A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers
Abstract
1. Introduction
2. Materials and Methods
2.1. Conceptual Model
2.2. Modeling Approach
2.2.1. Parameter Selection
Material | K (m/d) | Sy | ||||||
---|---|---|---|---|---|---|---|---|
0.15 | 0.20 | 0.25 | 0.30 | 0.35 | ||||
Sand and gravel | Medium sand | 5 | • | • | • | • | ||
10 | • | • | • | • | ||||
Coarse Sand | 20 | • | • | • | • | • | ||
40 | • | • | • | • | ||||
60 | • | • | • | • | ||||
80 | • | • | • | • | ||||
100 | • | • | • | • |
2.2.2. Number of Scenarios
2.2.3. Temporal Discretization
2.2.4. Mesh Discretization
2.3. Instruments and Tools
2.4. Procedure
2.4.1. Spatiotemporal Delimitation of the System
2.4.2. Optimization of Mass Extraction from the System
3. Results
3.1. Spatiotemporal Optimization and Flow Rate Distribution in Aquifer Systems
3.2. Flow Adjustment and Mass Displacement Outcomes
3.3. Effectiveness of Mass Displacement
3.4. MAR-MASS vs. Conventional Injection Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maliva, R.G. Anthropogenic Aquifer Recharge: Wsp Methods in Water Resources Evaluation Series No. 5; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Available online: http://link.springer.com/10.1007/978-3-030-11084-0 (accessed on 10 October 2024).
- Sharifinia, M.; Ramezanpour, Z.; Imanpour Namin, J.; Mahmoudifard, A.; Rahmani, T. Water quality assessment of the Zarivar Lake using physico-chemical parameters and NSF-WQI indicator, Kurdistan Province-Iran. Int. J. Adv. Biol. Biomed. Res. 2013, 1, 302–312. [Google Scholar]
- Sousa, C.; Roseta-Palma, C.; Martins, L.F. Economic growth and transport: On the road to sustainability. Nat. Resour. Forum 2015, 39, 3–14. [Google Scholar] [CrossRef]
- Alhalbaasi, J.; Alhadiathy, A.; Al-Paruany, K. Investigation the origins of groundwater salinity in Baghdad city by using environmental isotopes and hydrochemical techniques. Iraqi Geol. J. 2022, 55, 209–220. [Google Scholar] [CrossRef]
- Rachid, G.; Alameddine, I.; El-Fadel, M. Management of saltwater intrusion in data-scarce coastal aquifers: Impacts of seasonality, water deficit, and land use. Water Resour. Manag. 2021, 35, 5139–5153. [Google Scholar] [CrossRef]
- Fetter, C.W.; Kreamer, D. Chapter 10: Water Quality and Groundwater Contamination. In Applied Hydrogeology: Fifth Edition; Waveland Press: Long Grove, IL, USA, 2021; pp. 393–452. Available online: https://books.google.com.br/books?id=1lFPEAAAQBAJ (accessed on 10 October 2024).
- Pool, M.; Carrera, J. Dynamics of negative hydraulic barriers to prevent seawater intrusion. Hydrogeol. J. 2010, 18, 95–105. [Google Scholar] [CrossRef]
- Johnson, A.I. Specific Yield: Compilation of Specific Yields for Various Materials (Número 1662); US Government Printing Office: Washington, DC, USA, 1967.
- Kruseman, G.P.; de Ridder, N.A.; Verweij, J.M. Analysis and Evaluation of Pumping Test Data; ILRI: Addis Ababa, Ethiopia, 1994; Available online: https://books.google.com.br/books?id=7vNstgAACAAJ (accessed on 10 October 2024).
- Todd, D.K. Salt-Water Intrusion and Its Control. J. Am. Water Work. Assoc. 1974, 66, 180–187. [Google Scholar] [CrossRef]
- Luyun, R.; Kazuro, M.; Kei, N. Effects of Recharge Wells and Flow Barriers on Seawater Intrusion. Ground Water 2011, 49, 239–249. [Google Scholar] [CrossRef]
- Botero-Acosta, A.; Donado, L.D. Laboratory Scale Simulation of Hydraulic Barriers to Seawater Intrusion in Confined Coastal Aquifers Considering the Effects of Stratification. Procedia Environ. Sci. 2015, 25, 36–43. [Google Scholar] [CrossRef]
- Chun, J.A.; Lim, C.; Kim, D.; Kim, J.S. Assessing Impacts of Climate Change and Sea-Level Rise on Seawater Intrusion in a Coastal Aquifer. Water 2018, 10, 357. [Google Scholar] [CrossRef]
- Yu, X.; Wu, L.; Yu, X.; Xin, P. Tidal Fluctuations Relieve Coastal Seawater Intrusion Caused by Groundwater Pumping. Mar. Pollut. Bull. 2022, 184, 114231. [Google Scholar] [CrossRef]
- Sriapai, T.; Walsri, C.; Phueakphum, D.; Fuenkajorn, K. Physical model simulations of seawater intrusion in unconfined aquifer. Songklanakarin J. Sci. Technol. 2012, 34, 679–687. [Google Scholar]
- Lu, C.; Werner, A.D.; Simmons, C.T.; Robinson, N.I.; Luo, J. Maximizing Net Extraction Using an Injection-Extraction Well Pair in a Coastal Aquifer. Groundwater 2013, 51, 219–228. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Javadi, A.A. A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers. Water Resour. Manag. 2011, 25, 2755–2780. [Google Scholar] [CrossRef]
- Abarca, E.; Carrera, J.; Sánchez-Vila, X.; Dentz, M. Anisotropic dispersive Henry problem. Adv. Water Resour. 2007, 30, 913–926. [Google Scholar] [CrossRef]
- Yu, X.; Michael, H.A. Mechanisms, configuration typology, and vulnerability of pumping-induced seawater intrusion in heterogeneous aquifers. Adv. Water Resour. 2019, 128, 117–128. [Google Scholar] [CrossRef]
- Henao Casas, J.D.; Fernández Escalante, E.; Calero Gil, R.; Ayuga, F. Managed Aquifer Recharge as a Low-Regret Measure for Climate Change Adaptation: Insights from Los Arenales, Spain. Water 2022, 14, 3703. [Google Scholar] [CrossRef]
- Ross, A. Benefits and Costs of Managed Aquifer Recharge: Further Evidence. Water 2022, 14, 3257. [Google Scholar] [CrossRef]
- Song, Z.; Wang, Y.; Wang, J.; Huan, H.; Li, H. Design of Pump-and-Treat Strategies for Contaminated Groundwater Remediation Using Numerical Modeling: A Case Study. Water 2024, 16, 3665. [Google Scholar] [CrossRef]
- Guo, Z.; Brusseau, M.L.; Fogg, G.E. Determining the Long-Term Operational Performance of Pump and Treat and the Possibility of Closure for a Large TCE Plume. J. Hazard. Mater. 2019, 365, 796–803. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
Parameter | Units | Set of Selected Values | Description |
---|---|---|---|
Kh | m/d | 5, 10, 20, 40, 60, 80, 100 | Horizontal conductivity |
Kh/Kv | dimensionless | 1, 10, 20, 30 | Vertical anisotropy |
Ss | 1/m | 1 × 10−5 | Specific storage |
Sy | dimensionless | see Table 2 | Specific yield |
C | kg/m3 | 35, 17.5, 10.5, 7, 3.5 | Initial concentration |
αL | m | 0, 10, 20, 40 | Longitudinal dispersivity in the horizontal direction |
αTH | m | 0, 1, 2, 4 | Transverse dispersivity in the horizontal direction |
αTV | m | 0, 0.1, 0.2, 0.4 | Transverse dispersivity in the vertical direction |
Dm | m2/d | 0, 0.5702, 1.269 | Molecular diffusion coefficient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia Torres, M.A.; Suhogusoff, A.; Ferrari, L.C. A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers. Water 2025, 17, 2237. https://doi.org/10.3390/w17152237
Garcia Torres MA, Suhogusoff A, Ferrari LC. A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers. Water. 2025; 17(15):2237. https://doi.org/10.3390/w17152237
Chicago/Turabian StyleGarcia Torres, Mario Alberto, Alexandra Suhogusoff, and Luiz Carlos Ferrari. 2025. "A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers" Water 17, no. 15: 2237. https://doi.org/10.3390/w17152237
APA StyleGarcia Torres, M. A., Suhogusoff, A., & Ferrari, L. C. (2025). A Mass Abatement Scalable System Through Managed Aquifer Recharge: Increased Efficiency in Extracting Mass from Polluted Aquifers. Water, 17(15), 2237. https://doi.org/10.3390/w17152237