovery of Valuable Metals from Red Mud: A Comprehensive Review. Sci. Total Environ. 2023, 904, 166686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, Y.; Yang, D.; Jin, Q.; Lin, H. Synthesis of Co-Pyrolyzed Biochar Using Red Mud and Peanut Shell for Removing Phosphate from Pickling Wastewater: Performance and Mechanism. Chemosphere 2023, 331, 138841. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ma, X.; Xiong, Q.; Zhou, X.; Wu, H.; Yan, S.; Zhang, Z. Functional Biochar Fabricated from Red Mud and Walnut Shell for Phosphorus Wastewater Treatment: Role of Minerals. Environ. Res. 2023, 232, 116348. [Google Scholar] [CrossRef]
- Wang, W.; Chang, J.-S.; Lee, D.-J. Machine Learning Applications for Biochar Studies: A Mini-Review. Bioresour. Technol. 2024, 394, 130291. [Google Scholar] [CrossRef]
- Fu, W.; Yao, X.; Zhang, L.; Zhou, J.; Zhang, X.; Yuan, T.; Lv, S.; Yang, P.; Fu, K.; Huo, Y.; et al. Design Optimization of Bimetal-Modified Biochar for Enhanced Phosphate Removal Performance in Livestock Wastewater Using Machine Learning. Bioresour. Technol. 2025, 418, 131898. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, Y.; Jiang, Z.; Xu, Z.; Yang, M.; Ding, J.; Zhang, C. Machine Learning Prediction of Phosphate Adsorption on Six Different Metal-Containing Adsorbents. ACS EST Eng. 2023, 3, 1135–1146. [Google Scholar] [CrossRef]
- Liu, C.; Balasubramanian, P.; Li, F.; Huang, H. Machine Learning Prediction of Dye Adsorption by Hydrochar: Parameter Optimization and Experimental Validation. J. Hazard. Mater. 2024, 480, 135853. [Google Scholar] [CrossRef]
- Dihan, M.R.; Alam, M.A.; Akter, S.; Gafur, M.A.; Islam, M.S. Statistical Modeling and Application of Machine Learning for Antibiotic Degradation Using UV/Persulfate-Peroxide Based Advanced Oxidation Process. Heliyon 2025, 11, e43664. [Google Scholar] [CrossRef]
- Lyu, H.; Xu, Z.; Zhong, J.; Gao, W.; Liu, J.; Duan, M. Machine Learning-Driven Prediction of Phosphorus Adsorption Capacity of Biochar: Insights for Adsorbent Design and Process Optimization. J. Environ. Manag. 2024, 369, 122405. [Google Scholar] [CrossRef]
- Han, M.; Wang, Y.; Zhan, Y.; Lin, J.; Bai, X.; Zhang, Z. Efficiency and Mechanism for the Control of Phosphorus Release from Sediment by the Combined Use of Hydrous Ferric Oxide, Calcite and Zeolite as a Geo-Engineering Tool. Chem. Eng. J. 2022, 428, 131360. [Google Scholar] [CrossRef]
- Elaoud, A.; Jalel, R.; Ben Hassen, H. Bayesian Network versus Variational Bayesian Linear Regression Model for Predicting Penetration Resistance and Compaction Factors in Agricultural Soils. Comput. Electron. Agric. 2025, 230, 109913. [Google Scholar] [CrossRef]
- Halder, R.K.; Uddin, M.N.; Uddin, M.A.; Aryal, S.; Khraisat, A. Enhancing K-Nearest Neighbor Algorithm: A Comprehensive Review and Performance Analysis of Modifications. J. Big Data 2024, 11, 113. [Google Scholar] [CrossRef]
- Zou, W.; Yao, X.; Chen, Y.; Li, X.; Huang, J.; Zhang, Y.; Yu, L.; Xie, B. An Elastic Net Regression Model for Predicting the Risk of ICU Admission and Death for Hospitalized Patients with COVID-19. Sci. Rep. 2024, 14, 14404. [Google Scholar] [CrossRef]
- Kim, T.; Lieberman, B.; Luta, G.; Peña, E.A. Prediction Intervals for Poisson-Based Regression Models. Wiley Interdiscip. Rev. Comput. Stat. 2022, 14, e1568. [Google Scholar] [CrossRef]
- De Miranda Ramos Soares, A.P.; De Oliveira Carvalho, F.; De Farias Silva, C.E.; Da Silva Gonçalves, A.H.; De Souza Abud, A.K. Random Forest as a Promising Application to Predict Basic-Dye Biosorption Process Using Orange Waste. J. Environ. Chem. Eng. 2020, 8, 103952. [Google Scholar] [CrossRef]
- Kalabarige, L.R.; Krishna, D.; Potnuru, U.K.; Mishra, M.; Alharthi, S.S.; Koutavarapu, R. Tree-Based Machine Learning and Nelder–Mead Optimization for Optimized Cr(VI) Removal with Indian Gooseberry Seed Powder. Water 2024, 16, 2175. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wei, Y. Facile Synthesis of Eggshell Biochar Beads for Superior Aqueous Phosphate Adsorption with Potential Urine P-Recovery. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126589. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokolowska, Z.; Boguta, P. Biochar Physicochemical Properties: Pyrolysis Temperature and Feedstock Kind Effects. Rev. Environ. Sci. Bio-Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Ruan, R.; Hua, W.; Yang, W.; Jia, S.; Ma, J.; Zhao, X.; Wang, J.; Wang, X.; Tan, H. Improving Biochar’s Phosphate Adsorption Using Active Metal Substances in Byer Red Mud. J. Anal. Appl. Pyrolysis 2025, 187, 107006. [Google Scholar] [CrossRef]
- Zhou, R.; Li, P.; Zhang, M. Closed-Loop Phosphorus Recovery via Engineered Biochar: Synergistic Co-Pyrolysis of Invasive Water Hyacinth with Industrial Red Mud. Desalination Water Treat. 2025, 323, 101397. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, B.; Feng, Q.; Chen, M.; Zhang, X.; Zhao, R. Recovery of Nitrogen and Phosphorus in Wastewater by Red Mud-Modified Biochar and Its Potential Application. Sci. Total Environ. 2023, 860, 160289. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Li, H.; Wang, Z.; Huang, H.; Wang, Y.; Yang, R.; Huo, R.; Xu, X.; Zhou, T.; Dong, X. Prediction of Phosphate Adsorption Amount, Capacity and Kinetics via Machine Learning: A Generally Physical-Based Process and Proposed Strategy of Using Descriptive Text Messages to Enrich Datasets. Chem. Eng. J. 2024, 479, 147503. [Google Scholar] [CrossRef]
- Tian, F.; Wang, Y.; Qi, M.; Sun, R.; Zhao, Y.; Wang, L.; Wu, S. Phosphate Recovery from Wastewater Using Red Mud-Modified Biochar Beads: Performance and Mechanism Study. Water 2025, 17, 2699. [Google Scholar] [CrossRef]
Model | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | PBIAS | R2 | RMSE | PBIAS | |
BLR | 0.763 | 0.252 | 21.18% | 0.884 | 0.182 | 15.06% |
ENR | 0.828 | 0.209 | 17.01% | 0.693 | 0.324 | 25.13% |
KNN | 0.852 | 0.201 | 15.41% | 0.853 | 0.188 | 14.45% |
PR | 0.704 | 0.285 | 23.40% | 0.822 | 0.214 | 17.39% |
RF | 0.916 | 0.158 | 12.31% | 0.892 | 0.133 | 11.43% |
SVR | 0.984 | 0.068 | 5.41% | 0.967 | 0.083 | 6.86% |
Material | Morphology | Preparation Method | Qm (mg·g−1) | ML Models | Test Performance | References |
---|---|---|---|---|---|---|
RM–walnut-shell BC | powder | 1:1 mass ratio; pyrolysis with 320 °C, 58 min | 15.48 | / | / | [20] |
Bayer RM–modified BC | powder | Acid impregnation to extract/disperse Fe/Al/Ca; pyrolysis at 800 °C | 137.68 | / | / | [36] |
RM–water-hyacinth BC | powder | Co-pyrolysis with 835 °C, 66 min | 6.48 | / | / | [37] |
RM-modified rape-straw BC | powder | Pyrolysis at 750 °C | 11.78 | / | / | [38] |
Various biochar | mixed (mostly powder) | About 1200 experiments across 190 biochars | / | RF, CatBoost (best) | R2 = 0.9573; RMSE = 8.02 mg·g−1 | [26] |
Various adsorbents | mixed | Multi-adsorbent dataset | / | LR, KNN, SVM, GBDT (best), MLP | R2 > 0.967; RMSE < 0.182 (limited key features); after data enrichment: R2 > 0.869; RMSE < 0.344 | [39] |
RM/CSBC | beads | Pyrolysis with 900 °C, 2 h | 86.15 | SVR (best), RF, KNN, ENR, PR, BLR | R2 = 0.967; RMSE = 0.083 mg·g−1 | This work [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, F.; Wang, L.; Wang, Y.; Wang, Q.; Sun, R.; Wu, S. Machine Learning Prediction of Phosphate Adsorption on Red Mud Modified Biochar Beads: Parameter Optimization and Experimental Validation. Water 2025, 17, 2795. https://doi.org/10.3390/w17192795
Tian F, Wang L, Wang Y, Wang Q, Sun R, Wu S. Machine Learning Prediction of Phosphate Adsorption on Red Mud Modified Biochar Beads: Parameter Optimization and Experimental Validation. Water. 2025; 17(19):2795. https://doi.org/10.3390/w17192795
Chicago/Turabian StyleTian, Feng, Li Wang, Yiwen Wang, Qichen Wang, Ruyu Sun, and Suqing Wu. 2025. "Machine Learning Prediction of Phosphate Adsorption on Red Mud Modified Biochar Beads: Parameter Optimization and Experimental Validation" Water 17, no. 19: 2795. https://doi.org/10.3390/w17192795
APA StyleTian, F., Wang, L., Wang, Y., Wang, Q., Sun, R., & Wu, S. (2025). Machine Learning Prediction of Phosphate Adsorption on Red Mud Modified Biochar Beads: Parameter Optimization and Experimental Validation. Water, 17(19), 2795. https://doi.org/10.3390/w17192795