Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. UAV Data Collection and Processing
2.3. Reference Evapotranspiration (Eto)
2.4. Cotton Lint Yield and Quality Data
3. Results
3.1. Effect of Irrigation Treatment on Canopy Cover
3.2. Daily estimates of canopy cover
3.3. Effect of Irrigation Treatment on Cotton Yield and Lint Quality
3.4. Relationship between CC and Cotton Lint Yield
3.5. Effect of Irrigation Treatment on Fiber Quality
3.6. Comparision of Actual Evapotranspiration (ETc) Estimates Utilizing Crop Coefficients and Canopy Cover
- Case I: (Kc values published for cotton growth and development)
- Case II: (Kc was replaced by daily estimates of fractional CC)
- Case III:
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, L.; Dew, T. Global 2023/24 Cotton Ending Stocks Increase; Prices Weaken Global Cotton Stocks and Prices Ending Stocks (Million Bales) A-Index (cents/lb.) Economic Research Service|Situation and Outlook Report. Available online: https://www.ers.usda.gov/webdocs/outlooks/107397/cws-23i.pdf?v=6522 (accessed on 14 October 2023).
- Adhikari, P.; Ale, S.; Bordovsky, J.P.; Thorp, K.R.; Modala, N.R.; Rajan, N.; Barnes, E.M. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model. Agric. Water Manag. 2016, 164, 317–330. [Google Scholar] [CrossRef]
- Kothari, K.; Ale, S.; Bordovsky, J.P.; Munster, C.L.; Singh, V.P.; Nielsen-Gammon, J.; Hoogenboom, G. Potential genotype-based climate change adaptation strategies for sustaining cotton production in the Texas High Plains: A simulation study. Field Crops Res. 2021, 271, 108261. [Google Scholar] [CrossRef]
- Ale, S.H. Simulated Dryland Cotton Yield Response to Selected Scenario Factors Associated with Soil Health. Front. Sustain. Food Syst. 2021, 4, 9. [Google Scholar] [CrossRef]
- Bordovsky, J.P. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas South Plains. Appl. Eng. Agric. 2015, 31, 883–897. [Google Scholar]
- Ajaz, A.; Datta, S.; Stoodley, S. High plains aquifer–state of affairs of irrigated agriculture and role of irrigation in the sustainability paradigm. Sustainability 2020, 12, 3714. [Google Scholar] [CrossRef]
- Zhang, G.; Li, X. Estimate Cotton Water Consumption from Shallow Groundwater under Different Irrigation Schedules. Agronomy 2022, 12, 213. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Available online: https://www.researchgate.net/publication/235704197_Crop_evapotranspiration-Guidelines_for_computing_crop_water_requirements-FAO_Irrigation_and_drainage_paper_56 (accessed on 17 October 2023).
- Hunsaker, D.J.; Pinter, P.J.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Koudahe, K.S. Irrigation-water management and productivity of cotton: A review. Sustainability 2021, 13, 10070. [Google Scholar] [CrossRef]
- Niu, H.; Hollenbeck, D.; Zhao, T.; Wang, D.; Chen, Y. Evapotranspiration estimation with small uavs in precision agriculture. Sensors 2020, 20, 6427. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Zhang, H.; Niu, X.; Shao, G. Evaluating maize evapotranspiration using high-resolution UAV-based imagery and FAO-56 dual crop coefficient approach. Agric. Water Manag. 2023, 275, 108004. [Google Scholar] [CrossRef]
- Masek, J.G. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 2008, 112, 2914–2926. [Google Scholar] [CrossRef]
- Bodner, G.; Loiskandl, W.; Kaul, H.P. Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agric. Water Manag. 2007, 93, 85–98. [Google Scholar] [CrossRef]
- Greenwood, K.L.; Lawson, A.R.; Kelly, K.B. The water balance of irrigated forages in northern Victoria, Australia. Agric. Water Manag. 2009, 96, 847–858. [Google Scholar] [CrossRef]
- Metashape. Agisoft Metashape. 2022. Available online: https://www.agisoft.com/ (accessed on 19 December 2022).
- Patrignani, A.; Ochsner, T.E. Canopeo: A powerful new tool for measuring fractional green canopy cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Bhandari, M.; Chang, A.; Jung, J.; Ibrahim, A.M.H.; Rudd, J.C.; Baker, S.; Landivar, J.; Liu, S.; Landivar, J. Unmanned aerial system-based high-throughput phenotyping for plant breeding. Plant Phenome J. 2023, 6, e20058. [Google Scholar] [CrossRef]
- Monteith, J.L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1977, 281, 277–294. [Google Scholar]
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). 2013. Available online: https://www.agraria.unirc.it/documentazione/materiale_didattico/1462_2016_412_24509.pdf (accessed on 12 December 2023).
- Fipps, G. GROWER’S GUIDE: Using PET for Determining Crop Water Requirements and Irrigation Scheduling Contents. Available online: http://texaset.tamu.edu (accessed on 15 December 2023).
- Hanson, B. Crop Coefficients. Available online: https://ucanr.edu/sites/Irrigation_and_Soils_/files/93370.pdf (accessed on 20 February 2024).
- Tarara, J.M.; Perez Peñ, J.E. Moderate Water Stress from Regulated Deficit Irrigation Decreases Transpiration Similarly to Net Carbon Exchange in Grapevine Canopies. J. Am. Soc. Hortic. Sci. 2015, 140, 413–426. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Zoidou, M.; Gikas, G.D.; Sylaios, G.K. Impact of Irrigation Technologies and Strategies on Cotton Water Footprint Using AquaCrop and CROPWAT Models. Environ. Process. 2018, 5, 181–199. [Google Scholar] [CrossRef]
- Kalfountzos, D.; Alexiou, I.; Kotsopoulos, S.; Zavakos, G.; Vyrlas, P. Effect of subsurface drip irrigation on cotton plantations. Water Resour. Manag. 2007, 21, 1341–1351. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, Y.; Li, Y.; Qin, L.; Li, J.; Xu, F. Reducing the excessive evaporative demand improved the water-use efficiency of greenhouse cucumber by regulating the trade-off between irrigation demand and plant productivity. HortScience 2018, 53, 1784–1790. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, Z.; Liu, S.; Li, W.; Dong, H. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Res. 2016, 197, 1–9. [Google Scholar] [CrossRef]
- de Medeiros, G.A. The influence of crop canopy on evapotranspiration and crop coefficient of beans (Phaseolus vulgaris L.). Agric. Water Manag. 2001, 49, 211–224. [Google Scholar] [CrossRef]
- Van der Gulik, T.; Nyvall, J. Crop Coefficients For Use In Irrigation Scheduling; Agdex 561; Ministry of Agriculture, Food and Fisheries: Abbotsford, BC, Canada, 2001. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://irrigationtoolbox.com/ReferenceDocuments/Extension/BCExtension/577100-5.pdf&ved=2ahUKEwiPjt6ug-6FAxWRia8BHciLCcEQFnoECBUQAQ&usg=AOvVaw2wPEDg5KMfLKZYelWvR9Bn (accessed on 23 December 2023).
Df | Sum Sq | Mean Sq | F Value | Pr (>F) | |
---|---|---|---|---|---|
Treatment | 4.0 | 18,851,718.1 | 4,712,929.5 | 81.7 | 1.08 × 10−32 |
Residuals | 115.0 | 6,635,277.6 | 57,698.1 |
Length (mm) | Strength | Micronaire Value | Uniformity Index | |||||
---|---|---|---|---|---|---|---|---|
Treatment | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Rainfed | 1.1 | 0.0 | 28.6 | 0.8 | 4.1 | 0.3 | 77.9 | 0.8 |
Fully irrigated | 1.1 | 0.0 | 29.3 | 1.6 | 4.4 | 0.3 | 78.1 | 1.1 |
Percent deficit | 1.0 | 0.0 | 27.4 | 2.0 | 4.1 | 0.3 | 76.7 | 1.3 |
Time delay | 1.1 | 0.1 | 28.8 | 1.6 | 4.3 | 0.2 | 77.7 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risal, A.; Niu, H.; Landivar-Scott, J.L.; Maeda, M.M.; Bednarz, C.W.; Landivar-Bowles, J.; Duffield, N.; Payton, P.; Pal, P.; Lascano, R.J.; et al. Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains. Water 2024, 16, 1300. https://doi.org/10.3390/w16091300
Risal A, Niu H, Landivar-Scott JL, Maeda MM, Bednarz CW, Landivar-Bowles J, Duffield N, Payton P, Pal P, Lascano RJ, et al. Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains. Water. 2024; 16(9):1300. https://doi.org/10.3390/w16091300
Chicago/Turabian StyleRisal, Avay, Haoyu Niu, Jose Luis Landivar-Scott, Murilo M. Maeda, Craig W. Bednarz, Juan Landivar-Bowles, Nick Duffield, Paxton Payton, Pankaj Pal, Robert J. Lascano, and et al. 2024. "Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains" Water 16, no. 9: 1300. https://doi.org/10.3390/w16091300
APA StyleRisal, A., Niu, H., Landivar-Scott, J. L., Maeda, M. M., Bednarz, C. W., Landivar-Bowles, J., Duffield, N., Payton, P., Pal, P., Lascano, R. J., Goebel, T., & Bhandari, M. (2024). Improving Irrigation Management of Cotton with Small Unmanned Aerial Vehicle (UAV) in Texas High Plains. Water, 16(9), 1300. https://doi.org/10.3390/w16091300