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Abstract: The rapid decline in water availability for irrigation on the Texas High Plains (THP) is a
significant problem affecting crop production and the viability of a large regional economy worth
approximately USD 7 billion annually. This region is the largest continuous cotton-producing area
in the United States, and the timely delivery and efficient use of irrigation water are critical to the
sustainability and profitability of cotton production in this region. Current irrigation scheduling
must be improved to reduce water consumption without compromising crop production. Presently,
irrigation scheduling based on reference evapotranspiration (ETo) is limited due to the lack of reliable
and readily available in-field weather data and updated crop coefficients. Additionally, in-field
variability in crop water demand is often overlooked, leading to lower irrigation efficiency. To
address these challenges, we explored the potential use of an unmanned aerial vehicle (UAV)-based
crop monitoring system to support irrigation management decisions. This study was conducted
in Lubbock, Texas, in 2022, where high temporal and spatial resolution images were acquired
using a UAV from a cotton field experiment with four irrigation levels. Soil moisture and canopy
temperature sensors were deployed to monitor crop response to irrigation and rainfall. The results
indicated a significant effect of water stress on crop growth (revealed by UAV-based canopy cover
(CC) measurements), yield, and fiber quality. Strong correlations between multi-temporal CC and
lint yield (R2 = 0.68 to 0.88) emphasized a clear trend: rainfed treatments with lower yields exhibited
reduced CC, while irrigated plots with higher CC displayed increased yields. Furthermore, irrigated
plots produced more mature and uniform fibers. This study also explored various evapotranspiration
calculation approaches indicating that site-specific CC measurements obtained from a UAV could
significantly reduce irrigation application. A regression model linking evapotranspiration to canopy
cover demonstrated promising potential for estimating water demand in crops with an R2 as high as
0.68. The findings highlight the efficacy of UAV-based canopy features in assessing drought effects
and managing irrigation water in water-limited production regions like the THP.

Keywords: canopy cover; crop coefficient; evapotranspiration; irrigation; unmanned aerial vehicle
(UAV); water stress

Water 2024, 16, 1300. https://doi.org/10.3390/w16091300 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w16091300
https://doi.org/10.3390/w16091300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-0815-3234
https://orcid.org/0000-0002-6327-6093
https://orcid.org/0000-0001-7211-1584
https://doi.org/10.3390/w16091300
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w16091300?type=check_update&version=1


Water 2024, 16, 1300 2 of 16

1. Introduction

Cotton is one of the most important row crops in the United States and is the third
largest global producer and exporter of cotton [1]. Cotton cultivation in the US extends
from Virginia in the east to California in the west under a wide range of water levels
in irrigated and rainfed systems. Of the cotton-producing states, Texas is number one,
producing approximately 40% of US cotton annually [1]. Cotton cultivation in Texas
alone provides more than 125,000 jobs and contributes more than USD 21 billion annually
to the national economy [1]. The northwest plains region of Texas, also known as the
Texas High Plains (THP) (Figure 1), is the largest continuous cotton-producing region in
the US [2,3]. Cotton production on THP is conducted under both rainfed and irrigated
systems, with irrigated yields significantly higher and more stable than rainfed systems [4].
Cotton is produced on approximately 4 million acres on the THP, with roughly 1.8 million
acres of irrigated production. However, the irrigation capacity in the region has declined
precipitously over the past two decades due to the depletion of the Ogallala aquifer [5]. To
preserve the long-term sustainability of the region and the profitability of cotton production,
irrigation resources must be used efficiently to maximize yields and minimize production
costs. Previous methods of irrigation scheduling relying on outdated evapotranspiration
(ET) models, grower experience, or historic data may not provide accurate water need
calculations under current climate demands and declining capacities. Based on a survey
conducted by the United States Department of Agriculture (USDA) in 2018, 75% of people
in the THP consider crop water demand and 40% of them consider soil water content to
schedule irrigation [6]. Irrigation schedules based on crop water demand use more water
due to increased subsurface evaporation, while irrigation schedules based on soil water
content were observed to have higher irrigation efficiency due to a decrease in subsurface
evaporation [7].
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Current ET-based irrigation estimations are limited due to a lack of reliable and readily
available in-field weather data. Actual crop evapotranspiration (ETc) for each crop at
various growth stages is obtained by multiplying reference evapotranspiration (ETO) with
a crop coefficient (Kc):

ETc = Kc × ETo. (1)

The reference ET is an estimate of water used by a well-watered, fully covered,
15 cm tall grass surface based on meteorological data and various equations such as
Penman–Monteith [8] and Priestly–Taylor [9]. The crop coefficient (Kc) is a correction factor
used to adjust ETo for a specific crop type [10]. Errors in Kc may arise from the underes-
timation of field variability in canopy size. Previous studies have also found that actual
crop water use was not accurately represented by estimated irrigation requirements using
empirical crop coefficients [11]. Accurate irrigation requirement estimation is in fact a
challenging task as crop water use is driven by several factors, both biological and physical,
that cannot be accurately estimated by traditional methods [12]. These errors commonly
result in the overestimation of water use by the crop, thus resulting in over-irrigation.
Unmanned aerial vehicles (UAVs) have become increasingly popular in recent years for
crop monitoring as they provide a cost-effective and efficient means of collecting data on
crop growth and development. The UAV platform, equipped with lightweight sensors, can
capture high temporal and spatial resolution images of crops, which are analyzed using
image processing techniques to map crop growth and development, assess plant health,
and identify areas of water stress. The higher temporal and spatial resolution images and
low operational costs make UAVs an ideal platform for field mapping and the monitoring
of crop growth and water needs [13–15].

UAV-derived products can provide high-resolution data on vegetation cover, height,
and structure, which can be used to estimate ET more accurately than traditional methods.
For example, studies have shown that UAV-derived canopy cover and height data can
be used to estimate ET with high accuracy [16]. UAVs can provide multi-temporal data,
which can be useful in monitoring changes in vegetation and ET over time. This is
important for understanding how land use changes and climate variability affect ET, and
for identifying areas of water deficit or high water use. Furthermore, some relationships
have been established between UAV-derived products and crop coefficients. Several
linear and curvilinear relationships between Kc and canopy cover at various scales have
been identified in past studies [10,17,18]. ETo was calculated from weather data and Kc
was derived from UAV data. An empirical relationship between UAV parameters and
Kc was established and used to derive a variable water use map and forecast irrigation
requirements along with canopy growth.

The objectives of this study were to (1) obtain crop phenotypic parameters such as
canopy cover (CC) from a UAV, (2) assess the response of varying irrigation treatments on
CC cotton yield and lint quality, and (3) compare ETC calculated from CC, proposed Kc,
and Kc derived from previous studies.

2. Materials and Methods
2.1. Study Site

This study was conducted at the USDA-ARS Cropping Systems Research Labo-
ratory (CSRL) in Lubbock, Texas (33.593◦ N, 101.89◦ W) (Figure 1). Cotton (Nexgen
4098 B3XF) was planted on 4 May 2022, using standard planting practices at a rate
of 18,500 seeds per ha. Irrigation was supplied by a sub-surface drip spaced on 1 m
rows at a depth of approximately 35 cm. Four irrigation treatments were established in
8 row × 65 m long rows to create variability in plant growth and yield: (1) high pulse
control—irrigation treatment triggered by CT-based stress time accumulation and soil
moisture probe data; (2) time delay of control—irrigation was triggered by every other
control irrigation signal (i.e., every other irrigation was skipped) to apply approximately
50% of the total control irrigation volume with extended water deficit intervals; (3) 25%
of control—irrigation was applied at the same interval as the control at 25% of the con-
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trol volume; (4) rainfed—no irrigation was applied after sowing. Each treatment was
replicated 4 times randomly across the field for a total of 120 experimental rows. The
crop was harvested on 4 October 2022.

GoField Plus systems (Goanna Ag. Pvt. Ltd., Goondiwindi, QLD, Australia) were
placed in 2 replicate plots for each irrigation treatment. The GoField Plus system consists
of a 1 m deep capacitance probe that provides soil moisture and temperature data in 10 cm
increments and a single-pixel infrared canopy temperature sensor. Soil moisture data
were collected every hour and canopy temperature data were collected every 15 min for
the duration of the season. Data were reported every hour through a web application
along with continuous weather data, growing day degrees, and modeled ET. Based on
these measurements, irrigation events as well as the amount to apply were determined
(Figure 2). Irrigation was initiated on 24 June (51 DAP) and ceased on 11 August (99 DAP).
Treatment zone irrigation volumes were (1) high pulse control—400 mm; (2) time delay
of control—165 mm; (3) 25% of control—100 mm; and (4) rainfed—no irrigation. The
intended irrigation volume on 76 DAP was 25%, but full irrigation was mistakenly applied.
However, this error did not impact the research outcome and, thus, it might be considered
an inconsequential error.
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Weather data were collected at the site with a weather station that included a radiation
sensor and silicon pyranometer (model LI-200S, LI-COR Biosciences, Lincoln, NE, USA), a
temperature and relative humidity probe (model HMP45, Vaisala, Woburn, MA, USA), a
3-cup pulse anemometer (model 12102, R. M. Young, Traverse City, MI, USA), and a tipping-
bucket rain gauge (model TR-525USW, Texas Electronics Inc., Dallas, TX, USA). The data
obtained from the sensors were controlled by a data logger (model CR1000, Campbell Scien-
tific, Logan, UT, USA) and are archived at https://www.ars.usda.gov/plains-area/lubbock-
tx/cropping-systems-research-laboratory/wind-erosion-and-water-conservation-research/
docs/pswc-met-tower-data/ (accessed on 15 December 2023). In-season rainfall was
201 mm and the seasonal growing degree days were 1420 (Figure 3).

https://www.ars.usda.gov/plains-area/lubbock-tx/cropping-systems-research-laboratory/wind-erosion-and-water-conservation-research/docs/pswc-met-tower-data/
https://www.ars.usda.gov/plains-area/lubbock-tx/cropping-systems-research-laboratory/wind-erosion-and-water-conservation-research/docs/pswc-met-tower-data/
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Water 2024, 16, 1300 5 of 16
Water 2024, 16, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 3. Monthly maximum, minimum, and average temperature and precipitation in the experi-
mental site. 

2.2. UAV Data Collection and Processing 
A DJI Phantom 4 equipped with a 20-megapixel red–green–blue (RGB) camera, a me-

chanical shutter, and a real-time kinematic (RTK) positioning module was used to acquire 
imagery data on 6 May (2 DAP), 26 May (22 DAP), 16 June (43 DAP), 7 July (64 DAP), 20 
July (77 DAP), 4 August (92 DAP), 18 August (106 DAP), 2 September (121 DAP), and 3 
October (152 DAP). The RTK module, using a fixed base station, was used to send correc-
tional data to the UAV to increase the accuracy of the Global Navigation Satellite System 
(GNSS). Agisoft Metashape 2.1.1 [19] software was used for image processing to generate 
spatially georeferenced orthomosaics, digital terrain models (DTMs), and digital surface 
models (DSMs) from the raw UAV imagery. The overall image processing pipeline fol-
lowed in this study is presented in Figure 4. CC was quantified by applying a binary clas-
sification algorithm to the orthomosaic images based on the RGB parameters to separate 
canopy from non-canopy objects [20,21]. 

 
Figure 4. Unmanned aerial vehicle (UAV) data collection and processing steps followed in this 
study. 

Figure 3. Monthly maximum, minimum, and average temperature and precipitation in the experi-
mental site.

2.2. UAV Data Collection and Processing

A DJI Phantom 4 equipped with a 20-megapixel red–green–blue (RGB) camera, a
mechanical shutter, and a real-time kinematic (RTK) positioning module was used to acquire
imagery data on 6 May (2 DAP), 26 May (22 DAP), 16 June (43 DAP), 7 July (64 DAP),
20 July (77 DAP), 4 August (92 DAP), 18 August (106 DAP), 2 September (121 DAP), and
3 October (152 DAP). The RTK module, using a fixed base station, was used to send
correctional data to the UAV to increase the accuracy of the Global Navigation Satellite
System (GNSS). Agisoft Metashape 2.1.1 [19] software was used for image processing to
generate spatially georeferenced orthomosaics, digital terrain models (DTMs), and digital
surface models (DSMs) from the raw UAV imagery. The overall image processing pipeline
followed in this study is presented in Figure 4. CC was quantified by applying a binary
classification algorithm to the orthomosaic images based on the RGB parameters to separate
canopy from non-canopy objects [20,21].
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The determination of canopy cover utilized a binary image generated through an
analysis of color values in the red–green–blue (RGB) system using Canopeo Version 2.0,
an ACT image analysis tool [20]. This method produced binary images: white pixels
signified regions adhering to the selection criteria (green canopy), while black pixels
denoted areas not meeting the criteria (no green canopy). The fractional green canopy
cover was quantified on a scale ranging from 0 (indicating no green canopy cover) to
1 (representing 100% green canopy cover). The classification of the green canopy was
established based on the following criteria:(

R
G

< p1
)

and
(

B
G

< p2
)

and (2G − B − R > p3) (2)

where R, G, and B are the pixel actual values in the red, green, and blue bands. Each color
band could have a maximum pixel value of 255 (representing maximum intensity) and a
minimum pixel value of 0 (representing no intensity). The parameters p1, p2, and p3 were
used to classify pixels that were predominantly in the green band. The default values for
the Canopeo algorithm were p1 = 0.95, p2 = 0.95, and p3 = 20 [20].

2.3. Reference Evapotranspiration (Eto)

Daily ETo (mm/day) was calculated from the daily weather data (minimum and
maximum temperature, solar radiation, wind speed, and relative humidity) using the
Penman–Monteith evapotranspiration method, as shown in Equation (3) [10,22–24]:

ETO =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(3)

where Rn is the daily total of net radiation (MJ m−2 day−1), G is the daily total of soil heat
flux (MJ m−2 day−1), T is the average daily air temperature at a height of 2 m (◦C), u2 is the
average daily wind speed at a height of 2 m (m s−1), es is average daily saturation vapor
pressure (kPa),ea is average daily actual vapor pressure (kPa), ∆ is the slope of the saturation
vapor pressure–air temperature curve (kPa ◦C−1) at T, and γ is the psychrometric constant
(kPa ◦C−1). Multiplication by 0.408 converted MJ m−2 day−1 to mm day−1.

2.4. Cotton Lint Yield and Quality Data

Cotton fiber was mechanically harvested as single rows for each plot. Rows 1 and 8
adjacent to neighboring irrigation treatment plots were discarded and rows 2–7 were used
for yield and quality analysis. Samples were collected and weighed to obtain seed cotton
weights. Subsequently, each sample was ginned to collect the fiber and seed weight. Sub-
samples of the fiber were collected for fiber quality analysis by a high-volume instrument
(HVI). The parameters that were considered to evaluate lint quality in this study were
fiber length, fiber strength, micronaire value, and uniformity index. Fiber length and fiber
strength are the critical parameters for cotton lint quality. Longer fibers with higher strength
are preferred because they produce stronger and better yarns for higher-quality textiles.
HVI samples were collected for each row in every treatment and comprised 3 technical
replicates per row.

3. Results
3.1. Effect of Irrigation Treatment on Canopy Cover

Since the canopy cover is an important indicator of plant growth, and irrigation is a
crucial factor in plant growth, varying effects on canopy cover were observed according
to the amount, frequency, and timing of water application. Canopy cover development
was identical for all treatment rows from sowing until the initiation of irrigation on 24 June
(51 DAP, Figure 5). The control treatment rows showed a rapid increase in CC and stabi-
lization from mid-July through September. CC in deficit treatments separated from the



Water 2024, 16, 1300 7 of 16

control CC according to irrigation amount, with higher irrigation amounts (time delay)
showing higher CC than a 25% deficit, which was higher than the rainfed treatment.
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3.3. Effect of Irrigation Treatment on Cotton Yield and Lint Quality

Analysis of variance (ANOVA) was performed on the cotton yield dataset to assess
the significant effect (p < 0.001) of irrigation treatments on yield (Table 1). The results
indicate that there was a significant effect of irrigation treatments on yield. After perform-
ing an ANOVA, the Tukey HSD (honestly significant difference) test was also used to
identify which treatment groups were statistically distinguishable from one another. The
distinct letters (Figure 6) indicate that all the irrigation treatment groups were statistically
different from each other. The fully irrigated treatment produced a maximum yield of
around 1.8 tons per hectare, whereas the rainfed treatment had a minimum yield of around
0.6 tons per hectare (Figure 7). Cotton was irrigated through a subsurface drip method that
delivered water directly to the plant root zone through buried drip lines, reducing water
loss due to evaporation and runoff. The fully irrigated treatment provided crops with the
full amount of water they needed to maximize the lint and seed cotton yield by promoting
healthy plant growth and development.

Table 1. Analysis of variance (ANOVA) results for cotton yield across various irrigation treatments.

Df Sum Sq Mean Sq F Value Pr (>F)

Treatment 4.0 18,851,718.1 4,712,929.5 81.7 1.08 × 10−32

Residuals 115.0 6,635,277.6 57,698.1
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3.4. Relationship between CC and Cotton Lint Yield

The relationship between canopy cover and lint yield was strongly supported by
R-square values ranging from 0.68 to 0.88 across different growth stages. Notably, this
correlation was most evident during mid-growth stages, with lower R-square values
observed in later stages. Figure 8 illustrates a clear trend, where rainfed plots (shown with
purple dots) had lower yields linked to reduced canopy cover, while fully irrigated plots
(depicted with black dots) with higher canopy cover displayed higher yields. Additionally,
the steeper slope of the trendline in the scatter plot for 152 DAP suggests a heightened
relationship between canopy cover and lint yield at this later stage of crop development.
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A steeper slope indicates that changes in canopy cover during this period had a much
stronger relationship with lint yield.
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3.5. Effect of Irrigation Treatment on Fiber Quality

Table 2 suggests that the fiber length for all four treatments were similar, but the
fiber strength of cotton harvested from the fully irrigated plot was higher than that from
other irrigation treatments. Similarly, micronaire, a measure of fiber fineness or thickness,
was highest for fully irrigated plots, while that for a percent deficit of fully irrigated and
rainfed plots was lowest. This suggested that the irrigated plots produced more mature
and uniform fibers compared to rainfed plots. Likewise, fiber uniformity refers to the
consistency of fiber length across a sample of cotton. A high level of uniformity ensures
even yarns and fabrics, leading to better performance during manufacturing processes.
The uniformity index was also higher for the fully irrigated plots compared to rainfed and
partially irrigated plots.

Table 2. Means and standard deviations of the fiber quality parameters for different irrigation
treatments.

Length (mm) Strength Micronaire Value Uniformity Index
Treatment Mean SD Mean SD Mean SD Mean SD

Rainfed 1.1 0.0 28.6 0.8 4.1 0.3 77.9 0.8
Fully irrigated 1.1 0.0 29.3 1.6 4.4 0.3 78.1 1.1
Percent deficit 1.0 0.0 27.4 2.0 4.1 0.3 76.7 1.3

Time delay 1.1 0.1 28.8 1.6 4.3 0.2 77.7 1.2
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3.6. Comparision of Actual Evapotranspiration (ETc) Estimates Utilizing Crop Coefficients and
Canopy Cover

ETc was assessed in three scenarios: Case I, utilizing site-specific Kc values, represent-
ing the published values for cotton at various growth stages [24]; Case II, substituting Kc
with UAV-based fractional canopy cover (CC) measurements; and Case III, determining Kc
using the empirical method developed by R. Hutmacher (Figure 9) [25].
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Figure 9. Relationship between crop coefficient and canopy cover for different cotton varieties (R.
Hutmacher) [25].

As mentioned in Equation (1), the Kc method relies on specific crop coefficients that
account for crop type, growth stage, and local conditions, providing a detailed and crop-
specific estimation of ETc. In-season calculations of CC provide insights into the spatial and
temporal variations of cotton’s canopy development, offering a more dynamic and precise
estimate of water needs. A linear regression model was developed based on the relationship
between CC and Kc, as established by R. Hutmacher (Kc = 0.013CC − 0.148) [26].

Case I: ETc = Kc × ETo (Kc values published for cotton growth and development)
Case II: ETc = Kc (cc)× ETo (Kc was replaced by daily estimates of fractional CC)
Case III: ETc = Kc (0.013CC − 0.148)× ETo.

Overall, the ETc obtained by using site-specific Kc values was higher throughout the
growing season compared to the ETc calculated using CC measurements. The established
model (linear model between Kc and CC) and a direct replacement of Kc using CC showed
similar trends in all water treatments (Figure 10). Additionally, as expected, the ETc value
increased at the beginning of the growing season and peaked in the middle of the growing
season. Then, the ETc decreased slowly.
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The implementation of site-specific CC methods resulted in a significant reduction
in estimated crop water requirements compared to the traditional empirical Kc method.
Across the entire growing season and at the field level, this new approach notably
decreased the estimated crop evapotranspiration (ETc). This reduction in ETc signifies a
substantial departure from previous estimations and highlights the potential for more
efficient water management strategies. Importantly, this shift in methodology has direct
implications for irrigation practices, particularly when utilizing actual ET as a basis for
irrigation management. With this new approach, there is a corresponding reduction in
water usage, indicating considerable potential for the conservation and optimization of
water resources. By aligning irrigation practices with the spatial–temporal estimates of
CC, there is a significant opportunity to save water without compromising crop health
and yield.

Furthermore, regression models were established between canopy cover and evapo-
transpiration (ET) for four distinct irrigation treatments. These regression equations served
as valuable tools for predicting the quantity of evapotranspiration, considering the extent
of vegetation cover within each area for the specific irrigation treatment applied. As shown
in Figure 11, the regression analysis yielded the following R2 values for each irrigation
treatment: The rainfed treatment had an R2 value of 0.68, indicating a relatively strong
relationship between canopy cover and evapotranspiration. The full irrigation treatment
had an R2 value of 0.49, suggesting a moderate relationship. The percent deficit treatment
showed an R2 value of 0.65, indicating a relatively strong relationship. Lastly, the time
delay treatment had an R2 value of 0.59, indicating a moderate relationship.
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4. Discussion

The findings of the present study align with those of previous research on the effect
of irrigation treatments on canopy cover, evapotranspiration, cotton yield, and lint qual-
ity. Several studies have explored the relationship between water availability and cotton
parameters, providing valuable context for interpreting the current results. Researchers
investigated the impact of irrigation technology on the evapotranspiration and water
footprint of cotton in Northern Greece and found that ETC was higher for full irrigation
compared to deficit irrigation and was at least 20 mm higher for sprinkler irrigation
systems compared to drip irrigation, under the same irrigation management [27]). This
observation is consistent with our current findings, where plants exposed to regulated
deficit irrigation (RDI) demonstrated reduced canopy development and, thus, reduced
ETc compared to optimally irrigated plants. Furthermore, a study conducted on the
effect of irrigation on cotton showed that the cotton yields were significantly higher
where the subsurface irrigation system was used, and the irrigation applications met
60–80% of crop water needs [28]. This indicated that cotton yield is improved through
proper irrigation techniques, such as subsurface drip irrigation, also adopted in our
study, which was observed to improve the water use efficiency compared to the surface
drip irrigation technique.

Rainfed treatment led to reduced canopy cover as crops conserved water by reducing
their leaf area or closing their stomata to prevent water loss. A previous study on the drip
irrigation of blueberries also showed that reduced irrigation led to decreased canopy cover
and leaf area and reduced fruit yield. Rainfed treatment under greater water conditions
led to a rapid decrease in canopy cover growth rate from July 20th to Aug 4th when
conditions were too dry and there was no rainfall. This was because crops allocated
more water resources to water conservation and the maintenance of existing leaves rather
than producing new ones, which resulted in reduced photosynthesis and overall plant
growth [26]. Water stress reduced the canopy development rate and the time of maximum
value and caused premature senesce of the crop. The regrowth of the canopy was observed
after the rainfall event. Fully irrigated treatment, on the other hand, led to greater canopy
cover as crops produced more leaves in response to the surplus water supply. Excessive
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growth of canopy cover may also lead to decreased efficiency in water use, increased
disease pressure, and reduced fruit quality [29]. Thus, applying water at the appropriate
amount and timing based on plant water needs can lead to optimal canopy cover and
plant growth. All treatments showed an abrupt increase in CC following the late-season
rainfall in late August and moderate temperatures in early September, which induced the
re-growth of the canopy.

Furthermore, the findings of this study are also consistent with those of previous
research on the effect of irrigation treatments on cotton quality. Several studies have
investigated the impact of varying water regimes on cotton fiber attributes, providing
valuable context for interpreting the present results. In one study, researchers explored the
influence of deficit irrigation on cotton fiber quality [30]. They investigated the interaction
between deficit irrigation and plant density on the growth, yield, and fiber quality of
irrigated cotton and found that deficit irrigation reduced fiber length but increased fiber
micronaire value. They thus concluded that the use of high plant density under deficit
irrigation can be a promising alternative for water saving without compromising cotton
yield. These findings align with those of our current study, where cotton subjected to deficit
irrigation likely exhibited similar negative impacts on fiber length and strength.

The ANOVA results suggested that there were significant differences between the
irrigation treatment groups in terms of the dependent variable (Sum Sq), as indicated by
the low p-value very close to zero (1.08–32). Furthermore, the F-statistic (81.7) was high
enough to support the significance of these differences.

Moreover, the R2 values of the regression models, established between canopy cover
and evapotranspiration (ET), for four distinct irrigation treatments provided valuable
insight into the goodness of fit of the regression models for each irrigation treatment. Such
information proved highly beneficial in estimating water requirements for crops based
on their canopy cover. These findings broadly support the work of other studies in this
area linking canopy cover with ETc. For example, de Medeiros, Gerson A. et al. conducted
experiments to investigate the influence of crop canopy on ET [31]. The crop coefficient was
successfully related to ground cover, demonstrating their strong dependence on canopy
size [31]. Similarly, it was concluded that the percentage of canopy cover would determine
the rate of ET [32]. For annual crops, during the crop’s germination and establishment, most
of the ET occurs as evaporation from the soil surface. As the foliage develops, evaporation
from the soil surface decreases and transpiration increases [32].

5. Conclusions

Reducing the overestimation of irrigation water required for dry and water-scarce
regions such as the THP requires a comprehensive approach that combines accurate data
collection, efficient irrigation practices, and sustainable water management. Data collection
using higher temporal and spatial resolution UAV platforms is perfectly accurate and
precise. In this paper, a UAV system was utilized to measure the cotton water stress
response with four different irrigation treatments. This research concluded that water
stress in cotton resulted in the reduction of canopy cover growth and crop yield, showing
that irrigation is critical for agricultural production. When the high spatial resolution
UAV-derived data were combined with higher temporal resolution weather data obtained
from an installed weather station and the published value of crop coefficient (Kc), cotton
water requirement, according to the spatial location of the field, could be calculated with
higher accuracy. A regression model was developed to estimate the actual ET for the cotton
field, with an R2 as high as 0.68. Thus, this shows great potential to develop an efficient
irrigation scheduling method in the future. Optimized crop water management by using
efficient irrigation scheduling can minimize water loss and improve crop yield, profitability,
and sustainability. In the future, the authors will collect multi-year data from the same
cotton field with a UAV system. Ground truth data for actual ET will also be collected from
the lysimeter and eddy covariance system in the same field, which will help to derive more
accurate ET estimation models.
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The data presented in this manuscript suggests a correlation between irrigation water
applied, cotton yield, and crop quality. However, optimizing irrigation practices involves
considering various factors beyond just maximizing yield and quality, such as cost, environ-
mental impact, and trade-offs between different irrigation strategies. The introduction of a
UAV-derived canopy cover coefficient presents an opportunity to further refine and opti-
mize irrigation strategies. By leveraging this technology, farmers can gain real-time insights
into crop health and water stress, allowing for more precise and timely irrigation decisions.
This can help mitigate the negative effects of both over-irrigation and under-irrigation,
leading to improved water use efficiency, yield, and crop quality.

The applicability of UAV technology to the average cotton farmer on the THP can
indeed be significant, but it may not necessarily involve every farmer owning drones and
sophisticated image classification software, considering the cost of high-quality drones and
specialized software for image analysis. Instead of owning drones, farmers may rely on
service providers who offer UAV-based services for crop monitoring, including capturing
aerial imagery and analyzing it for various purposes such as estimating evapotranspiration
rates, identifying areas of stress, or assessing crop health. These service providers may offer
more cost-effective solutions for farmers who do not want to invest in their own equipment
and software. Moreover, even without sophisticated image classification and analysis, UAV
imagery can still provide valuable insights to inform irrigation practices. For example, a
simple visual inspection of aerial imagery captured by drones can help farmers identify
areas of uneven crop growth or areas experiencing water stress. This visual information
can guide farmers in adjusting their irrigation practices accordingly. Likewise, providing
farmers with education and training on how to interpret UAV imagery and integrate it into
their decision-making processes can be highly beneficial. This does not necessarily require
advanced software skills but rather a basic understanding of how to observe and interpret
aerial imagery in the context of crop management. Also, there are emerging platforms
and services that aim to simplify the process of analyzing UAV imagery for agricultural
purposes. These platforms often offer user-friendly interfaces and automated analysis tools,
making it easier for farmers to extract useful information from aerial imagery without
needing advanced technical skills. In summary, access to service providers, education and
training, and user-friendly data platforms can help make UAV technology more accessible
and practical for average farmers on the THP.
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