Fenton-Based Treatment of Meat and Bone Meal Wastewater: Influence of Variable Fe2+/H2O2 Ratios on Microbiological Abundance and Community Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater from Meat and Bone Meal Production
2.2. Reagents Used in the Wastewater Treatment Process
2.3. Media Used in Microbiological Analyses
2.4. Wastewater Treatment Methodology
2.4.1. Methodology of Microbiological Analysis of Raw Wastewater and Samples Obtained After the Purification Process
2.4.2. Methodology of Physicochemical Characteristic Determinations of Raw Wastewater and Samples Obtained After the Purification Process
3. Results and Discussion
3.1. Characteristics of Wastewater from Meat and Bone Meal Production
3.2. Results of the Analyses of Treated Wastewater Samples Obtained from the Purification of Wastewater from MBM Production Using the Fenton Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Singh, R.P.; Yadav, P.; Gupta, R.K.; Singh, S.K.; Verma, H.; Singh, P.K.; Kaushalendra; Pandey, K.D.; Kumar, A. Chapter Fourteen—Pathogenic microbes in wastewater: Identification and characterization. In Advances in Chemical Pollution, Environmental Management and Protection, 1st ed.; Ferreira, L.F.R., Kumar, A., Bilal, M., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 9, pp. 247–262. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Gerardi, M.H.; Zimmerman, M.C. Wastewater Pathogens, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Symonds, E.M.; Verbyla, M.E.; Lukasik, J.O.; Kafle, R.C.; Breitbart, M.; Mihelcic, J.R. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia. Water Res. 2014, 65, 257–270. [Google Scholar] [CrossRef]
- Skovgaard, N. Chapter 23—Bovine spongiform encephalitis: The case of an unexpected and rapidly spreading epidemic in cattle with serious consequences. In Case Studies in Food Safety and Authenticity: Lessons from Real-Life Situations, 1st ed.; Hoorfar, J., Ed.; Woodhead Publishing: Cornwall, UK, 2012; pp. 204–214. [Google Scholar] [CrossRef]
- European Food Safety Authority. Animal By-Products. Available online: https://www.efsa.europa.eu/en/topics/animal-by-products (accessed on 15 February 2025).
- Kowalski, Z.; Makara, A. The circular economy model used in the polish agro-food consortium: A case study. J. Clean. Prod. 2021, 284, 124751. [Google Scholar] [CrossRef]
- Kowalski, Z.; Krupa-Żuczek, K. A model of the meat waste management. Pol. J. Chem. Technol. 2007, 9, 91–97. [Google Scholar] [CrossRef]
- Jayathilakan, K.; Sultana, K.; Radhakrishna, K.; Bawa, A.S. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 2012, 49, 278–293. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Saeid, A. Treatment of wastewater from production of meat-bone meal. Open Chem. 2015, 13, 1275–1285. [Google Scholar] [CrossRef]
- Makara, A.; Kowalski, Z.; Radomski, P.; Olczak, P. Treatment of wastewater from the production of meat and bone meal by the Fenton process and coagulation. Pol. J. Chem. Technol. 2022, 24, 51–60. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Mediano, A.; Ormad, M.P.; Mosteo, R.; Ovelleiro, J.L. Disinfection of wastewater effluents with the Fenton-like process induced by electromagnetic fields. Water Res. 2014, 60, 250–258. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B 2019, 255, 117739. [Google Scholar] [CrossRef]
- Rahim Pouran, S.; Raman, A.A.A.; Wan Daud, W.M.A. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J. Clean. Prod. 2014, 64, 24–45. [Google Scholar] [CrossRef]
- Soon, A.N.; Hameed, B.H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- Patel, S.K.; Patel, S.G.; Patel, G.V. Degradation of Reactive Dye in Aqueous Solution by Fenton, Photo-Fenton Process and Combination Process with Activated Charcoal and TiO2. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2020, 90, 579–591. [Google Scholar] [CrossRef]
- Akinyemi, A.; Agboola, O.; Alagbe, E.; Igbokwe, E. The role of catalyst in the adsorption of dye: Homogeneous catalyst, heterogeneous catalyst, and advanced catalytic activated carbon, critical review. Desalin. Water. Treat. 2024, 320, 100780. [Google Scholar] [CrossRef]
- Stasinakis, A.S. Use of selected advanced oxidation processes (AOPs) for wastewater treatment—A mini review. Glob. Nest J. 2008, 10, 376–385. [Google Scholar] [CrossRef]
- Xu, M.; Wu, C.; Zhou, Y. Advancements in the Fenton Process for Wastewater Treatment. In Advanced Oxidation Processes—Application, Trends, and Prospects; Bustillo-Lecompte, C., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef]
- Babuponnusami, A.; Muthukumar, K. A review on Fenton and improvements to the Fenton process for wastewater treatment. J. Environ. Chem. Eng. 2014, 2, 557–572. [Google Scholar] [CrossRef]
- Rivas, F.R.; Beltrán, F.J.; Frades, J.; Buxeda, P. Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Res. 2001, 35, 387–396. [Google Scholar] [CrossRef]
- Kavitha, V.; Palanivelu, K. Destruction of cresols by Fenton oxidation process. Water. Res. 2005, 39, 3062–3072. [Google Scholar] [CrossRef]
- Xu, X.R.; Li, X.Y.; Li, X.Z.; Bin Li, H. Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes. Sep. Purif. Technol. 2009, 68, 261–266. [Google Scholar] [CrossRef]
- Lin, S.H.; Lin, C.M.; Leu, H.G. Operating characteristics and kinetic studies of surfactant wastewater treatment by fenton oxidation. Water Res. 1999, 33, 1735–1741. [Google Scholar] [CrossRef]
- Lin, S.H.; Lo, C.C. Fenton process for treatment of desizing wastewater. Water Res. 1997, 31, 2050–2056. [Google Scholar] [CrossRef]
- Zakład Enzymów i Peptonów. BTL Product Register. Materials Related to Microbiological Media Obtained by BTL Sp. z o.o.; Zakład Enzymów i Peptonów: Łódź, Poland, 2022. [Google Scholar]
- Cieślik, J.; Wróblewska, M. MALDI TOF MS—New possibilities in routine microbiological diagnostics. J. Lab. Diagn. 2018, 54, 99–104. [Google Scholar] [CrossRef]
- PN-ISO 6060:2006; Water Quality—Determination of Chemical Oxygen Demand. Polish Committee for Standardization: Warsaw, Poland, 2006.
- PN-EN ISO 7887:2012; Water Quality—Color Testing and Marking. Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-EN ISO 7027-1:2016-09; Water Quality—Determination of Turbidity—Part 1: Quantitative Methods. ISO: Geneva, Switzerland, 2016.
- Castellani, A.; Chalmers, A.J. Manual of Tropical Medicine, 3rd ed.; Williams Wood and Company: New York, NY, USA, 1919. [Google Scholar]
- Bizet, J.; Bizet, C. Strains of Alcaligenes faecalis from clinical material. J. Infect. 1997, 35, 167–169. [Google Scholar] [CrossRef]
- Foss, S.; Heyen, U.; Harder, J. Alcaligenes defragans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. Syst. Appl. Microbiol. 1998, 21, 237–244. [Google Scholar] [CrossRef]
- Schroll, G.; Busse, H.J.; Parrer, G.; Rölleke, S.; Lubitz, W.; Denner, E.B.M. Alcaligenes faecalis subsp. parafaecalis subsp. nov., a bacterium accumulating poly-β-hydroxybutyrate from acetone-butanol bioprocess residues. Syst. Appl. Microbiol. 2001, 24, 37–43. [Google Scholar] [CrossRef]
- Coenye, T.; Vancanneyt, M.; Cnockaert, M.C.; Falsen, E.; Swings, J.; Vandamme, P. Kerstersia gyiorum gen. nov., sp. nov., a novel Alcaligenes faecalis-like organism isolated from human clinical samples and reclassification of Alcaligenes denitrificans Rüger and Tan 1983 as Achromobacter denitrificans comb. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 1825–1831. [Google Scholar] [CrossRef]
- Pereira, M.; Perilli, M.; Mantengoli, E.; Luzzaro, F.; Toniolo, A.; Rossolini, G.M.; Amicosante, G. PER-1 extended-spectrum beta-lactamase production in an Alcaligenes faecalis clinical isolate resistant to expanded-spectrum cephalosporins and monobactams from a hospital in northern Italy. Microb. Drug. Resist. 2000, 6, 85–90. [Google Scholar] [CrossRef]
- Huang, C. Extensively drug-resistant Alcaligenes faecalis infection. BMC Infect. Dis. 2020, 20, 833. [Google Scholar] [CrossRef]
- Ray, R.R.; Pattnaik, S. Alcaligenes faecalis: A bacterium for sustainable management of environment. Environ. Qual. Manag. 2024, 34, e22189. [Google Scholar] [CrossRef]
- Jorge Lalucat, J.; Gomila, M.; Mulet, M.; Zaruma, A.; García-Valdés, E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst. Appl. Microbiol. 2022, 45, 126289. [Google Scholar] [CrossRef]
- Kodama, K.; Kimura, N.; Komagata, K. Two New Species of Pseudomonas: P. oryzihabitans Isolated from Rice Paddy and Clinical Specimens and P. luteola Isolated from Clinical Specimens. Int. J. Syst. Evol. Microbiol. 1985, 35, 467–474. [Google Scholar] [CrossRef]
- Dussart-Baptista, L.; Bodilis, J.; Barray, S.; Frébourg, N.; Fournier, M.; Dupont, J.P.; Jouenne, T. Recurrent recovery of Pseudomonas oryzihabitans strains in a karstified chalk aquifer. Water Res. 2007, 41, 111–117. [Google Scholar] [CrossRef]
- Panagopoulos, G.N.; Megaloikonomos, P.D.; Liontos, M.; Giannitsioti, E.; Drogari-Apiranthitou, M.; Mavrogenis, A.F.; Kontogeorgakos, V. Pseudomonas oryzihabitans Infected Total Hip Arthroplasty. J. Bone Jt. Infect. 2016, 1, 54–58. [Google Scholar] [CrossRef]
- Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, H.; Nishiuchi, Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: Proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol. Immunol. 1995, 39, 897–904. [Google Scholar] [CrossRef]
- Gilligan, P.H.; Lum, G.; Vandamme, P.; Whittier, S. Burkholderia, Stenotrophomonas, Ralstonia, Brevundimonas, Comamonas, Delftia, Pandoraea and Acidovorax. In Manual of Clinical Microbiology, 8th ed.; Murray, P.R., Baron, E.J., Pfaller, M.A., Jorgenson, J.H., Yolken, R.H., Eds.; ASM Press: Washington, DC, USA, 2003; pp. 729–748. [Google Scholar]
- Ryan, M.P.; Pembroke, J.T.; Adley, C.C. Ralstonia pickettii: A persistent gram-negative nosocomial infectious organism. J. Hosp. Infect. 2006, 62, 278–284. [Google Scholar] [CrossRef]
- Labarca, J.A.; Trick, W.E.; Peterson, C.L.; Carson, L.A.; Holt, S.C.; Arduino, M.J.; Meylan, M.; Mascola, L.; Jarvis, W.R. A multistate nosocomial outbreak of Ralstonia pickettii colonization associated with an intrinsically contaminated respiratory care solution. Clin. Infect. Dis. 1999, 29, 1281–1286. [Google Scholar] [CrossRef]
- Ryan, M.P.; Pembroke, J.T.; Adley, C.C. Differentiating the growing nosocomial infectious threats Ralstonia pickettii and Ralstonia insidiosa. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1245–1247. [Google Scholar] [CrossRef]
- Eikmanns, B.J.; Blombach, B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: An attractive target for metabolic engineering. J. Biotechnol. 2014, 192, 339–345. [Google Scholar] [CrossRef]
- Funke, G.; von Graevenitz, A.; Clarridge, J.E., 3rd; Bernard, K.A. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 1997, 10, 125–159. [Google Scholar] [CrossRef]
- Oliveira, A.; Oliveira, L.C.; Aburjaile, F.; Benevides, L.; Tiwari, S.; Jamal, S.B.; Silva, A.; Figueiredo, H.C.P.; Ghosh, P.; Portela, R.W.; et al. Insight of Genus Corynebacterium: Ascertaining the Role of Pathogenic and Non-pathogenic Species. Front. Microbiol. 2017, 8, 1937. [Google Scholar] [CrossRef]
- Bernard, K. The genus corynebacterium and other medically relevant coryneform-like bacteria. J. Clin. Microbiol. 2012, 50, 3152–3158. [Google Scholar] [CrossRef]
- Venezia, J.; Cassiday, P.K.; Marini, R.P.; Shen, Z.; Buckley, E.M.; Peters, Y.; Taylor, N.; Dewhirst, F.E.; Tondella, M.L.; Fox, J.G. Characterization of Corynebacterium species in macaques. J. Med. Microbiol. 2012, 61, 1401–1408. [Google Scholar] [CrossRef]
- Van Tyne, D.; Martin, M.J.; Gilmore, M.S. Structure, Function, and Biology of the Enterococcus faecalis Cytolysin. Toxins 2013, 5, 895–911. [Google Scholar] [CrossRef]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus Diversity, Origins in Nature, and Gut Colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- De Kraker, M.E.A.; Jarlier, V.; Monen, J.C.M.; Heuer, O.E.; van de Sande, N.; Grundmann, H. The changing epidemiology of bacteraemias in Europe: Trends from the European Antimicrobial Resistance Surveillance System. Clin. Microbiol. Infect. 2013, 19, 860–868. [Google Scholar] [CrossRef]
- Werner, G.; Coque, T.M.; Hammerum, A.M.; Hope, R.; Hryniewicz, W.; Johnson, A.; Klare, I.; Kristinsson, K.G.; Leclercq, R.; Lester, C.H.; et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008, 13, 19046. [Google Scholar]
- Mundy, L.M.; Sahm, D.F.; Gilmore, M.S. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 2000, 13, 513–522. [Google Scholar] [CrossRef]
- Gherardi, G. Staphylococcus aureus Infection: Pathogenesis and Antimicrobial Resistance. Int. J. Mol. Sci. 2023, 24, 8182. [Google Scholar] [CrossRef]
- Wertheim, H.F.L.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef]
- Ahmed, I.; Yokota, A.; Yamazoe, A.; Fujiwara, T. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 2007, 57, 1117–1125. [Google Scholar] [CrossRef]
- Kan, Y.; Niu, X.K.; Rao, M.P.N.; Dong, Z.Y.; Xie, Y.G.; Kang, Y.Q.; Li, W.J. Lysinibacillus cavernae sp. nov., isolated from cave soil. Arch. Microbiol. 2020, 202, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Kämpfer, P.; Martin, K.; Glaeser, S.P. Lysinibacillus contaminans sp. nov., isolated from surface water. Int. J. Syst. Evol. Microbiol. 2013, 63, 3148–3153. [Google Scholar] [CrossRef]
- Shabanamol, S.; Divya, K.; George, T.K.; Rishad, K.S.; Sreekumar, T.S.; Jisha, M.S. Characterization and in planta nitrogen fixation of plant growth promoting endophytic diazotrophic Lysinibacillus sphaericus isolated from rice (Oryza sativa). Physiol. Mol. Plant Pathol. 2017, 102, 46–54. [Google Scholar] [CrossRef]
- Lee, C.S.; Jung, Y.T.; Park, S.; Oh, T.K.; Yoon, J.H. Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol. 2010, 60, 281–286. [Google Scholar] [CrossRef]
- Chahal, C.; van den Akker, B.; Young, F.; Franco, C.; Blackbeard, J.; Monis, P. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes. Adv. Appl. Microbiol. 2016, 97, 63–119. [Google Scholar] [CrossRef]
- Sophonsiri, C.; Morgenroth, E. Chemical composition associated with different particle size fractions in municipal, industrial, and agricultural wastewaters. Chemosphere 2004, 55, 691–703. [Google Scholar] [CrossRef]
- Templeton, M.R.; Andrews, R.C.; Hofmann, R. Inactivation of particle-associated viral surrogates by ultraviolet light. Water Res. 2005, 39, 3487–3500. [Google Scholar] [CrossRef]
- Mccoy, W.F.; Olson, B.H. Relationship among turbidity, particle counts and bacteriological quality within water distribution lines. Water Res. 1986, 20, 1023–1029. [Google Scholar] [CrossRef]
- Malik, D.J.; Shaw, C.M.; Rielly, C.D.; Shama, G. The inactivation of Bacillus subtilis spores at low concentrations of hydrogen peroxide vapour. J. Food Eng. 2013, 114, 391–396. [Google Scholar] [CrossRef]
- Sciacca, F.; Rengifo-Herrera, J.A.; Wéthé, J.; Pulgarin, C. Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella sp. in PET bottles by H2O2 addition on natural water of Burkina Faso containing dissolved iron. Chemosphere 2010, 78, 1186–1191. [Google Scholar] [CrossRef]
- Brienza, M.; Özkal, C.B.; Li Puma, G. Photo(Catalytic) Oxidation Processes for the Removal of Natural Organic Matter and Contaminants of Emerging Concern from Water. In Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment; Gil, A., Galeano, L.A., Vicente, M.Á., Eds.; Springer: Cham, Switzerland, 2018; Volume 67, pp. 133–154. [Google Scholar]
- Flores, M.J.; Brandi, R.J.; Cassano, A.E.; Labas, M.D. Chemical disinfection with H2O2 the proposal of a reaction kinetic model. Chem. Eng. J. 2012, 198–199, 388–396. [Google Scholar] [CrossRef]
- Drakopoulou, S.; Terzakis, S.; Fountoulakis, M.S.; Mantzavinos, D.; Manios, T. Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason. Sonochem. 2009, 16, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Yang, S.; Lim, Y. Antibiotic susceptibility of Staphylococcus aureus with different degrees of biofilm formation. J. Anal. Sci. Technol. 2021, 12, 41. [Google Scholar] [CrossRef]
- Ju, S.; Lin, J.; Zheng, J.; Wang, S.; Zhou, H.; Sun, M. Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Appl. Environ. Microbiol. 2016, 82, 2112–2120. [Google Scholar] [CrossRef]
- Ray, R.R.; Pattnaik, S. Alcaligenes Faecalis, An Opportunistic Pathogen of Multidrug Resistance. Scope 2023, 13, 592–604. [Google Scholar]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef]
- Evonik. Leading Beyond Chemistry. Hydrogen Peroxide Stability and Decomposition. Available online: https://active-oxygens.evonik.com/en/products-and-services/hydrogen-peroxide/general-information/stability-and-decomposition (accessed on 10 May 2025).
- Wilms, K.G.; Waldmann, H. Hydrogen Peroxide Treatment of Effluent. U.S. Patent 4,294,703, 13 October 1981. [Google Scholar]
- Galbács, Z.M.; Csányi, L.J. Alkali-induced decomposition of hydrogen peroxide. J. Chem. Soc. Dalton Trans. 1983, 11, 2353–2357. [Google Scholar] [CrossRef]
Sample Number | Mass Ratio Fe2+/H2O2 | FeSO4∙7H2O (g) | Fe2+ (g) | 30% H2O2 Solution (g) | 10% Solution of Lime Milk (g) |
---|---|---|---|---|---|
1 | 1:2 | 1.0006 | 0.2010 | 0.4045 | 4.2744 |
2 | 1:4 | 1.0060 | 0.2021 | 0.8023 | 4.4020 |
3 | 1:6 | 1.0009 | 0.2011 | 1.2055 | 5.2840 |
4 | 1:8 | 1.0030 | 0.2015 | 1.6016 | 5.3420 |
5 | 1:10 | 1.0029 | 0.2015 | 2.0049 | 5.1420 |
Isolated Microorganisms | Total Number of Microorganisms 1 (CFU/mL) ± Standard Deviation, SD |
---|---|
Alcaligenes faecalis | 2.4∙ × 1010 ± 1.5 × 108 |
Pseudomonas oryzihabitans | |
Ralstonia pickettii Ralstonia sp. | |
Corynebacterium sp. | |
Enterococcus faecalis | |
Staphylococcus aureus | |
Lysinibacillus xylanilyticus |
Name of Selective Substrate | Identified Type of Bacteria | Number of Bacteria in Wastewater (CFU/mL) ± Standard Deviation, SD |
---|---|---|
TBX | Escherichia | No growth |
Baird-Parker | Staphylococcus | 2.8 × 106 ± 1.1 × 105 |
Slanetz–Bartley | Enterococcus | 4.3 × 104 ± 1.4 × 103 |
Parameter | Unit | Values |
---|---|---|
COD | mg O2/L | 4940 ± 145.5 * |
Turbidity | NTU | 968 ± 26.8 * |
Color | mg Pt/L | 1630 ± 42.2 * |
pH | - | 8.50–8.72 |
Sample Number | Mass Ratio Fe2+/H2O2 | Isolated Microorganisms | Total Number of Microorganisms (CFU/mL) ± Standard Deviation, SD |
---|---|---|---|
1 | 1:2 | Staphylococcus aureus Alcaligenes faecalis Pseudomonas oryzihabitans Enterococcus faecalis | 3.3 × 104 ± 1.4 × 103 |
2 | 1:4 | Staphylococcus aureus Alcaligenes faecalis Pseudomonas oryzihabitans | 6.4 × 103 ± 3.4 × 102 |
3 | 1:6 | Staphylococcus aureus Alcaligenes faecalis Pseudomonas oryzihabitans Enterococcus faecalis | 1.6 × 104 ± 4.8 × 102 |
4 | 1:8 | Staphylococcus aureus Alcaligenes faecalis | 1.3 × 102 ± 1.9 × 101 |
5 | 1:10 | Staphylococcus aureus Alcaligenes faecalis | 3.2 × 102 ± 2.5 × 101 |
Parameter | Sample Number | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
Mass ratio Fe2+/H2O2 | 1:2 | 1:4 | 1:6 | 1:8 | 1:10 |
COD (mg O2/L) | 2407 ± 135.4 * | 1841 ± 80.7 * | 1626 ± 93.4 * | 1498 ± 61.7 * | 1091 ± 46.8 * |
COD reduction degree (%) | 51.28 | 62.73 | 67.09 | 69.68 | 77.91 |
Turbidity (NTU) | 106 ± 10.4 * | <1 | <1 | <1 | <1 |
Turbidity reduction degree (%) | 89.05 | 100 | 100 | 100 | 100 |
Color (mg Pt/L) | 2092 ± 94.6 * | 262 ± 15.6 * | 235 ± 18.1 * | 91 ± 10.4 * | 56 ± 4.3 * |
Color change (%) (increase ↑ or decrease ↓) | ↑ 28% | ↓ 83.93 | ↓ 85.58 | ↓ 94.42 | ↓ 96.56 |
pH | 7.76–7.95 | 7.62–8.08 | 7.81–8.13 | 7.73–8.15 | 7.83–8.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makara, A.; Kowalski, Z.; Suchoń, W.; Generowicz, A.; Wiewiórska, I. Fenton-Based Treatment of Meat and Bone Meal Wastewater: Influence of Variable Fe2+/H2O2 Ratios on Microbiological Abundance and Community Composition. Water 2025, 17, 1537. https://doi.org/10.3390/w17101537
Makara A, Kowalski Z, Suchoń W, Generowicz A, Wiewiórska I. Fenton-Based Treatment of Meat and Bone Meal Wastewater: Influence of Variable Fe2+/H2O2 Ratios on Microbiological Abundance and Community Composition. Water. 2025; 17(10):1537. https://doi.org/10.3390/w17101537
Chicago/Turabian StyleMakara, Agnieszka, Zygmunt Kowalski, Weronika Suchoń, Agnieszka Generowicz, and Iwona Wiewiórska. 2025. "Fenton-Based Treatment of Meat and Bone Meal Wastewater: Influence of Variable Fe2+/H2O2 Ratios on Microbiological Abundance and Community Composition" Water 17, no. 10: 1537. https://doi.org/10.3390/w17101537
APA StyleMakara, A., Kowalski, Z., Suchoń, W., Generowicz, A., & Wiewiórska, I. (2025). Fenton-Based Treatment of Meat and Bone Meal Wastewater: Influence of Variable Fe2+/H2O2 Ratios on Microbiological Abundance and Community Composition. Water, 17(10), 1537. https://doi.org/10.3390/w17101537