Characteristics of Stream Water Quality on Draining of Planted Coniferous and Natural Deciduous Forest Catchments in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling and Observation
2.3. Water Sample Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Stream Water Quality and Event Precipitation–Runoff Responses
3.2. Characteristics of Stream Water Quality Depended on Stream Water Flow
3.3. Stream Water Quality Affected Forest Stand Separated by Rising and Falling Limbs
3.4. Discharge Load with Event Precipitation in Different Forest Stands
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vega, M.; Pardo, R.; Barrado, E.; Debán, L. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 1998, 32, 3581–3592. [Google Scholar] [CrossRef]
- Bengraïne, K.; Marhaba, T.F. Using principal component analysis to monitor spatial and temporal changes in water quality. J. Hazard. Mater. 2003, 100, 179–195. [Google Scholar] [CrossRef]
- Chang, H. Spatial analysis of water quality trends in the Han River basin, South Korea. Water Res. 2008, 42, 3285–3304. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Shi, Z.H.; Yin, W.; Huang, X. Spatial and seasonal patterns in stream water contamination across mountainous watersheds: Linkage with landscape characteristics. J. Hydrol. 2015, 523, 398–408. [Google Scholar] [CrossRef]
- Arocena, J.M. Cations in solution from forest soils subjected to forest floor removal and compaction treatments. Forest Ecol. Manag. 2000, 133, 71–80. [Google Scholar] [CrossRef]
- Kavvadias, V.A.; Alifragis, D.; Tsiontsis, A.; Brofas, G.; Stamatelos, G. Litter fall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecol. Manag. 2001, 144, 113–127. [Google Scholar] [CrossRef]
- Ribeiro, C.; Madeira, M.; Araújo, M.C. Decomposition and nutrient release from leaf litter of Eucalyptus globulus grown under different water and nutrient regimes. Forest Ecol. Manag. 2002, 171, 31–41. [Google Scholar] [CrossRef]
- Pandey, R.R.; Sharma, G.; Tripathi, S.K.; Singh, A.K. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecol. Manag. 2007, 240, 96–104. [Google Scholar] [CrossRef]
- Tateno, R.; Tokuchi, N.; Yamanaka, N.; Du, S.; Otsuki, K.; Shimamura, T.; Xue, Z.; Wang, S.; Hou, Q. Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. Forest Ecol. Manag. 2007, 241, 84–90. [Google Scholar] [CrossRef]
- Haygarth, P.M.; Jarvis, S.C. Agriculture, Hydrology and Water Quality; CABI Publishing: Oxon, UK; New York, NY, USA, 2002. [Google Scholar]
- Saraceno, J.F.; Pellerin, B.A.; Downing, B.D.; Boss, E.; Bachand, P.A.M.; Bergamaschi, B.A. High-frequency in situ optical measurements during a storm event: Assessing relationships between dissolved organic matter, sediment concentrations, and hydrologic processes. J. Geol. Res. 2009, 114, G00F09. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Saraceno, J.F.; Shanley, J.B.; Sebestyen, S.D.; Aiken, G.R.; Wollheim, W.M.; Bergamaschi, B.A. Taking the pulse of snowmelt: In situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream. Biogeochemistry 2012, 108, 183–198. [Google Scholar] [CrossRef]
- Arheimer, B.; Lidén, R. Nitrogen and phosphorus concentrations from agricultural catchments-Influence of spatial and temporal variables. J. Hydrol. 2000, 227, 140–159. [Google Scholar] [CrossRef]
- Larned, S.T.; Scarsbrook, M.R.; Snelder, T.H.; Norton, N.J.; Biggs, B.J.F. Water quality in low-elevation streams and rivers of New Zealand: Recent state and trends in contrasting land-cover classes. N. Z. J. Mar. Freshw. Res. 2004, 38, 47–366. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry 2024; Korea Forest Service: Daejeon, Republic of Korea, 2024; pp. 4–16. (In Korean)
- Kim, I.J.; Han, D.H. A Small Stream Management Plan to Protect the Aquatic Ecosystem; Korea Environment Institute Report (No. RE-09); Korea Environment Institute: Sejong, Republic of Korea, 2008; p. 149. (In Korean) [Google Scholar]
- MacDonald, L.H.; Coe, D. Influence of headwater streams on downstream reaches in forested areas. For. Sci. 2007, 53, 148–168. [Google Scholar] [CrossRef]
- Meyer, J.L.; Strayer, D.L.; Wallace, J.B.; Eggert, S.L.; Helfman, G.S.; Leonard, N.E. The contribution of headwater streams to biodiversity in river networks. J. Am. Water Resour. Assoc. 2007, 43, 86–103. [Google Scholar] [CrossRef]
- Park, J.C.; Lee, H.H. Variations of stream water quality caused by discharge change-At a watershed in Mt. Palgong. J. Korean Soc. For. Sci. 2000, 89, 342–355. (In Korean) [Google Scholar]
- Dudley, N.; Stolton, S. Running Pure: The Importance of Forest Protected Areas to Drinking Water; Research Report for the World Bank and WWF Alliance for Forest Conservation and Sustainable Use; World Bank: Washington, DC, USA, 2003; ISBN 2-88085-262-5. [Google Scholar]
- Meyer, J.L.; Wallace, J.B. Lost linkages and lotic ecology: Rediscovering small streams. In Ecology: Achievement and Challenge; Huntly, M.C., Levin, N.J., Eds.; Blackwell Scientific: Oxford, UK, 2001; pp. 295–317. [Google Scholar]
- Gomi, T.; Sidle, R.C.; Richardson, J.S. Understanding processes and downstream linkages of headwater systems. Bioscience 2002, 52, 905–916. [Google Scholar] [CrossRef]
- Eisalou, H.K.; Şengönül, K.; Gökbulak, F.; Serengil, Y.; Uygur, B. Effects of forest canopy cover and floor on chemical quality of water in broad leaved and coniferous forests of Istanbul, Turkey. For. Ecol. Manag. 2013, 289, 371–377. [Google Scholar] [CrossRef]
- François, M.; de Aguiar Jr, T.R.; Mielke, M.S.; Rousseau, A.N.; Faria, D.; Mariano-Neto, E. Interactions Between Forest Cover and Watershed Hydrology: A Conceptual Meta-Analysis. Water 2024, 16, 3350. [Google Scholar] [CrossRef]
- Balcı, A.N. Physical, Chemical and Hydrological Properties of Certain Western Washington Forest Floor Types; Istanbul University Publication No.: 1849; Istanbul University Faculty of Forestry: Istanbul, Turkey, 1973; Publication Number: 200. (In Turkish) [Google Scholar]
- Yur, J.; Kim, G. Comparison of discharge characteristics of NPS pollutant loads from urban, agricultural, and forestry watersheds. J. Korean Soc. Water Environ. 2005, 21, 184–489. (In Korean) [Google Scholar]
- Kang, C.G.; Lee, S.; Gorme, J.B.; Lee, J.U.; Kim, L.H. Determination of EMC and wash off characteristics of stormwater runoff from broad-leaved forest areas. J. Environ. Impact Assess. 2009, 18, 393–399. (In Korean) [Google Scholar]
- Yoon, S.W.; Chung, S.W.; Oh, D.G.; Lee, J.W. Monitoring of non-point source pollutants load from a mixed forest land use. J. Environ. Sci. 2010, 22, 801–805. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Environmental Research (NIER). Integrated Monitoring and Management Plan for Non-Point Pollution (II); National Institute of Environmental Research (NIER): Incheon, Republic of Korea, 2014; p. 346.
- Fölster, J.; Johnson, R.K.; Futter, M.N.; Wilander, A. The Swedish monitoring of surface waters: 50 years of adaptive monitoring. Ambio 2014, 43, 3–18. [Google Scholar] [CrossRef]
- Dahm, C.N.; Grimm, N.B.; Marmonier, P.; Valett, H.M.; Vervier, P. Nutrient dynamics at the interface between surface waters and groundwaters. Freshw. Biol. 1998, 40, 427–451. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Feng, X.; Neal, C.; Robson, A.J. The fine structure of water-quality dynamics: The (high-frequency) wave of the future. Hydrol. Process. 2004, 18, 1353–1359. [Google Scholar] [CrossRef]
- Johnson, K.S.; Needoba, J.A.; Riser, S.C.; Showers, W.J. Chemical sensor networks for the aquatic environment. Chem. Rev. 2007, 107, 623–640. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Neal, C. Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proc. Natl. Acad. Sci. USA 2013, 110, 12213–12218. [Google Scholar] [CrossRef]
- Neal, C.; Reynolds, B.; Kirchner, J.W.; Rowland, P.; Norris, D.; Sleep, D.; Lawlor, A.; Woods, C.; Thacker, S.; Guyatt, H.; et al. High-frequency precipitation and stream water quality time series from Plynlimon, Wales: An openly accessible data resource spanning the periodic table. Hydrol. Process. 2013, 27, 2531–2539. [Google Scholar] [CrossRef]
- Haddadchi, A.; Hicks, M. Interpreting event-based suspended sediment concentration and flow hysteresis patterns. J. Soils Sediments 2020, 21, 592–612. [Google Scholar] [CrossRef]
- Sherriff, S.C.; Rowan, J.S.; Fenton, O.; Jordan, P.; Melland, A.R.; Mellander, P.-E.; Uallacháin, D.Ó. Storm event suspended sediment-discharge hysteresis and controls in agricultural watersheds: Implications for watershed scale sediment management. Environ. Sci. Technol. 2016, 50, 1769–1778. [Google Scholar] [CrossRef]
- Baillie, B.R.; Neary, D.G. Water quality in New Zealand’s planted forests: A review. N. Z. J. For. Sci. 2015, 45, 1–18. [Google Scholar] [CrossRef]
- Clarke, J.; Kelly-Quinn, M.; Blacklocke, S.; Bruen, M. The effect of forest windrowing on physico-chemical water quality in Ireland. Sci. Total Environ. 2015, 514, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Choi, H.T.; Lim, H. Effects of forest thinning on the long-term runoff changes of coniferous forest plantation. Water 2019, 11, 2301. [Google Scholar] [CrossRef]
- Lee, J.S. Hydrology; Goomibook: Seoul, Republic of Korea, 2006; p. 297. (In Korean) [Google Scholar]
- Gomi, T.; Sidle, R.C.; Ueno, M.; Miyata, S.; Kosugi, K. Characteristics of overland flow generation on steep forested hillslopes of central Japan. J. Hydrol. 2008, 361, 275–290. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ochiai, H. Landslides: Processes, Prediction, and Land Use; Water Resources Monograph; AGU: Washington, DC, USA, 2006; Volume 18, p. 312. [Google Scholar]
- Park, J.B.; Shin, D.S.; Park, M.J.; Kang, B.G.; Shin, H.S. Rainfall thresholds estimation to develop flood forecasting and warning system for Nakdong small river basins. J. Korean Soc. Hazard Mitig. 2013, 13, 311–317. (In Korean) [Google Scholar] [CrossRef]
- Yoo, J.Y.; Moon, G.W.; Ahn, J.H.; Kim, T.W. Re-establishing the antecedent moisture condition of NRCS-CN method considering rainfall-runoff characteristics in watershed based on antecedent 5-day rainfall. KSCE 2014, 34, 349–858. (In Korean) [Google Scholar] [CrossRef]
- Mosley, M.P. Streamflow generation in a forested watershed, New Zealand. Water Resour. Res. 1979, 15, 795–806. [Google Scholar] [CrossRef]
- Fedora, M.A.; Beschta, R.L. Storm runoff simulation using an antecedent precipitation index (API) model. J. Hydrol. 1989, 112, 121–133. [Google Scholar] [CrossRef]
- Sidle, R.C.; Tsuboyama, Y.; Noguchi, S.; Hosoda, I.; Fujieda, M.; Shimizu, T. Stormflow generation in steep forested headwaters: A linked hydrogeomorphic paradigm. Hydrol. Process. 2000, 14, 369–385. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Z.H.; Zhu, H.D.; Zhang, H.Y.; Ai, L.; Yin, W. Soil moisture dynamics within soil profiles and associated environmental controls. Catena 2016, 136, 189–196. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 19th ed.; Part 5; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Samudro, G.; Mangkoedihardjo, S. Review on BOD, COD and BOD/COD ratio: A triangle zone for toxic, biodegradable and stable levels. Int. J. Acad. Res. 2010, 2, 235–239. [Google Scholar]
- Lee, A.H.; Nikraz, H. BOD:COD ratio as an indicator for river pollution. Int. Proc. Chem. Biol. Environ. Eng. 2015, 88, 89–94. [Google Scholar]
- Hotta, N.; Kayama, T.; Suzuki, M. Analysis of suspended sediment yields after low impact forest harvesting. Hydrol. Process. 2007, 21, 3565–3575. [Google Scholar] [CrossRef]
- Riedel, M.S.; Vose, J.M.; Bolstad, P.V. Characterizing hysteretic water quality in southern Appalachian streams. In Proceedings of the 2004 National Water Quality Monitoring Conference: United States Advisory Committee on Water Information, National Water Quality Monitoring Council, Chattanooga, TN, USA, 17–20 May 2004. [Google Scholar]
- Göbel, P.; Dierkes, C.; Coldewey, W.G. Storm water runoff concentration matrix for urban areas. J. Contam. Hydrol. 2007, 91, 26–42. [Google Scholar] [CrossRef]
- Maniquiz, M.C.; Lee, S.; Kim, L.H. Multiple linear regression models of urban runoff pollutant load and event mean concentration considering rainfall variables. J. Environ. Sci. 2010, 22, 946–952. [Google Scholar] [CrossRef]
- Keßler, S.; Bierl, R.; Meyer, B.; Krein, A. Chemical effects of a near-to-nature detention pond on a small urban headwater. Limnol. 2017, 62, 118–125. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Gil, K. Analysis of efficiencies of runoff reduction and pollutant removal for subdividing design volume calculation in permeable pavement. Desalin. Water Treat. 2021, 219, 327–334. [Google Scholar] [CrossRef]
- Choi, J.; Park, B.; Kim, J.; Lee, S.; Ryu, J.; Kim, K.; Kim, Y. Determination of NPS Pollutant Unit Loads from Different Landuses. Sustainability 2021, 13, 7193. [Google Scholar] [CrossRef]
- Krein, A.; Pailler, J.-Y.; Guignard, C.; Gutleb, A.C.; Hoffmann, L.; Meyer, B.; Keßler, S.; Berckmans, P.; Witters, H.E. Determination of estrogen activity in riverwaters and wastewater in Luxembourg by chemical analysis and the Yeast Estrogen Screen assayn. Environ. Pollut. 2012, 1, 86–96. [Google Scholar] [CrossRef]
- Richey, J.E.; Meade, R.H.; Salati, E.; Devol, A.H.; Nordin, C.F.; dos Santos, U. Water discharge and suspended sediment concentrations in the Amazon River 1982–1984. Water Resour. Res. 1986, 22, 756–764. [Google Scholar] [CrossRef]
- Xiao, F.; Halbach, T.R.; Simcik, M.F.; Gulliver, J.S. Input characterization of perfluoroalkyl substances in wastewater treatment plants: Source discrimination by exploratory data analysis. Water Res. 2012, 46, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Howard, P.J.A.; Howard, D.M. Titrable acids and bases in tree and shrub leaf litters. Forestry 1990, 63, 178–196. [Google Scholar] [CrossRef]
- Ranger, J.; Nys, C. The effect of spruce (Picea abies Karst) on soil development: An analytical and experimental approach. Eur. J. Soil Sci. 1994, 45, 193–204. [Google Scholar] [CrossRef]
- Johansson, M.B. The chemical composition of needle and leaf litter from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 1995, 68, 49–62. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Geibe, C.; Holmström, S.; Lundström, U.S.; Breemen, N.V. The effect of organic acids on base cation leaching from the forest floor under six North American tree species. Eur. J. Soil Sci. 2001, 52, 205–214. [Google Scholar] [CrossRef]
- Jeong, J.J.; Bartsch, S.; Fleckenstein, J.H.; Matzner, E.; Tenhunen, J.D.; Lee, S.D.; Park, S.K.; Park, J.H. Differential storm responses of dissolved and particulate organic carbon in a mountainous headwater stream, investigated by high-frquency, in situ optical measurements. J. Geophys. Res. 2012, 117, G03013. [Google Scholar]
- Deng, S.; Li, C.; Jiang, X.; Zhao, T.; Huang, H. Research on Surface Water Quality Assessment and Its Driving Factors: A Case Study in Taizhou City, China. Water 2023, 15, 26. [Google Scholar] [CrossRef]
- de Mariz e Miranda, F.S.; de Souza Avelar, A. Assessing the Influence of Precipitation on the Modulation of the Water Quality Index in a Forested Catchment: The Case of a Tropical Montane Forest in Brazil. Water Air Soil Pollut. 2024, 235, 557. [Google Scholar] [CrossRef]
- Chen, J.; Chen, S.; Fu, R.; Yin, X.; Wang, C.; Li, D.; Peng, Y. Analysis of water quality status and driving factors in Guangdong Province. Acta Ecol. Sin. 2022, 42, 7921–7931. [Google Scholar]
- Teklehaimanot, Z.; Jarvis, P.G.; Ledger, D.C. Rainfall interception and boundary layer conductance in relation to tree spacing. J. Hydrol. 1991, 123, 261–278. [Google Scholar] [CrossRef]
- Xiao, Q.; Mcpherson, E.G. Rainfall interception of three trees in Oakland, California. Urban Ecosyst. 2011, 14, 755–769. [Google Scholar] [CrossRef]
- Saito, T.; Matsuda, H.; Komatsu, M.; Xiang, Y.; Takahashi, A.; Shinohara, Y.; Otsuki, K. Forest canopy interception loss exceeds wet canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. J. Hydrol. 2013, 507, 287–299. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Wang, X.P.; Hu, R.; Pan, Y.X.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Luo, Y.; Shao, M.; Jia, X. The modelling of rainfall interception in growing and dormant seasons for a pine plantation and a black locust plantation in semi-arid Northwest China. J. Hydrol. 2019, 577, 123849. [Google Scholar] [CrossRef]
- Page, T.; Chappell, N.A.; Beven, K.J.; Hankin, B.; Kretzschmar, A. Assessing the significance of wet-canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the United Kingdom. Hydrol. Process. 2020, 34, 4740–4754. [Google Scholar] [CrossRef]
- Evans, C.; Davies, T.D. Causes of concentration/discharge hysteresis and its potential as a tool for analysis of episode hydrochemistry. Water Resour. Res. 1998, 34, 129–137. [Google Scholar] [CrossRef]
- Clinton, B.D. Stream water responses to timber harvest: Riparian buffer width effectiveness. For. Ecol. Manag. 2011, 261, 979–988. [Google Scholar] [CrossRef]
- Walling, D.E.; Webb, B.W. Solutes in river systems. In Solute Processes; Trudgill, S.T., Ed.; John Wiley: New York, NY, USA, 1986; pp. 251–327. [Google Scholar]
- Ruidischa, M.; Kettering, J.; Arnhold, S.; Huwe, B. Modeling water flow in a plastic mulched ridge cultivation system on hillslopes affected by South Korean summer monsoon. Agric. Water Manag. 2013, 116, 204–217. [Google Scholar] [CrossRef]
- Bak, J.; Song, E.J.; Lee, H.J.; Liu, X.; Koo, J.H.; Kim, J.; Jeon, W.; Kim, J.H.; Kim, C.H. Temporal variability of tropospheric ozone and ozone profiles in the Korean Peninsula during the East Asian summer monsoon: Insights from multiple measurements and reanalysis datasets. Atmos. Chem. Phys. 2022, 22, 14177–14187. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, G.L.; Shi, X.Z.; Wang, H.J.; Cao, Z.H.; Ritsema, C.J. Dynamic changes of nitrogen and phosphorus losses in ephemeral runoff processes by typical storm events in Sichuan Basin, Southwest China. Soil Tillage Res. 2009, 105, 292–299. [Google Scholar] [CrossRef]
- Nakane, K.; Haidary, A. Sensitivity analysis of stream water quality and land cover linkage models using Monte Carlo method. Int. J. Environ. Res. 2010, 4, 121–130. [Google Scholar]
- Ahearne, M.; Bhattacharya, C.B.; Gruen, T. Antecedents and consequences of customer-company identification: Expanding the role of relationship marketing. J. Appl. Psychol. 2005, 9, 574. [Google Scholar] [CrossRef]
- Klimaszyk, P.; Rzymski, P. Surface runoff as a factor determining trophic state of midforest lake (Piaseczno Małe, North Poland). Pol. J. Environ. Stud. 2011, 20, 1203–1210. [Google Scholar]
- Räike, A.; Taskinen, A.; Härkönen, L.H.; Kortelainen, P.; Lepistö, A. Browning from headwaters to coastal areas in the boreal region: Trends and drivers. Sci. Total. Environ. 2024, 927, 171959. [Google Scholar] [CrossRef] [PubMed]
- Klimaszyk, P.; Rzymski, P. Catchment vegetation can trigger lake dystrophy through changes in runoff water quality. Ann. Limnol.-Int. J. Limnol. 2013, 41, 191–197. [Google Scholar] [CrossRef]
- Lee, M.H.; Payeur-Poirier, J.L.; Park, J.H.; Matzner, E. Variability in runoff fluxes of dissolved and particulate carbon and nitrogen from two watersheds of different tree species during intense storm events. Biogeosciences 2016, 13, 5421–5432. [Google Scholar] [CrossRef]
- Monica, N.; Choi, K. Temporal and spatial analysis of water quality in Saemangeum watershed using multivariate statistical techniques. Paddy Water Environ. 2016, 14, 3–17. [Google Scholar] [CrossRef]
- Umemoto, S.; Komai, Y.; Inoue, T. Runoff characteristics of nutrients in the forest streams in Hyogo Prefecture, Japan. Water Sci. Technol. 2001, 44, 151–156. [Google Scholar] [CrossRef]
- Dan Moore, R.; Wondzell, S.M. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: A review. J. Am. Water Resour. Assoc. 2005, 41, 763–784. [Google Scholar] [CrossRef]
- Hendrickson, G.E.; Kreiger, R.A. Geochemistry of Natural Waters of the Blue Grass Region, Kentucky; US Geological Survey Water-Supply Paper 1700; United States Government Printing Office: Washington, DC, USA, 1964; 135p.
- Toler, L.G. Relation Between Chemical Quality and Water Discharge in Spring Creek, Southwestern Georgia; U.S. Geological Survey, Professional Paper; U.S. Geological Survey: Reston, VA, USA, 1965; Volume 525-C, pp. 209–213.
- Rose, S. Comparative solute–discharge hysteresis analysis for an urbanized and a ‘control basin’ in the Georgia (USA) Piedmont. J. Hydrol 2003, 284, 45–56. [Google Scholar] [CrossRef]
- Maniquiz, M.C.; Choi, J.; Lee, S.; Kim, L.H. Stormwater runoff monitoring in a deciduous and coniferous forest. Desalin. Water Treat. 2012, 38, 316–322. [Google Scholar] [CrossRef]
- Libohova, Z. Effects of Thinning and a Wildfire on Sediment Production Rates, Channel Morphology, and Water Quality in the Upper South Platte River Watershed. Master’s Thesis, US Forest Service, Fort Collins, CO, USA, 2004. [Google Scholar]
- Zong, M.; Hu, Y.; Liu, M.; Li, C.; Wang, C.; Liu, J. Quantifying the contribution of agricultural and urban non-point source pollutant loads in watershed with urban agglomeration. Water 2021, 13, 1385. [Google Scholar] [CrossRef]
- Gregory, R.L.; Arnold, C.B. Run-off–rational runoff formulas. Trans. ASCE 1932, 96, 1038–1099. [Google Scholar]
- Hirobe, M.; Sabang, J.; Bhatta, B.K.; Takeda, H. Leaf-litter decomposition of 15 tree species in a lowland tropical rain forest in Sarawak: Dynamics of carbon, nutrients, and organic constituents. J. Res. 2004, 9, 347–354. [Google Scholar] [CrossRef]
- Kalbitz, K.; Schmerwitz, J.; Schwesig, D.; Matzner, E. Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 2003, 113, 273–291. [Google Scholar] [CrossRef]
- Prescott, C.E.; Zabek, L.M.; Staley, C.L.; Kabzems, R. Decomposition of broadleaf and needle litter in forests of British Columbia: Influences of litter type, forest type, and litter mixtures. Can. J. For. Res. 2000, 30, 1742–1750. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G.; Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 1996, 74, 281–303. [Google Scholar] [CrossRef]
- Thieme, L.; Graeber, D.; Hofmann, D.; Bischoff, S.; Schwarz, M.T.; Steffen, B.; Meyer, U.; Kaupenjohann, M.; Wilcke, W.; Beate Michalzik, B.; et al. Dissolved organic matter characteristics of deciduous and coniferous forests with variable management: Different at the source, aligned in the soil. Biogeosciences 2019, 16, 1411–1432. [Google Scholar] [CrossRef]
- Mo, J.M.; Brown, S.; Xue, J.H.; Fang, Y.T.; Li, Z.A. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 2006, 282, 135–151. [Google Scholar] [CrossRef]
- Alvarez, E.; Fernández Marcos, M.L.; Torrado, V.; Fernández Sanjurjo, M.J. Dynamics of macronutrients during the first stages of litter decomposition from forest species in a temperate area (Galicia, NW Spain). Nutrient Cycl. Agroecosyst. 2008, 80, 243–256. [Google Scholar] [CrossRef]
- Russel, A.E.; Raich, J.W.; Vitousek, P.M. The ecology of the climbing fern Dicranopteris linearis on windward Mouna Loa, Hawaii. J. Ecol. 1998, 86, 765–779. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry 2023; Korea Forest Service: Daejeon, Republic of Korea, 2023; No. 23; pp. 24–25. (In Korean)
- Oh, K.D.; Jun, B.H.; Han, H.G.; Jung, S.W.; Cho, Y.H.; Park, S.Y. Curve number for a small forested mountainous catchment. J. Korea Water Resour. Assoc. 2005, 38, 605–616. (In Korean) [Google Scholar] [CrossRef]
- Kent, K.M. Travel time, time of concentration and lag. In National Engineering Handbook; NRCS: Washington, DC, USA, 1972; Volume 4. [Google Scholar]
- Miyata, S.; Kosugi, K.; Nishi, Y.; Gomi, T.; Sidle, R.C.; Mizuyama, T. Spatial pattern of infiltration rate and its effect on hydrological processes in a small headwater catchment. Hydrol. Process. 2010, 24, 535–549. [Google Scholar] [CrossRef]
- Bryan, R.B. Soil erodibility and processes of water erosion on hillslope. Geomorphology 2000, 32, 385–415. [Google Scholar] [CrossRef]
- Passalacqua, P.; Tarolli, P.; Foufoula-Georgiou, E. Testing space-scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape. Water Resour. Res. 2010, 46, W11535. [Google Scholar] [CrossRef]
CP Catchment | DN Catchment | |
---|---|---|
Event precipitation (mm) | 11.0–76.2 | 6.0–39.5 |
Max. 2 h precipitation (mm) | 11.0–26.3 | 5.0–32.0 |
Duration of precipitation (h) | 2.0–24.0 | 4.0–20.0 |
API2 (mm) | 0.0–35.0 | 0.0–43.4 |
API5 (mm) | 3.0–35.0 | 0.0–43.4 |
API7 (mm) | 3.0–35.0 | 0.0–58.5 |
API30 (mm) | 62.0–124.5 | 41.6–143.1 |
Total runoff (mm) | 0.23–3.57 | 0.65–6.19 |
Peak flow (mm/2 h) | 0.12–1.92 | 0.13–0.68 |
Runoff coefficient (%) | 2.1–7.8 | 4.9–22.4 |
pH | 6.2–7.0 | 7.0–7.4 |
EC (μS/cm) | 79.7–122.8 | 59.1–82.0 |
BOD (mg/L) | 1.2–2.3 | 1.6–5.5 |
COD (mg/L) | 9.3–12.6 | 3.3–10.0 |
TOC (mg/L) | 7.0–10.3 | 2.2–6.1 |
B/C ratio | 0.10–0.18 | 0.08–0.73 |
TSS (mg/L) | 1.8–3.6 | 0.8–16.4 |
TN (mg/L) | 6.3–12.7 | 0.9–1.7 |
TP (mg/L) | 0.008–0.023 | 0.005–0.011 |
Rising Limb | Falling Limb | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | EC | BOD | COD | TOC | B/C | TSS | TN | pH | EC | BOD | COD | TOC | B/C | TSS | TN | |||
CP | pH | CP | ||||||||||||||||
EC | −0.33 | −0.18 | ||||||||||||||||
BOD | 0.21 | 0.38 | 0.22 | 0.30 | ||||||||||||||
COD | −0.50 | 0.51 | 0.41 | −0.10 | 0.72 | 0.14 | ||||||||||||
TOC | −0.56 | 0.59 | 0.46 | 0.99 | −0.12 | 0.77 | 0.06 | 0.96 | ||||||||||
B/C | 0.49 | 0.17 | 0.88 | −0.05 | 0.01 | 0.24 | −0.03 | 0.89 | −0.31 | −0.37 | ||||||||
TSS | −0.32 | 0.13 | 0.42 | 0.66 | 0.64 | 0.12 | −0.03 | 0.30 | 0.33 | 0.10 | 0.09 | 0.25 | ||||||
TN | −0.81 | 0.65 | 0.19 | 0.77 | 0.84 | −0.19 | 0.43 | −0.65 | 0.59 | −0.22 | 0.38 | 0.51 | −0.37 | 0.07 | ||||
TP | 0.71 | −0.06 | 0.25 | −0.58 | −0.57 | 0.62 | −0.29 | −0.67 | 0.36 | 0.61 | 0.51 | 0.68 | 0.61 | 0.18 | 0.14 | −0.07 | ||
DN | pH | DN | ||||||||||||||||
EC | 0.45 | −0.43 | ||||||||||||||||
BOD | −0.31 | 0.22 | −0.17 | 0.26 | ||||||||||||||
COD | −0.34 | −0.10 | 0.85 | −0.34 | 0.06 | 0.56 | ||||||||||||
TOC | −0.26 | −0.03 | 0.87 | 0.95 | −0.26 | 0.07 | 0.69 | 0.71 | ||||||||||
B/C | −0.07 | 0.62 | 0.69 | 0.28 | 0.40 | 0.14 | 0.21 | 0.05 | −0.68 | −0.49 | ||||||||
TSS | −0.34 | −0.16 | 0.48 | 0.77 | 0.62 | 0.00 | −0.19 | −0.14 | 0.09 | 0.35 | 0.33 | −0.34 | ||||||
TN | −0.04 | −0.41 | −0.07 | 0.23 | 0.05 | −0.49 | 0.33 | 0.25 | −0.50 | −0.25 | 0.18 | 0.00 | −0.47 | 0.44 | ||||
TP | −0.38 | −0.14 | 0.73 | 0.77 | 0.85 | 0.29 | 0.46 | 0.09 | 0.05 | −0.10 | 0.30 | 0.57 | 0.53 | −0.57 | 0.53 | 0.15 |
Rising Limb | Falling Limb | ||||||
---|---|---|---|---|---|---|---|
Comp 1 | Comp 2 | Comp 3 | Comp 1 | Comp 2 | Comp 3 | ||
CP | BOD | 0.132 | 0.935 | 0.228 | 0.228 | 0.708 | 0.464 |
COD | 0.824 | 0.253 | 0.435 | 0.966 | −0.092 | 0.051 | |
TOC | 0.862 | 0.308 | 0.375 | 0.954 | −0.230 | 0.051 | |
TSS | 0.285 | 0.180 | 0.934 | 0.024 | 0.015 | 0.958 | |
TN | 0.931 | 0.059 | 0.125 | 0.382 | −0.799 | 0.189 | |
TP | −0.785 | 0.500 | −0.181 | 0.794 | 0.507 | 0.090 | |
DN | BOD | 0.879 | 0.281 | −0.152 | 0.874 | 0.017 | −0.249 |
COD | 0.804 | 0.554 | 0.142 | 0.815 | 0.308 | 0.231 | |
TOC | 0.905 | 0.376 | −0.004 | 0.861 | 0.307 | −0.006 | |
TSS | 0.319 | 0.912 | 0.201 | 0.087 | 0.805 | 0.372 | |
TN | −0.001 | 0.159 | 0.982 | −0.050 | 0.170 | 0.963 | |
TP | 0.926 | 0.096 | 0.108 | 0.360 | 0.843 | −0.027 |
CP Catchment | DN Catchment | |||
---|---|---|---|---|
EMC (mg/L) | Organic matter | BOD | 1.3–2.1 | 1.6–3.8 |
COD | 10.1–12.6 | 3.2–9.0 | ||
TOC | 7.6–10.2 | 2.2–5.2 | ||
TSS | 2.2–4.3 | 0.9–18.7 | ||
Nutrient | TN | 6.6–12.4 | 0.9–1.7 | |
TP | 0.01–0.02 | 0.005–0.01 | ||
Event load (kg/ha) | Organic matter | BOD | 0.005–0.06 | 0.01–0.12 |
COD | 0.03–0.41 | 0.02–0.29 | ||
TOC | 0.02–0.35 | 0.01–0.21 | ||
TSS | 0.01–0.15 | 0.02–0.44 | ||
Nutrient | TN | 0.02–0.42 | 0.01–0.08 | |
TP | 0.0001–0.0004 | 0.00003–0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Li, Q.; Choi, B.; Choi, H.T.; Lim, H. Characteristics of Stream Water Quality on Draining of Planted Coniferous and Natural Deciduous Forest Catchments in South Korea. Water 2025, 17, 1535. https://doi.org/10.3390/w17101535
Nam S, Li Q, Choi B, Choi HT, Lim H. Characteristics of Stream Water Quality on Draining of Planted Coniferous and Natural Deciduous Forest Catchments in South Korea. Water. 2025; 17(10):1535. https://doi.org/10.3390/w17101535
Chicago/Turabian StyleNam, Sooyoun, Qiwen Li, Byoungki Choi, Hyung Tae Choi, and Honggeun Lim. 2025. "Characteristics of Stream Water Quality on Draining of Planted Coniferous and Natural Deciduous Forest Catchments in South Korea" Water 17, no. 10: 1535. https://doi.org/10.3390/w17101535
APA StyleNam, S., Li, Q., Choi, B., Choi, H. T., & Lim, H. (2025). Characteristics of Stream Water Quality on Draining of Planted Coniferous and Natural Deciduous Forest Catchments in South Korea. Water, 17(10), 1535. https://doi.org/10.3390/w17101535