Assessing the Potential of Drone Remotely Sensed Data in Detecting the Soil Moisture Content and Taro Leaf Chlorophyll Content Across Different Phenological Stages
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Image Acquisition and Processing
2.3. Field Data Collection
2.4. Spectral Variables Used for the Prediction of Soil Moisture Content and Chlorophyll Content of Taro Crops
2.5. Statistical Analysis
2.6. Accuracy Assessment
3. Results
3.1. Descriptive Statistics
3.2. Comparing the Performance of the Estimation of Soil Moisture and Chlorophyll Content at Different Growth Stages
3.3. Comparing the Performance of Bands, Vegetation Indices and Combined Data in Estimating Soil Moisture and Chlorophyll Content
3.4. Estimating Soil Moisture and Chlorophyll Content at Different Phenological Stages
3.5. Spatial Variation in Soil Moisture Content and Chlorophyll Content at Different Growth Stages
4. Discussion
4.1. Association Between Soil Moisture Content and Chlorophyll
4.2. Optimal Estimation of Soil Moisture and Chlorophyll Content of Taro at Different Growth Stages
4.3. Comparative Performance of Bands, Vegetation Indices and Combined Data Sets in Estimating Soil Moisture and Chlorophyll Across the Phenological Stages
4.4. Implications of the Study
5. Conclusions
- Soil moisture content could be optimally estimated to an R2 of 0.88, RMSE of 1.25% and rRMSE = 8.9% during the early establishment stage based on Red-Edge, Thermal, Red, TVI, and MCARI, as optimal spectral variables, in order of importance.
- Chlorophyll content may be optimally estimated to an R2 of 0.43, RMSE of 8.39 µmol/m2 and rRMSE of 13.9% during the late vegetative stage based on Clred-edge, Red-Edge, SR, TVI, MCARI, and NIR as optimal spectral variables, in order of importance.
- There was a significant positive correlation between soil moisture and chlorophyll content across all growth stages of taro. This suggests that chlorophyll content may be utilised as a proxy for assessing soil moisture content.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCCI | Canopy Chlorophyll Content Index |
Clgreen | Chlorophyll Green |
Clred-edge | Chlorophyll Red-Edge |
CVI | Chlorophyll Vegetation Index |
EVI | Enhanced Vegetation Index |
GNDVI | Green Normalized Vegetation Index |
MCARI | Modified Chlorophyll Absorption in Reflectance |
NDRE | Normalized Difference Red-Edge |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NIR | Near Infrared |
PRI | Photochemical Reflectance Index |
R2 | Coefficient of Determination |
RF | Random Forest |
RMSE | Root Mean Square Error |
rRMSE | Relative Root Mean Square Error |
SAVI | Soil Adjustes Vegetation Index |
SMC | Soil Moisture Content |
SR | Simple Ratio |
TVI | Transformed Vegetation Index |
Vis | Vegetation indices |
References
- Ngcamu, B.S.; Chari, F. Drought influences on food insecurity in Africa: A systematic literature review. Int. J. Environ. Res. Public Health 2020, 17, 5897. [Google Scholar] [CrossRef]
- Zhao, H.; Di, L.; Sun, Z.; Hao, P.; Yu, E.; Zhang, C.; Lin, L. Impacts of Soil Moisture on Crop Health: A Remote Sensing Perspective. In Proceedings of the 2021 9th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shenzhen, China, 26–29 July 2021; pp. 1–4. [Google Scholar]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. Catena 2023, 231, 107378. [Google Scholar] [CrossRef]
- Kumar, N.; Sow, S.; Rana, L.; Kumar, V.; Kumar, J.; Pramanick, B.; Singh, A.; Alkeridis, L.A.; Sayed, S.; Gaber, A. Productivity, water use efficiency and soil properties of sugarcane as influenced by trash mulching and irrigation regimes under different planting systems in sandy loam soils. Front. Sustain. Food Syst. 2024, 8, 1340551. [Google Scholar] [CrossRef]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef]
- Nyoni, R.S.; Bruelle, G.; Chikowo, R.; Andrieu, N. Targeting smallholder farmers for climate information services adoption in Africa: A systematic literature review. Clim. Serv. 2024, 34, 100450. [Google Scholar] [CrossRef]
- Fu, Z.; Ciais, P.; Feldman, A.F.; Gentine, P.; Makowski, D.; Prentice, I.C.; Stoy, P.C.; Bastos, A.; Wigneron, J.-P. Critical soil moisture thresholds of plant water stress in terrestrial ecosystems. Sci. Adv. 2022, 8, eabq7827. [Google Scholar] [CrossRef]
- Vennam, R.R.; Ramamoorthy, P.; Poudel, S.; Reddy, K.R.; Henry, W.B.; Bheemanahalli, R. Developing Functional Relationships between Soil Moisture Content and Corn Early-Season Physiology, Growth, and Development. Plants 2023, 12, 2471. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A review on drought stress in plants: Implications, mitigation and the role of plant growth promoting rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Muhammad, M.; Waheed, A.; Wahab, A.; Majeed, M.; Nazim, M.; Liu, Y.-H.; Li, L.; Li, W.-J. Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress 2024, 11, 100319. [Google Scholar] [CrossRef]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Wijewardane, N.K.; Ge, Y.; Shi, Y. Improved chlorophyll and water content estimations at leaf level with a hybrid radiative transfer and machine learning model. Comput. Electron. Agric. 2023, 206, 107669. [Google Scholar] [CrossRef]
- Li, Y.; He, N.; Hou, J.; Xu, L.; Liu, C.; Zhang, J.; Wang, Q.; Zhang, X.; Wu, X. Factors Influencing Leaf Chlorophyll Content in Natural Forests at the Biome Scale. Front. Ecol. Evol. 2018, 6, 64. [Google Scholar] [CrossRef]
- Kancheva, R.; Borisova, D.; Georgiev, G. Chlorophyll assessment and stress detection from vegetation optical properties. Ecol. Eng. Environ. Prot. 2014, 1, 34–43. [Google Scholar]
- Parkash, V.; Singh, S. A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- Nduwamungu, C.; Ziadi, N.; Parent, L.-É.; Tremblay, G.F.; Thuriès, L. Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: A review. Can. J. Soil Sci. 2009, 89, 531–541. [Google Scholar] [CrossRef]
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Imran Khan, M.; Nawaz, S.; Shamshiri, R.R.; Aziz, M. Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; McCabe, M.F. Retrieval of High-Resolution Soil Moisture through Combination of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2020, 12, 2303. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Kage, H. Sentinel-2 data for precision agriculture?—A UAV-based assessment. Sensors 2021, 21, 2861. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Cheng, Z.; Ren, L.; Liu, B.; Zhang, C.; Zhao, D.; Sun, H.; Feng, H.; Long, H.; Xu, B. Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data. Comput. Electron. Agric. 2024, 224, 109212. [Google Scholar] [CrossRef]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Naiken, V.; Mabhaudhi, T. Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems. Remote Sens. 2022, 14, 518. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Tian, T.; Yin, J. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Ofori, S.A.; Cobbina, S.J.; Obiri, S. Climate change, land, water, and food security: Perspectives From Sub-Saharan Africa. Front. Sustain. Food Syst. 2021, 5, 680924. [Google Scholar] [CrossRef]
- Reddy, K.T.C. Estimation of Water use Efficiency of Soybean (Glycine max) for Biodiesel Production in KwaZulu-Natal. Ph.D. Thesis, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2020. [Google Scholar]
- Ndlovu, P.N.; Thamaga-Chitja, J.M.; Ojo, T.O. Factors influencing the level of vegetable value chain participation and implications on smallholder farmers in Swayimane KwaZulu-Natal. Land Use Policy 2021, 109, 105611. [Google Scholar] [CrossRef]
- Lärm, L.; Bauer, F.M.; Hermes, N.; van der Kruk, J.; Vereecken, H.; Vanderborght, J.; Nguyen, T.H.; Lopez, G.; Seidel, S.J.; Ewert, F.; et al. Multi-year belowground data of minirhizotron facilities in Selhausen. Sci. Data 2023, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Allende-Prieto, C.; Roces-García, J.; Recondo, C.; Sañudo-Fontaneda, L.A.; González-Moradas, M.R. An exploratory methodology based on high resolution remote sensing techniques for soil moisture determination with prospective applications in vegetative SuDS. Urban Water J. 2023, 20, 1006–1020. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Mamaev, A.V.; Sherudilo, E.G. Evaluation of a SPAD-502 Plus Chlorophyll Meter to Estimate Chlorophyll Content in Leaves with Interveinal Chlorosis. Russ. J. Plant Physiol. 2020, 67, 690–696. [Google Scholar] [CrossRef]
- Yin, Q.; Zhang, Y.; Li, W.; Wang, J.; Wang, W.; Ahmad, I.; Zhou, G.; Huo, Z. Estimation of Winter Wheat SPAD Values Based on UAV Multispectral Remote Sensing. Remote Sens. 2023, 15, 3595. [Google Scholar] [CrossRef]
- Markwell, J.; Osterman, J.C.; Mitchell, J.L. Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynth. Res. 1995, 46, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Melash, A.A.; Bytyqi, B.; Nyandi, M.S.; Vad, A.M.; Ábrahám, É.B. Chlorophyll Meter: A Precision Agricultural Decision-Making Tool for Nutrient Supply in Durum Wheat (Triticum turgidum L.) Cultivation under Drought Conditions. Life 2023, 13, 824. [Google Scholar] [CrossRef]
- Giovos, R.; Tassopoulos, D.; Kalivas, D.; Lougkos, N.; Priovolou, A. Remote Sensing Vegetation Indices in Viticulture: A Critical Review. Agriculture 2021, 11, 457. [Google Scholar] [CrossRef]
- Ji, Z.; Pan, Y.; Zhu, X.; Wang, J.; Li, Q. Prediction of crop yield using phenological information extracted from remote sensing vegetation index. Sensors 2021, 21, 1406. [Google Scholar] [CrossRef]
- Zhen, Z.; Chen, S.; Yin, T.; Chavanon, E.; Lauret, N.; Guilleux, J.; Henke, M.; Qin, W.; Cao, L.; Li, J. Using the negative soil adjustment factor of soil adjusted vegetation index (SAVI) to resist saturation effects and estimate leaf area index (LAI) in dense vegetation areas. Sensors 2021, 21, 2115. [Google Scholar] [CrossRef]
- Pizarro Carcausto, S.E.; Pricope, N.G.; Figueroa Venegas, D.A.; Carbajal Llosa, C.M.; Quispe Huincho, M.R.; Vera Vilchez, J.E.; Alejandro Méndez, L.R.; Achallma Mendoza, L.; González Tovar, I.E.; Salazar Coronel, W. Implementing cloud computing for the digital mapping of agricultural soil properties from high resolution UAV multispectral imagery. Remote Sens. 2023, 15, 3203. [Google Scholar] [CrossRef]
- Patil, P.P.; Jagtap, M.P.; Khatri, N.; Madan, H.; Vadduri, A.A.; Patodia, T. Exploration and advancement of NDDI leveraging NDVI and NDWI in Indian semi-arid regions: A remote sensing-based study. Case Stud. Chem. Environ. Eng. 2024, 9, 100573. [Google Scholar] [CrossRef]
- Voitik, A.; Kravchenko, V.; Pushka, O.; Kutkovetska, T.; Shchur, T.; Kocira, S. Comparison of NDVI, NDRE, MSAVI and NDSI indices for early diagnosis of crop problems. Agric. Eng. 2023, 27, 47–57. [Google Scholar] [CrossRef]
- Kurbanov, R.K.; Zakharova, N.I. Application of vegetation indexes to assess the condition of crops. Agric. Mach. Technol. 2020, 14, 4–11. [Google Scholar] [CrossRef]
- Gao, S.; Yan, K.; Liu, J.; Pu, J.; Zou, D.; Qi, J.; Mu, X.; Yan, G. Assessment of remote-sensed vegetation indices for estimating forest chlorophyll concentration. Ecol. Indic. 2024, 162, 112001. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Marques, P.; Pádua, L.; Sousa, J.J.; Fernandes-Silva, A. Assessing the Water Status and Leaf Pigment Content of Olive Trees: Evaluating the Potential and Feasibility of Unmanned Aerial Vehicle Multispectral and Thermal Data for Estimation Purposes. Remote Sens. 2023, 15, 4777. [Google Scholar] [CrossRef]
- Aslan, M.F.; Sabanci, K.; Aslan, B. Artificial Intelligence Techniques in Crop Yield Estimation Based on Sentinel-2 Data: A Comprehensive Survey. Sustainability 2024, 16, 8277. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Manafifard, M. A new hyperparameter to random forest: Application of remote sensing in yield prediction. Earth Sci. Inform. 2024, 17, 63–73. [Google Scholar] [CrossRef]
- Abrahams, M.; Sibanda, M.; Dube, T.; Chimonyo, V.G.; Mabhaudhi, T. A systematic review of UAV applications for mapping neglected and underutilised crop species’ spatial distribution and health. Remote Sens. 2023, 15, 4672. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Zhao, Z.; Xie, M.; Hou, D. Estimation of Relative Chlorophyll Content in Spring Wheat Based on Multi-Temporal UAV Remote Sensing. Agronomy 2023, 13, 211. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Gavrilescu, M. Water, soil, and plants interactions in a threatened environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Gholamin, R.; Khayatnezhad, M. Assessment of the correlation between chlorophyll content and drought resistance in corn cultivars (Zea mays). Helix Sci. Explor. Peer Rev. Bimon. Int. J. 2020, 10, 93–97. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Wang, Q.; Wang, C. Responses of the Growth Characteristics of Spinach to Different Moisture Contents in Soil under Irrigation with Magnetoelectric Water. Agronomy 2023, 13, 657. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, J.; Yue, H. Comprehensive evaluation of Sentinel-2 red edge and shortwave-infrared bands to estimate soil moisture. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7448–7465. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O. Multi-Temporal Analysis of Taro Crop Water Stress Using High-Resolution Thermal and Multispectral Proximal Sensing for Improved Resilience of Smallholder Farming Systems. Smart Agric. Technol. 2025, 12, 101337. [Google Scholar] [CrossRef]
- Lao, Z.; Fu, B.; Wei, Y.; Deng, T.; He, W.; Yang, Y.; He, H.; Gao, E. Retrieval of chlorophyll content for vegetation communities under different inundation frequencies using UAV images and field measurements. Ecol. Indic. 2024, 158, 111329. [Google Scholar] [CrossRef]
Vegetation Index | Abbreviation | Formula | Refs. |
---|---|---|---|
Normalized Difference Vegetation Index | NDVI | (Nir − Red)/(Nir + Red) | [33,34] |
Soil Adjusted Vegetation Index | SAVI | (1 + 0.5)(Nir − Red)(Nir + Red + 0.5) | [35] |
Normalized Difference Water Index | NDWI | (Green − Nir)/(Green + Nir) | [36,37] |
Green Normalized Difference Vegetation Index | GNDVI | (Nir + Green)/(Nir − Green) | [36] |
Normalized Difference Red-Edge | NDRE | (Nir − Red-Edge)/(Nir + Red-Edge) | [38] |
Chlorophyll Red-Edge | Clred-edge | ((Nir/Red-Edge) − 1) | [33] |
Chlorophyll Green | Clgreen | ((Nir/Green) − 1) | [39] |
Chlorophyll Vegetation Index | CVI | (Nir × Red)/(Green2) | [40] |
Modified Chlorophyll Absorption in Reflectance Index | MCARI | ((Red-Edge − Red) − 0.2(Red-Edge − Geen))(Red-Edge/RED) | [33] |
Enhanced Vegetation Index | EVI | 2.5 × (Nir − Red)/(Nir 6 × Red − 7.5 × Blue) | [41] |
Transformed Vegetation Index | TVI | 0.5(120(Nir − Green) 200(Red − Green)) | [42] |
Photochemical Reflectance Index | PRI | (Green − Blue)/(Green + Blue) | [42] |
Simple Ratio | SR | Nir/Red | [39] |
Canopy Chlorophyll Content Index | CCCI | (Nir − Red-Edge)/(Nir + Red-Edge)/(Nir − Red)/(Nir + Red) | [43] |
Phenological Stage | Date | Attribute | Min | Max | Mean | St Deviation |
---|---|---|---|---|---|---|
Early Establishment | 16 December 2022 | SMC (%) | 10 | 21.1 | 13.64 | 2.46 |
(Week 5) | Chlorophyll | 23.9 | 78.2 | 48.48 | 11.65 | |
Late Establishment | 8 January 2023 | SMC (%) | 9.8 | 33.4 | 20.40 | 6.16 |
(Week 8) | Chlorophyll | 19.9 | 84.8 | 45.43 | 14.72 | |
Early Vegetative | 11 April 2023 | SMC (%) | 6.1 | 24.9 | 12.04 | 2.96 |
(Week 21) | Chlorophyll | 10.4 | 94.9 | 47.03 | 17.56 | |
Late Vegetative | 2 June 2023 | SMC (%) | 9.6 | 33.4 | 18.8 | 5.74 |
(Week 28) | Chlorophyll | 29.3 | 89.8 | 62.28 | 12.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masemola, R.; Sibanda, M.; Mutanga, O.; Kunz, R.; Chimonyo, V.G.P.; Mabhaudhi, T. Assessing the Potential of Drone Remotely Sensed Data in Detecting the Soil Moisture Content and Taro Leaf Chlorophyll Content Across Different Phenological Stages. Water 2025, 17, 2796. https://doi.org/10.3390/w17192796
Masemola R, Sibanda M, Mutanga O, Kunz R, Chimonyo VGP, Mabhaudhi T. Assessing the Potential of Drone Remotely Sensed Data in Detecting the Soil Moisture Content and Taro Leaf Chlorophyll Content Across Different Phenological Stages. Water. 2025; 17(19):2796. https://doi.org/10.3390/w17192796
Chicago/Turabian StyleMasemola, Reitumetse, Mbulisi Sibanda, Onisimo Mutanga, Richard Kunz, Vimbayi G. P. Chimonyo, and Tafadzwanashe Mabhaudhi. 2025. "Assessing the Potential of Drone Remotely Sensed Data in Detecting the Soil Moisture Content and Taro Leaf Chlorophyll Content Across Different Phenological Stages" Water 17, no. 19: 2796. https://doi.org/10.3390/w17192796
APA StyleMasemola, R., Sibanda, M., Mutanga, O., Kunz, R., Chimonyo, V. G. P., & Mabhaudhi, T. (2025). Assessing the Potential of Drone Remotely Sensed Data in Detecting the Soil Moisture Content and Taro Leaf Chlorophyll Content Across Different Phenological Stages. Water, 17(19), 2796. https://doi.org/10.3390/w17192796