Quantitative Prediction of Sediment–Water Partition Coefficients for Tetracycline Antibiotics in a Typical Karst Wetland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Extraction and Instrumental Analysis
2.3. Analytical Methods
3. Results and Discussion
3.1. Sediment and Water Physicochemical Characteristics
3.2. Distribution Characteristics of Tetracycline Antibiotics in Water and Sediment
3.3. Environmental Impact Factors
3.3.1. Influencing Factors in the Water
3.3.2. Influencing Factors in the Sediment
3.4. Quantitative Prediction
3.4.1. Quantitative Prediction and Fitting Results
3.4.2. Quantitative Predicting Equation Validation
3.4.3. Quantitative Predicting Equation Interpretation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.Y.; Gao, J.M.; Guo, J.S.; Hou, X.Y.; Wang, D.R.; Wu, J.C.; Li, X.J.; Jia, C.Y. Comprehensive analysis of the fates and risks of veterinary antibiotics in a small ecosystem comprising a pig farm and its surroundings in Northeast China. J. Hazard. Mater. 2023, 445, 130570. [Google Scholar] [CrossRef]
- Song, C.; Zhang, K.X.; Wang, X.J.; Zhao, S.; Wang, S.G. Effects of natural organic matter on the photolysis of tetracycline in aquatic environment: Kinetics and mechanism. Chemosphere 2021, 263, 128338. [Google Scholar] [CrossRef] [PubMed]
- Burke, V.; Richter, D.; Greskowiak, J.; Mehrtens, A.; Schulz, L.; Massmann, G. Occurrence of antibiotics in surface and groundwater of a drinking water catchment area in Germany. Water Environ. Res. 2016, 88, 652–659. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, G.D.; Liu, Y.; Lu, S.Y.; Qin, P.; Guo, X.H.; Bi, B.; Wang, L.; Xi, B.D.; Wu, F.C.; et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef]
- Kovalakova, P.; Cizmas, L.; Mcdonald, T.J.; Marsalek, B.; Feng, M.B.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Qin, L.; Xie, C.; Liu, H.; Wang, Y.X.; Guan, C.; Huang, S.B. Distribution of antibiotics in alluvial sediment near animal breeding areas at the Jianghan Plain, Central China. Chemosphere 2017, 186, 100–107. [Google Scholar] [CrossRef]
- Kafaei, R.; Papari, F.; Seyedabadi, M.; Sahebi, S.; Tahmasebi, R.; Ahmadi, M.; Sorial, G.A.; Asgari, G.; Ramavandi, B. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci. Total Environ. 2018, 627, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.G.; OuYang, W.Y.; Wu, N.; Su, J.Q.; Qiao, M. Antibiotic Resistance: Sources and Mitigation. Bull. Chin. Acad. Sci. 2015, 30, 509–516, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.Y.; Zhang, Q.; Wang, T.Z.; Xu, N.H.; Lu, T.; Hong, W.J.; Penuelas, J.; Gillings, M.; Wang, M.X.; Gao, W.W.; et al. Assessment of global health risk of antibiotic resistance genes. Nat. Commun. 2022, 13, 1553–1564. [Google Scholar] [CrossRef]
- Qin, L.T.; Pang, X.R.; Zeng, H.H.; Liang, Y.P.; Dai, J.F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef]
- Dong, K.; Wang, W.B.; Li, M.; Zhou, X.Y.; Huang, Y.T.; Zhou, G.Z.; Xu, Y.F.; Wang, D.Q.; Li, H.X. Degradation of sulfonamide antibiotics in the rhizosphere of two dominant plants in Huixian karst wetland, Guangxi, China. J. Water Reuse Desalination 2023, 13, 18–32. [Google Scholar] [CrossRef]
- Ren, K.; Pan, X.D.; Peng, C.; Chen, J.Y.; Li, J.; Zeng, J. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests. J. Environ. Manag. 2023, 342, 118099. [Google Scholar] [CrossRef]
- Huang, F.Y.; Zou, S.Z.; Deng, D.D.; Lang, H. Antibiotics in a typical karst river system in China: Spatiotemporal variation and environmental risks. Sci. Total Environ. 2019, 650, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.Z.; Huang, F.Y.; Chen, L.; Liu, F. The occurrence and distribution of antibiotics in the Karst River System in Kaiyang, Southwest China. Water Sci. Technol. Water Supply 2018, 18, 2044–2052. [Google Scholar] [CrossRef]
- Yang, X.L.; Luo, W.; Zou, S.-Z.; Ning, L.Y.; Zhu, X.S. Current situation of groundwater organic pollution and control measures in Guanshanhu Lake to Baiyun areas, Guiyang City. Garsologica Sin. 2015, 34, 375–381. (In Chinese) [Google Scholar]
- Xu, J.G.; Zhu, H.H.; Xu, H.; Liu, C.H.; Zhang, Z. Study on organic pollution of karst underground water in Jinan spring area. Garsologica Sin. 2009, 28, 249–254. (In Chinese) [Google Scholar]
- Dodgen, L.K.; Kelly, W.R.; Panno, S.V.; Taylor, S.J.; Armstrong, D.L.; Wiles, K.N.; Zhang, Y.; Zheng, W. Characterizing pharmaceutical, personal care product, and hormone contamination in a karst aquifer of southwestern Illinois, USA, using water quality and stream flow parameters. Sci. Total Environ. 2016, 578, 281–289. [Google Scholar] [CrossRef]
- Jia, L.Y.; Yang, L.; Zhang, L.; Ye, B.X.; Wang, L. Antibiotics in soil and water in China—A systematic review and source analysis. Environ. Pollut. 2020, 266, 115147. [Google Scholar]
- Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Liu, J.L.; Wong, M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2020, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, J.L.; Cheng, L.; Zheng, Y.Y.; Xu, J. Sediment and salinity effects on the bioaccumulation of sulfamethoxazole in zebrafish (Danio rerio). Chemosphere 2017, 180, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.; Liu, X.; Hui, H.; Wang, L.; Dai, G.H. Quantitatively modeling soil-water distribution coefficients of three antibiotics using soil physicochemical properties. Chemosphere 2012, 89, 825–831. [Google Scholar] [CrossRef]
- Fairbairn, D.J.; Karpuzcu, M.E.; Arnold, W.A.; Barber, B.L.; Kaufenberg, E.F.; Koskinen, W.C.; Novak, P.J.; Rice, P.J.; Swackhamer, D.L. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed. Sci. Total Environ. 2015, 505, 896–904. [Google Scholar] [CrossRef]
- Figueroa, R.A.; Leonard, A.; Mackay, A.A. Modeling tetracycline antibiotic sorption to clays. Environ. Sci. Technol. 2004, 38, 476–483. [Google Scholar] [PubMed]
- Zhao, S.N.; Liu, X.H.; Cheng, D.M.; Liu, G.N.; Liang, B.C.; Cui, B.S.; Bai, J.H. Temporal spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China. Sci. Total Environ. 2016, 569, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Jin, H.J.; Cai, D.S.; Jiang, C. The comparative study on the ecological sensitivity analysis in Huixian Karst Wetland, China. Procedia Environ. Sci. 2010, 2, 386–398. [Google Scholar] [CrossRef]
- Kim, S.C.; Carlson, K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices. Environ. Sci. Technol. 2007, 41, 50–57. [Google Scholar] [CrossRef]
- Fu, H.; Li, X.B.; Wang, J.; Lin, P.F.; Chen, C.; Zhang, X.J.; Suffet, I.H.M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. J. Environ. Sci. 2017, 56, 145–152. [Google Scholar] [CrossRef]
- Cheng, D.; Liu, X.; Wang, L.; Gong, W.; Liu, G.; Fu, W.; Cheng, M. Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China. Sci. Total Environ. 2014, 476–477, 266–275. [Google Scholar] [CrossRef]
- Mahanty, B.; John, A.P. Development of Robust Partial Least Squares Regression Model for Spectroscopic Determination of Diclofenac Sodium in Environmental Samples. Curr. Anal. Chem. 2018, 16, 241–249. [Google Scholar] [CrossRef]
- Thibaut, C.; Keurcien, L.; Blum, M.; Eric, B. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 2018, 18, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Borcard, D.; Gillet, F.; Legendre, P. Numerical Ecology with R; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- Tang, J.; Wang, S.; Fan, J.J.; Long, S.X.; Wang, L.; Tang, C.; Tam, N.F.; Yang, Y. Predicting distribution coefficients for antibiotics in a river water-sediment using quantitative models based on their spatiotemporal variations. Sci. Total Environ. 2019, 655, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Lambs, L.; Reverend, D.L.; Kozlowski, H.; Berthon, G. Metal ion-tetracycline interactions in biological fluids. 9. Circular dichroism spectra of calcium and magnesium complexes with tetracycline, oxytetracycline, doxycycline, and chlortetracycline and discussion of their binding modes. Inorg. Chem. 1988, 27, 3001–3012. [Google Scholar] [CrossRef]
- Chen, W.R.; Huang, C.H. Transformation kinetics and pathways of tetracycline antibiotics with manganese oxide. Environ. Pollut. 2011, 159, 1092–1100. [Google Scholar] [CrossRef]
- Wang, H.; Yao, H.; Tian, S.; Ma, Y.Q.; Yu, X.H. Effect of Fe3+ on the degradation mechanism of chlortetracycline under diferent environmental conditions. J. Beijing Univ. Technol. 2013, 39, 954–960. (In Chinese) [Google Scholar]
- Nogaro, G.; Burgin, A.J. Influence of bioturbation on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in freshwater sediments. Biogeochemistry 2014, 120, 279–294. [Google Scholar] [CrossRef]
- Ge, L.K.; Chen, J.W.; Zhang, S.Y.; Cai, X.Y.; Wang, W.C. Photodegradation of fluoroquinolone antibiotic gatifloxacin in aqueous solutions. Chin. Sci. Bull. 2010, 55, 1495–1500. (In Chinese) [Google Scholar] [CrossRef]
- Feng, J.H.; Zou, Z.K.; Zhang, Z.Y.; Li, H.Y.; Yuan, B.L.; Fu, M.L. Decoding impact of antibiotics stress to nitrogen removal in constructed wetlands: Overestimated? Water Res. 2025, 286, 124165. [Google Scholar] [CrossRef]
- Chen, L.P.; Huang, F.Y.; Zhang, C.; Liu, F.; Lang, H. Effect of norfloxacin on denitrification process in groundwater: Evidence for denitrifying enzyme activity. Acta Sci. Circumstantiae 2020, 40, 2496–2501. (In Chinese) [Google Scholar]
- Schaider, L.A.; Rudel, R.A.; Ackerman, J.M.; Dunagan, S.C.; Brody, J.G. Pharmaceuticals, perfluorosurfactants, and other organic waste water compounds in public drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2014, 468–469, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.J.; Yin, G.Y.; Liu, M.; Zhou, J.; Zheng, Y.; Gao, J.; Zong, H.; Yi, Y.; Gao, L.; Tong, C. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments. Environ. Sci. Technol. 2015, 49, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.Y.; Hou, L.J.; Liu, M.; Zheng, Y.L.; Li, X.F.; Lin, X.B.; Gao, J.; Jiang, X.F.; Wang, R.; Yu, C.D. Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. Chemosphere 2017, 171, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chandran, K.; Grasso, D.; Smets, B.F. Effect of nickel and cadmium speciation on nitrification inhibition. Environ. Sci. Technol. 2002, 36, 3074–3078. [Google Scholar] [CrossRef]
- Yi, K.; Wang, D.; Qi, Y.; Li, X.; Chen, H.; Sun, J.; An, H.; Wang, L.; Deng, Y.; Liu, J.; et al. Effect of ciprofloxacin on biological nitrogen and phosphorus removal from wastewater. Sci. Total Environ. 2017, 605–606, 368–375. [Google Scholar] [CrossRef]
- Aristilde, L.; Marichal, C.; Miéhé-Brendlé, J.; Lanson, B.; Charlet, L. Interactions of oxytetracycline with a smectite clay: A spectroscopic study with molecular simulat ions. Environ. Sci. Technol. 2010, 44, 7839–7845. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.J.; Li, Z.; Jiang, W.T.; Jean, J.S.; Liu, C.C. Cation exchange interaction between antibiotic ciprofloxacin and montmorillonite. J. Hazard. Mater. 2010, 183, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sibley, S.D.; Pedersen, J.A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Sci. Total Environ. 2008, 42, 422–428. [Google Scholar] [CrossRef]
- Gu, C.; Karthikeyan, K.G.; Sibley, S.D.; Pedersen, J.A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 2007, 66, 1494–1501. [Google Scholar] [CrossRef]
- Mackay, A.A.; Canterbury, B. Oxytetracycline sorption to organic matter by metal-bridging. J. Environ. Qual. 2005, 34, 1964–1971. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Lin, S.S.; Dai, C.M.; Shi, L.; Zhou, X.F. Sorption-desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: Effect of soil type, dissolved organic matter, and pH. Environ. Sci. Pollut. Res. 2014, 21, 5827–5835. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Adsorption and degradation of five selected antibiotics in agricultural soil. Sci. Total Environ. 2016, 545, 48–56. [Google Scholar] [CrossRef]
- Sukul, P.; Lamshöft, M.; Zühlke, S.; Spiteller, M. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chemosphere 2008, 73, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.Y.; Sun, K.; Gao, B.; Zhang, G.X.; Liu, X.T.; Zhao, Y. Adsorption of tetracycline on soil and sediment: Effects of pH and the presence of Cu (II). J. Hazard. Mater. 2011, 190, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Sassman, S.A.; Lee, L.S. Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange. Environ. Sci. Technol. 2005, 39, 7452–7459. [Google Scholar] [CrossRef]
- Azanu, D.; Styrishave, B.; Darko, G.; Weisser, J.J.; Abaidoo, R.C. Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Sci. Total Environ. 2018, 622–623, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Jafari Ozumchelouei, E.; Hamidian, A.H.; Zhang, Y.; Yang, M. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment. Water Environ. Res. 2020, 92, 177–188. [Google Scholar] [CrossRef]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ.Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Y.; Wang, X.; Yan, Y.; Li, Y.; Xu, W.; Li, X.; Chen, M.; Jin, M. Determination of 17 fluoroquinolones antibiotics in aquaculture wastewater using LCMS/MS coupled with solid phase extraction. Chin. J. Environ. Eng. 2022, 16, 674–683. [Google Scholar]
Indicator | Min | Max | Aver | Indicator | Min | Max | Aver |
---|---|---|---|---|---|---|---|
Na+ | 0.84 | 30.98 | 5.99 | SO42− | 4.85 | 72.55 | 24.41 |
Ca2+ | 35.30 | 124.90 | 80.57 | NO3− | 0.05 | 58.24 | 14.23 |
NH4+ | 0.02 | 74.95 | 10.99 | NO2− | 0.002 | 1.10 | 0.15 |
Fe3+ | 0.005 | 2.26 | 0.50 | PO43− | 0.02 | 3.15 | 0.61 |
Cl− | 5.34 | 31.38 | 11.50 | pH | 6.91 | 7.51 | 7.20 |
Indicator | Min | Max | Aver |
---|---|---|---|
BD | 0.47 | 1.40 | 1.07 |
OM | 27.83 | 85.02 | 50.30 |
pH | 5.59 | 7.67 | 6.61 |
Clay | 5% | 13% | 8% |
Indicator | Explanation % | Contribution % | Pseudo-F | p |
---|---|---|---|---|
Fe3+ | 35.7 | 36.3 | 5.5 | 0.024 |
NO3− | 21.2 | 21.6 | 4.4 | 0.016 |
PO43− | 13.3 | 13.5 | 3.6 | 0.044 |
NO2− | 7.4 | 7.6 | 2.3 | 0.09 |
NH4+ | 5.1 | 5.2 | 1.8 | 0.17 |
SO42− | 3.7 | 3.8 | 1.4 | 0.32 |
pH | 4.4 | 4.5 | 1.9 | 0.24 |
Na+ | 5 | 5.1 | 3.5 | 0.12 |
Cl− | 1.6 | 1.6 | 1.2 | 0.39 |
Ca2+ | 0.8 | 0.8 | 0.4 | 0.63 |
Indicator | Explanation % | Contribution % | Pseudo-F | p |
---|---|---|---|---|
Clay | 26.2 | 33.5 | 2.1 | 0.094 |
OM | 9.3 | 11.9 | 0.7 | 0.608 |
BD | 14.2 | 18.1 | 1.2 | 0.36 |
pH | 13.9 | 17.8 | 1.3 | 0.384 |
Equation | SD a | R2 b | Q2cum c | VIPs | ||||||
---|---|---|---|---|---|---|---|---|---|---|
BD d | OM d | pH d | Clay d | Fe3+ e | NO3− e | PO43− e | ||||
TC | 0.022 | 0.99 | 0.96 | 0.659 | 0.949 | 0.533 | 1.625 | 1.382 | 0.703 | 0.580 |
DMC | 0.049 | 0.98 | 0.93 | 0.898 | 0.394 | 0.862 | 1.926 | 0.498 | 0.378 | 1.094 |
CTC | 0.040 | 0.99 | 0.99 | 0.099 | 0.070 | 0.958 | 1.372 | 0.617 | 1.326 | 1.430 |
DOX | 0.089 | 0.95 | 0.83 | 0.495 | 1.122 | 0.540 | 0.189 | 1.995 | 0.878 | 0.646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, C.; Liang, J.; Pan, X.; Zeng, J.; Ren, K.; Cao, J. Quantitative Prediction of Sediment–Water Partition Coefficients for Tetracycline Antibiotics in a Typical Karst Wetland. Water 2025, 17, 2670. https://doi.org/10.3390/w17182670
Peng C, Liang J, Pan X, Zeng J, Ren K, Cao J. Quantitative Prediction of Sediment–Water Partition Coefficients for Tetracycline Antibiotics in a Typical Karst Wetland. Water. 2025; 17(18):2670. https://doi.org/10.3390/w17182670
Chicago/Turabian StylePeng, Cong, Jianhong Liang, Xiaodong Pan, Jie Zeng, Kun Ren, and Jianwen Cao. 2025. "Quantitative Prediction of Sediment–Water Partition Coefficients for Tetracycline Antibiotics in a Typical Karst Wetland" Water 17, no. 18: 2670. https://doi.org/10.3390/w17182670
APA StylePeng, C., Liang, J., Pan, X., Zeng, J., Ren, K., & Cao, J. (2025). Quantitative Prediction of Sediment–Water Partition Coefficients for Tetracycline Antibiotics in a Typical Karst Wetland. Water, 17(18), 2670. https://doi.org/10.3390/w17182670