Seasonally Contrasting Sensitivity of Minimal River Runoff to Future Climate Change in Western Kazakhstan: A CMIP6 Scenario Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Source Data
- I—Left-bank tributaries of the Zhaiyk River: Or, Elek, Ulken Kobda, Shyngyrlau;
- II—Right-bank tributaries of the Zhaiyk River: Embulatovka, Rubezhka, Shagan, Derkul; rivers of the western part of Obschiy Syrt not flowing into the Zhaiyk River: Shyzhyn 1st, Shyzhyn 2nd, Karaozen, Saryozen;
- III—Zhaiyk River;
- IV—Rivers of the eastern part of the Caspian Lowland not flowing into the Zhaiyk River: Olenty, Kuperanakty, Buldurty, Shiderty;
- V—Southern rivers: Oiyl, Sagyz, Zhem;
- VI—Arheic area;
- VII—Arheic area.
2.3. Methods
- n is the number of observations in the series;
- m is the number of degrees of freedom, equal to the number of constants in the predictive equation.
3. Results
3.1. Long-Term Forecast of Minimal Runoff
3.2. Projection of Minimal Runoff During the Summer–Autumn Low-Water Period
3.3. Projection of Minimal Runoff During the Winter Low-Water Period
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marshall, A.; Grubert, E.; Warix, S. Temperature overshoot would have lasting impacts on hydrology and water resources. Water Resour. Res. 2025, 61, e2024WR037950. [Google Scholar] [CrossRef]
- Abu-Zeid, M.A.; Abu-Zeid, K.M.; Halim, M.K. Impact of climate change on water resources. In Climate Changes Impacts on Aquatic Environment: Assessment, Adaptation, Mitigation, and Road Map for Sustainable Development; Khalil, M.T., Emam, M., Negm, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 121–157. [Google Scholar] [CrossRef]
- Birimbayeva, L.; Makhmudova, L.; Alimkulov, S.; Tursunova, A.; Mussina, A.; Tigkas, D.; Beksultanova, Z.; Rodrigo-Clavero, M.-E.; Rodrigo-Ilarri, J. Analysis of the Spatiotemporal Variability of Hydrological Drought Regimes in the Lowland Rivers of Kazakhstan. Water 2024, 16, 2316. [Google Scholar] [CrossRef]
- Gaidukova, E.V.; Litvinova, N.V. Otsenka dolgosrochnykh izmenenii mnogoletnego godovogo stoka pod vliyaniem klimata v Arkticheskom regione RF [Assessment of long-term changes in annual runoff under climate influence in the Arctic region of the Russian Federation]. In Proceedings of the Third International Scientific and Practical Conference, Kazan, Russia, 4 November 2017; In four parts. Volume Part 4. Aktual’nye voprosy v nauke i praktike. pp. 251–262. (In Russian). [Google Scholar]
- Loboda, N.S.; Vorobyeva, L.V.; Ilchenko, E.A. Metodicheskie podkhody k otsenke vliyaniya global’nogo potepleniya na sostoyanie vodnykh resursov gornykh rek Krymskogo poluostrova [Methodological approaches to assessing the impact of global warming on the water resources of mountain rivers of the Crimean Peninsula]. Vestn. Odess. Derzhavnogo Ekoljgicheskogo Univ. 2006, 2, 208–214. Available online: http://bulletin.odeku.edu.ua/ru/metodicheskie-podhody-k-oczenke-vliyaniya-globalnogo-potepleniya-na-sostoyanie-vodnyh-resursov-gornyh-rek-krymskogo-poluostrova/ (accessed on 10 August 2025). (In Russian).
- Bolgov, M.V.; Trubetskova, M.D.; Filimonova, M.K.; Filippova, I.A. Sovremennye izmeneniya klimaticheskikh kharakteristik i veroyatnostnaya otsenka izmeneniy minimal’nogo stoka v basseine reki Volgi [Curent changes in climate characteristics and probabilistic assessment of minimum flow changes in the Volga River basin]. Vodn. Khozyaistvo Ross. 2014, 3, 83–99. (In Russian) [Google Scholar] [CrossRef]
- Birimbayeva, L.; Makhmudova, L.; Alimkulov, S.; Tursunova, A.; Tigkas, D.; Abayev, N.; Dostayeva, A.; Birimbayev, Z.; Alzhanov, O.; Rodrigo-Clavero, M.-E.; et al. Reaction of Minimal Streamflow to Natural Factors in the Context of Climate Uncertainty. Water Resour Manag. 2025. [Google Scholar] [CrossRef]
- Tokbergenova, A.; Skorintseva, I.; Ryskeldiyeva, A.; Kaliyeva, D.; Salmurzauly, R.; Mussagaliyeva, A. Assessment of anthropogenic disturbances of landscapes: West Kazakhstan Region. Sustainability 2025, 17, 573. [Google Scholar] [CrossRef]
- Sarsekov, A.S.; Visloguzova, A.V.; Vladimirov, N.M.; Gus’kova, A.I.; Medeu, A.R.; Nurmambetov, E.I.; Potapova, G.M. Rel’ef Kazakhstana (Poiasnitel’naya Zapiska k Geomorfologicheskoy Karte Kazakhstana Masshtaba 1:1,500,000) [Relief of Kazakhstan: Explanatory Note to the Geomorphological Map of Kazakhstan at a Scale of 1:1,500,000], 2nd ed.; Научная библиотека: Almaty, Kazakhstan, 2017; Available online: https://library.qyzpu.edu.kz/lib/document/EK/8161433F-8D0C-49AA-B19A-35C81344D600/ (accessed on 10 August 2025). (In Russian)
- Akiyanova, F.Z.; Abitbayeva, A.D.; Yegemberdiyeva, K.B.; Temirbayeva, R.K. Problems of desertification of the territory of Kazakhstan: Status and forecast. Life Sci. J. 2014, 11 (Suppl. S10), 341–345. [Google Scholar] [CrossRef]
- Akiyanova, F.Z.; Semenov, O.E.; Khalykov, E.E. Podvizhnye peski poluostrova Buzachi (Bozashy) [Mobile sands of the Buzachi (Bozashy) Peninsula]. Gidrometeorol. I Ekol. 2012, 1, 58–63. (In Russian) [Google Scholar]
- Respublikа Kazakhstan. Tom 1: Prirodnye Usloviya i Resursy [Republic of Kazakhstan. Natural Conditions and Resources]; Iskakov, N.A., Medeu, A.R., Eds.; Ministry for Environmental Protection: Almaty, Kazakhstan, 2006; Volume 1. (In Russian) [Google Scholar]
- Rozhdestvenskiy, A.V.; Lobanova, A.G. Metodicheskie Rekomendatsii po Otsenke Odnorodnosti Gidrologicheskikh Kharakteristik i Opredeleniyu Ikh Raschetnykh Znacheniy po Neodnorodnym Dannym [Methodological Recommendations for Assessing the Homogeneity of Hydrological Characteristics and Determining Their Design Values Based on Heterogeneous Data]; Nestor Istoriya: St. Petersburg, Russia, 2010; ISBN 978 598187 550 2. (In Russian) [Google Scholar]
- Fallah, B.; Rostami, M.; Russo, E.; Harder, P.; Menz, C.; Hoffmann, P.; Didovets, I.; Hattermann, F.F. Climate model downscaling in Central Asia: A dynamical and a neural network approach. Geosci. Model Dev. 2025, 18, 161–180. [Google Scholar] [CrossRef]
- Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model. Dev. 2019, 12, 3055–3070. [Google Scholar] [CrossRef]
- Frieler, K.; Lange, S.; Piontek, F.; Reyer, C.P.O.; Schewe, J.; Warszawski, L.; Zhao, F.; Chini, L.; Denvil, S.; Emanuel, K.; et al. Assessing the impacts of 1.5 °C global warming—simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model. Dev. 2017, 10, 4321–4345. [Google Scholar] [CrossRef]
- Georgievsky, Y.M.; Shanoshkin, S.V. Gidrologicheskie Prognozy [Hydrological Forecasts]; RSHU Publishing: St. Petersburg, Russia, 2017; p. 436. (In Russian) [Google Scholar]
- Smagulov, Z.; Makhmudova, L.; Alimkulov, S.; Talipova, E.; Zagidullina, A.; Birimbayeva, L.; Sailaubek, A. Transformation of seasonal distribution of river flow in the Zhaiyk-Caspian water basin under changing climate conditions. J. Water Clim. Change 2025, 16, 400–429. [Google Scholar] [CrossRef]
- Vladimirov, A.M. Faktory formirovaniya ekstremal’nogo stoka v malovodnyy sezon [Factors affecting the formation of extreme runoff during the low-water season]. Uchenye Zap. Ross. Gos. Gidrometeorol. Univ. 2008, 7, 13–22. Available online: http://elib.rshu.ru/files_books/pdf/7-2.pdf (accessed on 10 August 2025). (In Russian).
- Moldakhmetov, M.; Makhmudova, L.; Mussina, A.; Abdullayeva, A. Studying the non-stationarity of river flow during long-term fluctuations in plain rivers of Kazakhstan. Geogr. Water Resour. 2024, 2, 64–82. [Google Scholar] [CrossRef]
- Patel, G.; Das, S.; Das, R.A. Comparative Approach to Understand the Performance of CMIP6 Models for Maximum Temperature near Tropic of Cancer Using Multiple Machine Learning Ensembles. Water Resour. Manag. 2025, 39, 3921–3936. [Google Scholar] [CrossRef]
- Mentzafou, A.; Papadopoulos, A.; Dimitriou, E. Assessing the impacts of climatic and water management scenarios in a small mountainous Greek river. Hydrology 2025, 12, 13. [Google Scholar] [CrossRef]
- Dioha, E.C.; Chung, E.S.; Ayugi, B.O.; Babaousmail, H.; Sian, K.T.C.L.K. Quantifying the added value in the NEX-GDDP-CMIP6 models as compared to native CMIP6 in simulating Africa’s diverse precipitation climatology. Earth Syst. Environ. 2024, 8, 417–436. [Google Scholar] [CrossRef]
- Voskresenskaya, E.N.; Marchukova, O.V.; Afanasyeva, V.V. Otsenka vozmozhnykh izmenenii povtoryaemosti sobytii El-Niño i LaNiña k koncuXXIveka po modelyam proekta CMIP6 [Assessment of possible changes in the repeatability of ElNiño and LaNiña events by the end of the twenty-first century using CMIP6 models]. Monit. Syst. Environ. 2021, 46, 14–21. [Google Scholar] [CrossRef]
- Semenov, S.M. (Ed.) Metody Otsenki Posledstvii Izmeneniya Klimata Dlya Fizicheskikh i Biologicheskikh System [Metody Ocenki Posledstvij Izmeneniya Klimata Dlya Fizicheskikh i Biologicheskikh Sistem]; Roshydromet: Moscow, Russia, 2012; Chapter 2; pp. 53–86. Available online: http://downloads.igce.ru/publications/metodi_ocenki/02.pdf (accessed on 10 August 2025). (In Russian)
- Shkolnik, I.M.; Meleshko, V.P.; Karol’, I.L.; Kiselev, A.A.; Nadezhina, E.D.; Govorkova, V.A.; Pavlova, T.V. Ozhidaemye izmeneniya klimata na territorii Rossijskoj Federacii v XXI veke [Expected climate changes on the territory of the Russian Federation in the 21st century]. In Second Roshydromet Assessment Report on the Climate Change and Its Consequences in the Russian Federation; Roshydromet: Moscow, Russia, 2014; pp. 65–118, (In Russian). [Google Scholar] [CrossRef]
- Didovets, I.; Krysanova, V.; Nurbatsina, A.; Fallah, B.; Krylova, V.; Saparova, A.; Niyazov, J.; Kalashnikova, O.; Hattermann, F.F. Attribution of current trends in streamflow to climate change for 12 Central Asian catchments. Clim. Change 2024, 177, 16. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, О.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Gelfan, A.N.; Gusev, E.M.; Kalugin, A.S.; Krylenko, I.N.; Motovilov, Y.G.; Nasonova, O.N.; Frolova, N.L. Stok rek Rossii pri proiskhodyashchikh i prognoziruemykh izmeneniyakh klimata: Obzor publikatsiy. 2. Vliyanie izmeneniya klimata na vodnyy rezhim rek Rossii v XXI veke [Runoff of Russian rivers under current and projected climate change: A review of publications. Part 2. Climate change impact on the water regime of Russian rivers in the twenty-first century]. Vodn. Resur. 2022, 49, 270–285. (In Russian) [Google Scholar] [CrossRef]
- Wang, A.; Miao, Y.; Kong, X.; Wu, H. Future changes in global runoff and runoff coefficient from CMIP6 multi-model simulation under SSP1-2.6 and SSP5-8.5 scenarios. Earth’s Future 2022, 10, e2022EF002910. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, A. The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J. Clim. 2015, 28, 4490–4512. [Google Scholar] [CrossRef]
- Danilovich, I.S.; Loginov, V.F.; Groisman, P.Y. Changes of Hydrological Extremes in the Center of Eastern Europe and Their Plausible Causes. Water 2023, 15, 2992. [Google Scholar] [CrossRef]
- Georgiadi, A.G.; Groisman, P.Y. Extreme Low Flow during Long-Lasting Phases of River Runoff in the Central Part of the East European Plain. Water 2023, 15, 2146. [Google Scholar] [CrossRef]
- Makhmudova, L.; Talipova, Е.; Myrzakhmetov, А.; Birimbayeva, L.; Tursynbai, А.; Alipbek, A. Climatic characteristics of thaw in the territory of the Zhaiyk-Caspian water basin. J. Geogr. Environ. Manag. 2024, 75, 80–91. [Google Scholar] [CrossRef]
- Bolgov, M.V.; Korobkina, E.A.; Filippova, I.A. Bayesian forecast of minimum runoff under nonstationary conditions considering possible climate change. Meteorol. Hydrol. 2016, 7, 7–16. [Google Scholar] [CrossRef]
Meteorological Station | |||||||
---|---|---|---|---|---|---|---|
1 | Novorossiyskoe | 11 | Uralsk | 21 | Temir | 31 | Akkuduk |
2 | Aktobe | 12 | Kamenka | 22 | Karaulkeldy | 32 | Kyzan |
3 | Martuk | 13 | Chapayevo | 23 | Uil | 33 | Tuschibek |
4 | Rodnikovka | 14 | Taipak | 24 | Sagiz | 34 | Aktau |
5 | Kos-Istek | 15 | Makhambet | 25 | Karabau | 35 | Fort Shevchenko |
6 | Il’insky | 16 | Atyrau | 26 | Kulsary | 36 | Zhalpaktal |
7 | Novoalekseevka | 17 | Dzhambeity | 27 | Shalkar | 37 | Dzhanybek |
8 | Chingirlau | 18 | Karatobe | 28 | Ayakkum | 38 | Urda |
9 | Aksai | 19 | Mugodzharskaya | 29 | Beineu | 39 | Novy Ushtogan |
10 | Yanvartsevo | 20 | Emba | 30 | Sam | 40 | Ganyushkino |
N° | Hydrological Post | Watershed Area (km2) | Average Height of the Basin, (m) |
---|---|---|---|
1 | Or-Bogetsay | 7480 | 350 |
2 | Elek-Aktobe | 11,000 | 340 |
3 | Kargaly-Kargaly | 5000 | 370 |
4 | Ulken Kobda-Kobda | 8110 | 240 |
5 | Karakobda-Alpasay | 2240 | 270 |
6 | Shagan-Kamenny | 4000 | 130 |
7 | Zhem-Zharkamys | 26,000 | 260 |
8 | Temir-Leninski | 5310 | 280 |
9 | Oiyl-Taltogay | 17,000 | 200 |
Condition | Applicability Criteria |
---|---|
Quality Category of the Method | ||
---|---|---|
Good | ≤0.50 | ≥0.87 |
Satisfactory | 0.51–0.80 | 0.86–0.60 |
Meteorological Station | ΣP for the Summer–Autumn Low-Water Period (VI-XI), mm/10 Years | Tavg for the Summer–Autumn Low-Water Period (VI-XI), °C/10 Years | ΣP for Autumn (IX-X), mm/10 Years | ΣP for Winter (XII-II), mm/10 Years | Tavg for Winter (XII-II), °C/10 Years | ΣT+ for Winter (XII-III), °C/10 Years | Nº of Days with T+ in the Winter Season (XII-III), Days/10 Years | ΣT- for the Cold Period (XI-III), mm/10 Years |
---|---|---|---|---|---|---|---|---|
Novorossiyskoye | −3.5 | 0.2 | −1.8 | 6.7 | 0.4 | 1.0 | 0.4 | 55 |
Aktobe | −0.2 | 0.3 | −1.1 | 7.6 | 0.5 | 2.2 | 0.8 | 67 |
Martuk | −2.0 | 0.2 | −1.1 | 7.6 | 0.5 | 1.7 | 0.7 | 64 |
Rodnikovka | −8.6 | 0.2 | −4.2 | 4.1 | 0.4 | 0.7 | 0.3 | 55 |
Kos-Istek | −7.1 | 0.2 | −3.1 | 5.1 | 0.3 | 1.6 | 0.6 | 38 |
Ilyinsky | −7.3 | 0.3 | −4.0 | −1.2 | 0.5 | 2.6 | 0.6 | 54 |
Novoalekseevka | 3.6 | 0.2 | −2.9 | 7.1 | 0.5 | 2.1 | 0.8 | 56 |
Chingirlau | −4.5 | 0.3 | −2.1 | 4.1 | 0.4 | 2.1 | 0.8 | 50 |
Aksai | −1.4 | 0.3 | −1.2 | 5.6 | 0.5 | 3.1 | 1.1 | 70 |
Yanvartsevo | −2.3 | 0.3 | −0.4 | 4.7 | 0.4 | 3.7 | 1.3 | 59 |
Uralsk | 0.3 | 0.3 | 0.0 | 3.5 | 0.5 | 4.3 | 1.6 | 68 |
Kamenka | −4.6 | 0.3 | 0.2 | −1.2 | 0.4 | 3.5 | 1.0 | 56 |
Chapayevo | −2.5 | 0.4 | −1.2 | 0.4 | 0.5 | 5.3 | 1.8 | 68 |
Taipak | −3.5 | 0.3 | −1.5 | 2.3 | 0.5 | 7.1 | 2.3 | 66 |
Makhambet | 2.1 | 0.5 | 0.8 | 2.0 | 0.8 | 14.3 | 4.3 | 79 |
Atyrau | −1.2 | 0.3 | 0.0 | 1.4 | 0.5 | 11.5 | 3.0 | 58 |
Dzhambeity | −3.0 | 0.3 | −1.6 | 1.8 | 0.5 | 3.3 | 1.2 | 64 |
Karatobe | −2.4 | 0.3 | −1.6 | 2.0 | 0.5 | 4.9 | 1.6 | 65 |
Mugodzharskaya | −3.3 | 0.2 | −2.8 | 3.8 | 0.4 | 2.6 | 2.6 | 51 |
Emba | −1.6 | 0.2 | −1.9 | 1.9 | 0.4 | 2.2 | 0.5 | 46 |
Temir | −3.1 | 0.2 | −2.7 | 4.8 | 0.5 | 3.1 | 0.9 | 64 |
Karaulkeldy | −0.2 | 0.3 | −1.2 | 3.7 | 0.4 | 3.7 | 0.9 | 54 |
Uil | −1.8 | 0.1 | −1.4 | 2.7 | 0.2 | 1.1 | 0.1 | 22 |
Sagiz | −4.2 | 0.2 | −2.3 | 0.2 | 0.5 | 5.9 | 1.8 | 47 |
Karabau | −1.7 | 0.3 | −1.1 | 1.0 | 0.6 | 8.0 | 2.5 | 69 |
Kulsary | −3.7 | 0.4 | −3.3 | 1.1 | 0.7 | 16.9 | 4.3 | 75 |
Shalkar | −1.0 | 0.2 | −1.3 | 1.4 | 0.3 | 6.6 | 1.4 | 46 |
Ayakkum | −2.1 | 0.3 | −1.9 | −0.3 | 0.4 | 9.5 | 1.7 | 49 |
Beineu | −4.5 | 0.3 | −2.5 | −0.4 | 0.4 | 17.4 | 3.4 | 44 |
Sam | 0.3 | 0.3 | −1.0 | 2.9 | 0.3 | 12.9 | 2.1 | 27 |
Akkuduk | 0.2 | 0.3 | 0.5 | −0.3 | 0.3 | 20.5 | 3.3 | 32 |
Kyzan | −5.2 | 0.4 | −1.6 | 0.0 | 0.4 | 20.2 | 4.1 | 37 |
Tuschibek | −1.8 | 0.3 | −1.1 | 0.0 | 0.2 | 15.8 | 3.3 | 25 |
Aktau | 3.4 | 0.6 | −0.7 | 1.0 | 0.4 | 29.2 | 3.7 | 14 |
Fort Shevchenko | −2.3 | 0.4 | −1.3 | −0.2 | 0.5 | 37.6 | 6.1 | 24 |
Zhalpaktal | −2.5 | 0.3 | 0.9 | 2.9 | 0.6 | 7.0 | 2.4 | 72 |
Dzhanybek | 0.1 | 0.3 | 1.9 | 1.7 | 0.6 | 9.6 | 2.9 | 77 |
Urda | −0.8 | 0.3 | 1.6 | 5.4 | 0.5 | 10.9 | 3.1 | 60 |
Novy Ushtogan | −0.6 | 0.3 | 0.1 | 1.4 | 0.5 | 13.5 | 3.6 | 62 |
Ganyushkino | −2.3 | 0.2 | −1.2 | −1.0 | 0.5 | 12.7 | 3.2 | 46 |
No. | Hydrological Area | River Basin | Calculated Dependencies |
---|---|---|---|
Summer–autumn low-water period | |||
1 | Left-bank tributaries of the Zhaiyk River | Or, Elek, Kargaly, Ulken Kobda, Karakobda | |
2 | Right-bank tributaries of the Zhaiyk River | Shagan | |
3 | Southern rivers | Zhem, Temir, Oiyl | |
Winter low-water period | |||
1 | Left-bank tributaries of the Zhaiyk River | Or | |
Elek, Kargaly | |||
Ulken Kobda | |||
Karakobda | |||
2 | Right-bank tributaries of the Zhaiyk River | Shagan | |
3 | Southern rivers | Zhem, Temir, Oiyl |
Hydrological Area | River Basin | Predictor | Base Period (1991–2020) | Future Scenario | 2040 (2031–2050) | 2060 (2051–2070) | 2080 (2071–2090) |
---|---|---|---|---|---|---|---|
Actual Measured Value, mm | Rate of Change, % | Rate of Change, % | Rate of Change, % | ||||
Left-bank tributaries of the Zhaiyk River | Or River basin | ∑PVI-XI | 164 | SSP3-7.0 | 36 | 20 | 34 |
SSP5-8.5 | 32 | 15 | 18 | ||||
Elek River basin | ∑PVI-XI | 161 | SSP3-7.0 | 14 | 7 | 12 | |
SSP5-8.5 | 9 | 10 | 5 | ||||
Ulken Kobda River basin | ∑PVI-XI | 152 | SSP3-7.0 | −7 | −21 | −21 | |
SSP5-8.5 | −11 | −13 | −19 | ||||
Right-bank tributaries of the Zhaiyk River | Shagan River basin | ∑PVI-XI | 192 | SSP3-7.0 | −2 | −4 | −10 |
SSP5-8.5 | −2 | −11 | −18 | ||||
Southern rivers | Emba River basin | ∑PVI-XI | 116 | SSP3-7.0 | 14 | 3 | 10 |
SSP5-8.5 | 11 | 22 | 7 | ||||
Oiyl River basin | ∑PVI-XI | 117 | SSP3-7.0 | 14 | 0 | −5 | |
SSP5-8.5 | 14 | 17 | −15 |
Hydrological Area | River Basin | Predictor | Base Period (1991–2020) | Future Scenario | 2040 (2031–2050) | 2060 (2051–2070) | 2080 (2071–2090) |
---|---|---|---|---|---|---|---|
Actual Measured Value, °C | Projected Increase, °C | Projected Increase, °C | Projected Increase, °C | ||||
Left-bank tributaries of the Zhaiyk River | Or River basin | Tavg.VI-XI | 12.3 | SSP3-7.0 | 2.6 | 3.6 | 4.7 |
SSP5-8.5 | 2.7 | 4.0 | 5.7 | ||||
Elek River basin | Tavg.VI-XI | 13.4 | SSP3-7.0 | 2.6 | 3.7 | 4.8 | |
SSP5-8.5 | 2.8 | 4.1 | 5.3 | ||||
Ulken Kobda River basin | Tavg.VI-XI | 14.2 | SSP3-7.0 | 2.3 | 3.6 | 4.8 | |
SSP5-8.5 | 2.5 | 4.0 | 5.9 | ||||
Right-bank tributaries of the Zhaiyk River | Shagan River basin | Tavg.VI-XI | 14.1 | SSP3-7.0 | 2.3 | 3.6 | 4.7 |
SSP5-8.5 | 2.6 | 4.1 | 5.5 | ||||
Southern rivers | Emba River basin | Tavg.VI-XI | 14.6 | SSP3-7.0 | 1.7 | 2.8 | 4.1 |
SSP5-8.5 | 1.9 | 3.4 | 5.1 | ||||
Oiyl River basin | Tavg.VI-XI | 15.3 | SSP3-7.0 | 2.5 | 3.8 | 5.0 | |
SSP5-8.5 | 2.7 | 4.2 | 6.1 |
Hydrological Area | River Basin | Predictor | Base Period (1991–2020) | Future Scenario | 2040 (2031–2050) | 2060 (2051–2070) | 2080 (2071–2090) |
---|---|---|---|---|---|---|---|
Actual Measured Value, mm | Rate of Change, % | Rate of Change, % | Rate of Change, % | ||||
Left-bank tributaries of the Zhaiyk River | Or River basin | ∑PIX-II | 166 | SSP3-7.0 | 43 | 36 | 61 |
SSP5-8.5 | 42 | 48 | 46 | ||||
Elek River basin | ∑PIX-II | 160 | SSP3-7.0 | 47 | 37 | 64 | |
SSP5-8.5 | 44 | 51 | 45 | ||||
Ulken Kobda River basin | ∑PXII-II | 86 | SSP3-7.0 | 13 | 11 | 49 | |
SSP5-8.5 | 20 | 35 | 33 | ||||
∑PX-II | 85 | SSP3-7.0 | 47 | 41 | 74 | ||
SSP5-8.5 | 42 | 55 | 47 | ||||
Right-bank tributaries of the Zhaiyk River | Shagan River basin | ∑PX-II | 144 | SSP3-7.0 | 26 | 23 | 42 |
SSP5-8.5 | 27 | 31 | 28 | ||||
Southern rivers | Emba and Oiyl river basins | ∑PXII-II | 61 | SSP3-7.0 | 48 | 48 | 71 |
SSP5-8.5 | 49 | 71 | 57 |
Hydrological Area | River Basin | Predictor | Base Period (1991–2020) | Future Scenario | 2040 (2031–2050) | 2060 (2051–2070) | 2080 (2071–2090) |
---|---|---|---|---|---|---|---|
Actual Measured Value, °C | Projected Increase, °C | Projected Increase, °C | Projected Increase, °C | ||||
Left-bank tributaries of the Zhaiyk River | Or River basin | Tavg.I-III | −12.7 | SSP3-7.0 | 3.5 | 4.9 | 6.0 |
SSP5-8.5 | 3.7 | 5.6 | 6.9 | ||||
Elek River basin | Tavg.I-II | −12.0 | SSP3-7.0 | 1.7 | 2.9 | 4.3 | |
SSP5-8.5 | 1.9 | 3.7 | 5.6 | ||||
Ulken Kobda River basin | Tavg.I-II | −11.6 | SSP3-7.0 | 2.2 | 3.6 | 5.0 | |
SSP5-8.5 | 2.5 | 4.2 | 6.1 | ||||
Right-bank tributaries of the Zhaiyk River | Shagan River basin | Tavg.XII-II | −9.7 | SSP3-7.0 | 2.0 | 3.3 | 4.3 |
SSP5-8.5 | 2.3 | 3.9 | 6.0 | ||||
Southern rivers | Emba River basin | Tavg.XII-II | −11.1 | SSP3-7.0 | 2.1 | 3.4 | 4.7 |
SSP5-8.5 | 2.4 | 4.0 | 5.7 | ||||
Oiyl River basin | Tavg.I-II | −11.1 | SSP3-7.0 | 3.8 | 4.9 | 6.1 | |
SSP5-8.5 | 4.0 | 5.5 | 7.2 |
Low-Flow Period | Methodological Quality Rating | ||
---|---|---|---|
Summer-Autumn | 0.69–0.81 | 0.60–0.75 | Satisfactory |
Winter | 0.77–0.80 | 0.61–0.67 | Satisfactory |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhmudova, L.; Alimkulov, S.; Tursunova, A.; Birimbayeva, L.; Talipova, E.; Alzhanov, O.; Rodrigo-Clavero, M.E.; Rodrigo-Ilarri, J. Seasonally Contrasting Sensitivity of Minimal River Runoff to Future Climate Change in Western Kazakhstan: A CMIP6 Scenario Analysis. Water 2025, 17, 2417. https://doi.org/10.3390/w17162417
Makhmudova L, Alimkulov S, Tursunova A, Birimbayeva L, Talipova E, Alzhanov O, Rodrigo-Clavero ME, Rodrigo-Ilarri J. Seasonally Contrasting Sensitivity of Minimal River Runoff to Future Climate Change in Western Kazakhstan: A CMIP6 Scenario Analysis. Water. 2025; 17(16):2417. https://doi.org/10.3390/w17162417
Chicago/Turabian StyleMakhmudova, Lyazzat, Sayat Alimkulov, Aisulu Tursunova, Lyazzat Birimbayeva, Elmira Talipova, Oirat Alzhanov, María Elena Rodrigo-Clavero, and Javier Rodrigo-Ilarri. 2025. "Seasonally Contrasting Sensitivity of Minimal River Runoff to Future Climate Change in Western Kazakhstan: A CMIP6 Scenario Analysis" Water 17, no. 16: 2417. https://doi.org/10.3390/w17162417
APA StyleMakhmudova, L., Alimkulov, S., Tursunova, A., Birimbayeva, L., Talipova, E., Alzhanov, O., Rodrigo-Clavero, M. E., & Rodrigo-Ilarri, J. (2025). Seasonally Contrasting Sensitivity of Minimal River Runoff to Future Climate Change in Western Kazakhstan: A CMIP6 Scenario Analysis. Water, 17(16), 2417. https://doi.org/10.3390/w17162417