Challenges When Assessing Water-Related Environmental Impacts of Livestock Farming: A Case Study of a Cow Milk Production System in Catalonia †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.1.1. Modelling Choices and Data
2.1.2. Selection of Impact Categories
2.1.3. Allocation Approach
Impact Categories | Environmental Problem Addressed | Recommended Default Impact Model |
---|---|---|
Water use | Water is a vital resource for life and of limited renewability. The impact category addresses the mismatch between freshwater demand and availability in areas and periods of the year of high demand and low availability. Lack of water may affect humans and aquatic and terrestrial ecosystems. | Available Water Remaining (AWARE) model [24,29] |
Eutrophication, aquatic freshwater | Related to nutrients (mainly nitrogen and phosphorus) from sewage outfalls and fertilized farmland, which accelerate the growth of algae, zooplankton, and higher aquatic plants in marine water and freshwater. The degradation of organic material consumes oxygen, resulting in oxygen deficiency, reduction in the water quality and, in some cases, death of flora and fauna. To assess the impacts due to eutrophication, two EF impact categories are used: eutrophication, freshwater; and eutrophication, marine. | EUTREND model [30] as implemented in ReCiPe 2008 [31] |
Eutrophication, aquatic marine | EUTREND model [30] as implemented in ReCiPe 2008 [31] | |
Ecotoxicity (freshwater) | Addresses the toxic impacts on an ecosystem, which damage individual species and change the structure and functioning of the ecosystem. Ecotoxicity is a result of a variety of different toxicological mechanisms caused by the release of substances with a direct effect on the health of the ecosystem, causing mortality, mutations, reduced growth, etc. | USEtox model, [32] |
Acidification (soil and water) | Addresses impacts due to acidifying substances in the environment. Emissions of NOx, NH3, Sox and strong acids into the air lead to the release of hydrogen ions (H+) when the gases react in the atmosphere. When depositing on soils, protons contribute to the acidification of soils when they are released in areas where the buffering capacity is low, which may lower the pH, causing leaf damage and decline in forests. Lakes are also exposed via leaching from soils. | Accumulated Exceedance [33,34] |
Ionizing radiation | Accounts for the adverse effects on human health caused by exposition to human-made sources of radiation, like nuclear power generation and construction materials. It is important in studies looking at a significant contribution of nuclear energy to the regional electricity mix. Groundwater can be an important pathway through which radionuclides from stored wastes can reach the biosphere [35], justifying its inclusion in a comprehensive water-footprint assessment. | Human health effect model as developed by [36,37] |
Human toxicity, cancer | It addresses adverse health effects on human beings caused by the intake of toxic substances through the inhalation of air, food/water ingestion, and penetration through the skin—insofar as they are related to cancer. Human exposure to toxic substances can occur through the ingestion of water (untreated surface freshwater), and the intake of fish from marine or freshwater, for example. | USEtox 2.1. Model [32] |
Human toxicity, non-cancer | It accounts for the adverse health effects on human beings caused by the intake of toxic substances through the inhalation of air, food/water ingestion, and penetration through the skin—insofar as they are related to non-cancer effects that are not caused by particulate matter/respiratory inorganics or ionising radiation. Human exposure to toxic substances can occur through the ingestion of water (untreated surface freshwater), and the intake of fish from marine or fresh water, for example. | USEtox 2.1. Model [32] |
2.2. Life Cycle Inventory Analysis
- -
- Farm 1: family dairy farm. Animal heads: 33 calves, 30 heifers, 73 mature females. Breed Holstein Friesian, commercial milk rate of 12.7 tonne a year per productive animal. Own crops, 34 hectares (fodder 521 tonne per year) and compound feed (unweaned calf: 22.5 tonne per year; dry cows: 3.6 tonne per year; lactating cows: 278 tonne per year);
- -
- Farm 2: dairy experimental farm. Animal heads: 56 calves, 57 heifers, 119 mature females. Breed Holstein Friesian, commercial milk rate of 11.5 tonne a year per productive animal. Own crops, 70 hectares (fodder 1539 tonne per year) and compound feed (unweaned calf: 109 tonne per year; dry cows: 101 tonne per year; lactating cows: 529 tonne per year);
- -
- Farm 3: family dairy farm. Animal heads: 18 calves, 18 heifers, 59 mature females. Breed Holstein Friesian, commercial milk rate of 6.2 tonne a year per productive animal. Own crops, 41 hectares (fodder 573 tonne per year) and compound feed (unweaned calf, dry cows, lactating cows: 72, 24, and 180 tonne per year and farm, respectively).
Processes by Stage | |||
---|---|---|---|
Raw milk production (farm) | Farm 1 | Farm 2 | Farm 3 |
Commercial milk production rate, tonne animal−1 year−1 | 11,626 | 10,034 | 5424 |
Commercial milk production rate, tonne farm−1 year−1 | 1000 | 1174 | 320 |
Animals, units per farm | 164 | 202 | 93 |
Regrowth feed, tonne litre−1 | 1.96 × 10−5 | 7.94 × 10−5 | 1.51 × 10−4 |
Dry cow feed, tonne litre−1 | 3.14 × 10−6 | 7.33 × 10−5 | 5.04 × 10−5 |
Lactation feed, tonne litre−1 | 2.42 × 10−4 | 3.84 × 10−4 | 3.78 × 10−4 |
Fodder 1, tonne litre−1 | 4.54 × 10−4 | 1.12 × 10−3 | 1.20 × 10−3 |
Energy, diesel kg litre−1 | 2.69 × 10−2 | 1.99 × 10−2 | 2.83 × 10−2 |
Electricity, kWh litre−1 | 5.40 × 10−2 | 1.82 × 10−1 | 3.59 × 10−2 |
Water, well, m3 litre−1 | 4.77 × 10−3 | 4.18 × 10−3 | 7.51 × 10−3 |
Water, tap, m3 litre−1 | None | 6.70 × 10−3 | None |
Enteric fermentation emissions, kg year−1 litre−1 | |||
CH4 | 1.21 × 10−2 | 1.25 × 10−2 | 2.07 × 10−2 |
Slurry storage and management, kg year−1 litre−1 | |||
NH3 | 3.31 × 10−3 | 3.43 × 10−3 | 4.98 × 10−3 |
N2O | 2.06 × 10−4 | 2.03 × 10−4 | 3.40 × 10−4 |
CH4 | 7.89 × 10−3 | 3.05 × 10−3 | 1.25 × 10−2 |
Transport between stages | |||
Transport of Raw Milk from Farm to Industry, tkm litre−1 | 1.04 × 10−1 | ||
Milk processing plant | |||
Water (mainly for cleaning), m3 litre−1 | 2.35 × 10−3 | ||
Energy, kWh litre−1 | 8.14 × 10−2 | ||
Cleaning agents (including sodium hydroxide, hydrochloric acid, lime, iron chloride), kg litre−1 | 8.68 × 10−3 | ||
Packaging 1 litre volume, units litre−1 | 7.43 × 10−1 | ||
Packaging 0.2 litre volume, units litre−1 | 5.50 × 10−2 | ||
Packaging 0.5 litre volume, units litre−1 | 2.99 × 10−2 | ||
Transport between stages | |||
Transport of final product (milk) to distribution centres and supermarkets, tkm litre−1 | 8.34 × 10−2 |
3. Results and Discussion
3.1. Water Impacts of Milk Production
3.2. Contribution Analysis at Distribution Gate and at Farm Gate
3.3. Robustness of Results
3.4. Water Use Terminology
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, P.H. Basic Water Requirements for Human Activities: Meeting Basic Needs. Water Int. 1996, 21, 83–92. [Google Scholar] [CrossRef]
- UNESCO. The United Nations World Water Development Report 2021. Valuing Water; UNESCO: Paris, France, 2021; ISBN 9789231004346. [Google Scholar]
- Heinke, J.; Lannerstad, M.; Gerten, D.; Havlík, P.; Herrero, M.; Notenbaert, A.M.O.; Hoff, H.; Müller, C. Water Use in Global Livestock Production—Opportunities and Constraints for Increasing Water Productivity. Water Resour. Res. 2020, 56, e2019WR026995. [Google Scholar] [CrossRef]
- Lazzara, P.; Rana, G. The Use of Crop Coefficient Approach to Estimate Actual Evapotranspiration: A Critical Review for Major Crops under Mediterranean Climate. Ital. J. Agrometeorol. 2010, 2, 25. [Google Scholar]
- Caretta, M.A.; Mukherji, A.; Arfanuzzaman, M.; Betts, R.A.; Gelfan, A.; Hirabayashi, Y.; Lissner, T.K.; Liu, J.; Lopez Gunn, E.; Morgan, R.; et al. Water. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; pp. 551–712. Available online: https://www.ipcc.ch/report/ar6/wg2/chapter/chapter-4/ (accessed on 12 April 2024). [CrossRef]
- Wichelns, D. Volumetric Water Footprints, Applied in a Global Context, Do Not Provide Insight Regarding Water Scarcity or Water Quality Degradation. Ecol. Indic. 2017, 74, 420–426. [Google Scholar] [CrossRef]
- FAO. Water Use in Livestock Production Systems and Supply Chains—Guidelines for Assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. 2019. Available online: https://www.fao.org/documents/card/en/c/ca5685en (accessed on 12 April 2024).
- ISO 14046; Water Footprint—Principles, Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO-14040; Environmental Management-Life Cycle Assessment-Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Drastig, K.; Vellenga, L.; Qualitz, G.; Singh, R.; Pfister, S.; Boulay, A.-M.; Wiedemann, S.; Prochnow, A.; Chapagain, A.; De Camillis, C.; et al. Accounting for Livestock Water Productivity: Accounting for Livestock Water Productivity How and Why? FAO: Rome, Italy, 2021. [Google Scholar]
- Núñez, M.; Rosenbaum, R.K.; Karimpour, S.; Boulay, A.-M.; Lathuillière, M.J.; Margni, M.; Scherer, L.; Verones, F.; Pfister, S. A Multimedia Hydrological Fate Modeling Framework to Assess Water Consumption Impacts in Life Cycle Assessment. Environ. Sci. Technol. 2018, 52, 4658–4667. [Google Scholar] [CrossRef]
- Pierrat, E.; Barbarossa, V.; Núñez, M.; Scherer, L.; Link, A.; Damiani, M.; Verones, F.; Dorber, M. Global Water Consumption Impacts on Riverine Fish Species Richness in Life Cycle Assessment. Sci. Total Environ. 2023, 854, 158702. [Google Scholar] [CrossRef]
- European Commission. Recommendation 2013/179/EU on the Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Off. J. Eur. Union 2013, 56, 210. [Google Scholar]
- European Commission. Annexes 1 to 2 from the Commission Recommendation on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Higham, C.D.; Singh, R.; Horne, D.J. The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale. Water 2024, 16, 391. [Google Scholar] [CrossRef]
- Egas, D.; Ponsá, S.; Colon, J. CalcPEFDairy: A Product Environmental Footprint Compliant Tool for a Tailored Assessment of Raw Milk and Dairy Products. J. Environ. Manag. 2020, 260, 110049. [Google Scholar] [CrossRef]
- Subdirección General de Producciones Ganaderas y Cinegéticas, Dirección General de Producciones y Mercados Agrarios, Ministerio de Agricultura, Pesca y Alimentación. Caracterización del Sector Español de Vacuno de Leche; Datos SITRAN 2018; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2018. [Google Scholar]
- Maynegre, J.; Nogué, M. Dades Conjunturals del Sector del Boví Lleter a Catalunya; Department d’Accio Climatica, Alimentacio i Agenda Rural: Barcelona, Spain, 2023; Volume 63, pp. 1–64. [Google Scholar]
- European Commission. PEFCR 2018 for Dairy Products; European Commission: Brussels, Belgium, 2018; pp. 1–168. [Google Scholar]
- PRéConsultants. SimaPro 9.1.1.7; PRéConsultants: Amersfoort, The Netherlands, 2020. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Asselin-Balençon, A.; Broekema, R.; Teulon, H.; Gastaldi, G.; Houssier, J.; Moutia, A.; Rousseau, V.; Wermeille, A.; Colomb, V. AGRIBALYSE v3.0: The French Agricultural and Food LCI Database; Methodology for the Food Products, Ed.; ADEME: Angers, France, 2020. [Google Scholar]
- Fazio, S.; Castellani, V.; Sala, S.; Schau, E.M.; Secchi, M.; Zampori, L.; Diaconu, E. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods; New models and differences with ILCD EUR28888 EN; European Comission: Ispra, Italy, 2018; ISBN 978-92-79-98584-3. [Google Scholar] [CrossRef]
- Boulay, A.-M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M. The WULCA Consensus Characterization Model for Water Scarcity Footprints: Assessing Impacts of Water Consumption Based on Available Water Remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- De Boer, I.J.M.; Hoving, I.E.; Vellinga, T.V.; Van de Ven, G.W.J.; Leffelaar, P.A.; Gerber, P.J. Assessing Environmental Impacts Associated with Freshwater Consumption along the Life Cycle of Animal Products: The Case of Dutch Milk Production in Noord-Brabant. Int. J. Life Cycle Assess. 2013, 18, 193–203. [Google Scholar] [CrossRef]
- Nemecek, T.; Thoma, G. Allocation between Milk and Meat in Dairy LCA: Critical Discussion of the IDF’s Standard Methodology. In Proceedings of the 12th International Conference on Life Cycle Assessment of Food, Berlin, Germany, 13–16 October 2020; Volume 2020, pp. 86–89. [Google Scholar]
- IDF. A Common Carbon Footprint Approach for Dairy Sector: The IDF Guide to Standard Lifecycle Assessment Methodology. Bulletin of the International Dairy Federation, 479/2015. Int. Dairy J. 2015, 7, 283. [Google Scholar] [CrossRef]
- Fazio, S.; Biganzioli, F.; De Laurentiis, V.; Zampori, L.; Sala, S.; Diaconu, E. Supporting Information to the Characterisation Factors of Recommended EF Life Cycle Impact Assessment Methods; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- UNEP. Global Guidance for Life Cycle Impact Assessment Indicators Volume 1—Life Cycle Initiative. 2017. Available online: https://www.lifecycleinitiative.org/training-resources/global-guidance-lcia-indicators-v-1/ (accessed on 12 April 2024).
- Struijs, J.; Beusen, A.; van Jaarrsveld, H.; Huijbregts, M.A.J. Eutrophication. In ReCiPe 2008.A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, Report 1: Characterisation; Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R., Eds.; Ministry of Housing, Spatial Planning, and Environment (VROM): The Hague, The Netherlands, 2009; Chapter 6. [Google Scholar]
- Goedkoop, M.; Heijungs, R.; Huijbregts, M.; Schryver, A.D.; Struijs, J.; Van Zelm, R. ReCiPe; LCIA: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Rosenbaum, R.K.; Bachmann, T.M.; Gold, L.S.; Huijbregts, M.A.J.; Jolliet, O.; Juraske, R.; Koehler, A.; Larsen, H.F.; MacLeod, M.; Margni, M.; et al. USEtox—The UNEP-SETAC Toxicity Model: Recommended Characterisation Factors for Human Toxicity and Freshwater Ecotoxicity in Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2008, 13, 532. [Google Scholar] [CrossRef]
- Seppälä, J.; Posch, M.; Johansson, M.; Hettelingh, J.P. Country-Dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int. J. Life Cycle Assess. 2006, 11, 403–416. [Google Scholar] [CrossRef]
- Posch, M.; Seppälä, J.; Hettelingh, J.P.; Johansson, M.; Margni, M.; Jolliet, O. The Role of Atmospheric Dispersion Models and Ecosystem Sensitivity in the Determination of Characterisation Factors for Acidifying and Eutrophying Emissions in LCIA. Int. J. Life Cycle Assess. 2008, 13, 477–486. [Google Scholar] [CrossRef]
- Paulillo, A.; McKone, T.E.; Fantke, P. Characterizing Human Health Damage from Ionizing Radiation in Life Cycle Assessment. Int. J. Life Cycle Assess. 2023, 28, 1723–1734. [Google Scholar] [CrossRef]
- Dreicer, M.; Tort, V.; Manen, P. ExternE: Externalities of Energy Volume 5 Nuclear; International Atomic Energy Agency (IAEA): Viena, Austria, 1995. [Google Scholar]
- Frischknecht, R.; Braunschweig, A.; Hofstetter, P.; Suter, P. Human Health Damages Due to Ionising Radiation in Life Cycle Impact Assessment. Environ. Impact Assess. Rev. 2000, 20, 159–189. [Google Scholar] [CrossRef]
- Nemecek, T.; Bengoa, X.; Rossi, V.; Humbert, S.; Lansche, J.; Mouron, P. Methodological Guidelines for the Life Cycle Inventory of Agricultural Products. In World Food LCA Database: Methodology Guidelines for the Life Cycle Invertory of Agricultural Products; Quantis: Zürich, Switzerland, 2019; Volume 88. [Google Scholar]
- Ibidhi, R.; Ben Salem, H. Water Footprint and Economic Water Productivity Assessment of Eight Dairy Cattle Farms Based on Field Measurement. Animal 2020, 14, 180–189. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The Green, Blue and Grey Water Fooprint of Farm Animals and Animals Products; Springer: Berlin/Heidelberg, Germany, 2010; Volume 1. [Google Scholar]
- Dolganova, I.; Mikosch, N.; Berger, M.; Núñez, M.; Müller-Frank, A.; Finkbeiner, M. The Water Footprint of European Agricultural Imports: Hotspots in the Context of Water Scarcity. Resources 2019, 8, 141. [Google Scholar] [CrossRef]
- USDA. Global Markets: Corn—EU Imports to Rise Even Higher. Available online: https://agfax.com/2018/09/12/global-markets-corn-eu-imports-to-rise-even-higher/ (accessed on 14 November 2023).
- FAO. Environmental Performance of Large Ruminant Supply Chains: Guidelines for Assessment Livestock Environmental Assessment and Performance Partnership; FAO: Rome, Italy, 2016. [Google Scholar]
- Núñez, M.; Pfister, S.; Roux, P.; Antón, A. Estimating Water Consumption of Potential Natural Vegetation on Global Dry Lands: Building an LCA Framework for Green Water Flows. Environ. Sci. Technol. 2013, 47, 12258–12265. [Google Scholar] [CrossRef] [PubMed]
- Sala, S.; Benini, L.; Castellani, C.; Vidal Legaz, B.; De Laurentiis, V.; Pant, R. Suggestions for the Update of the Environmental Footprint Life Cycle Impact Assessment: Impacts due to Resource Use, Water Use, Land Use, and Particulate Matter; Publications Office of the European Union: Luxembourg, 2019; ISBN 9789279693359. [Google Scholar]
- Boulay, A.M.; Lenoir, L. Sub-National Regionalisation of the AWARE Indicator for Water Scarcity Footprint Calculations. Ecol. Indic. 2020, 111, 106017. [Google Scholar] [CrossRef]
- Andrade, E.P.; de Araújo Nunes, A.B.; de Freitas Alves, K.; Ugaya, C.M.L.; da Costa Alencar, M.; de Lima Santos, T.; da Silva Barros, V.; Pastor, A.V.; de Figueirêdo, M.C.B. Water Scarcity in Brazil: Part 1—Regionalization of the AWARE Model Characterization Factors. Int. J. Life Cycle Assess. 2019, 25, 2342–2358. [Google Scholar] [CrossRef]
- Sanchez-Matos, J.; Andrade, E.P.; Vázquez-Rowe, I. Revising Regionalized Water Scarcity Characterization Factors for Selected Watersheds along the Hyper-Arid Peruvian Coast Using the AWARE Method. Int. J. Life Cycle Assess. 2023, 28, 1447–1465. [Google Scholar] [CrossRef]
- Mutel, C.L.; Pfister, S.; Hellweg, S. GIS-Based Regionalized Life Cycle Assessment: How Big Is Small Enough? Methodology and Case Study of Electricity Generation. Environ. Sci. Technol. 2012, 46, 1096–1103. [Google Scholar] [CrossRef]
- Döll, P.; Lehner, B. Validation of a New Global 30-Min Drainage Direction Map. J. Hydrol. 2002, 258, 214–231. [Google Scholar] [CrossRef]
- EC. Overview and Methodology: Data Quality Guideline for the Ecoinvent Database Version 3-2.-0; The Ecoinvent Centre: Zurich, Switzerland, 2013. [Google Scholar]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
Units | Farm 1 | Farm 2 | Farm 3 | Including Processing + Distribution | Characterised Benchmark Values [19] | |
---|---|---|---|---|---|---|
BMR | % | 2.13 | 3.35 | 9.47 | N/A | |
Per tonne of raw milk | Per tonne of raw milk | Per tonne of raw milk | Per tonne of FPCM | Per tonne of FPCM | ||
Acidification | mol H+ eq | 5.32 × 100 | 8.13 × 100 | 7.85 × 100 | 6.51 × 100 | 1.25 × 101 |
Eutrophication, freshwater | kg P eq | 1.70 × 10−1 | 1.74 × 10−1 | 2.75 × 10−1 | 1.98 × 10−1 | 1.04 × 10−1 |
Eutrophication, marine | kg N eq | 4.28 × 100 | 7.88 × 100 | 8.61 × 100 | 5.77 × 100 | 3.75 × 100 |
Ecotoxicity, freshwater | CTUe | 2.64 × 104 | 3.53 × 104 | 3.60 × 104 | 3.29 × 104 | N/A |
Water use | m3 eq | 3.15 × 103 | 2.82 × 103 | 2.92 × 103 | 2.64 × 103 | 3.11 × 102 |
Ionising radiation | kBq U-235 eq | 6.85 × 101 | 1.34 × 102 | 8.76 × 101 | 1.37 × 102 | 5.63 × 10−2 |
Human toxicity, cancer | CTUh | 8.02 × 10−7 | 7.72 × 10−7 | 1.23 × 10−6 | 7.83 × 10−7 | N/A |
Human toxicity, no cancer | CTUh | 3.15 × 10−5 | 2.21 × 10−5 | 4.39 × 10−5 | 2.68 × 10−5 | N/A |
Dairy Farms | Farm 1 | Farm 2 | Farm 3 |
---|---|---|---|
National CF, Spain (m3 eq m−3) | 77.7 | ||
Water use results (m3 eq ton−1 raw milk) | 3.15 × 103 | 2.82 × 103 | 2.92 × 103 |
Regional CF, Catalonia (m3 eq m−3) | 80.86 | ||
Water use results (m3 eq ton−1 raw milk) | 3.24 × 103 | 2.86 × 103 | 2.95 × 103 |
Watershed | Muga-Fluvia | Ter | Ter |
Watershed CFs m3 eq m−3 | 3.44 | 74.21 | 74.21 |
Water use results (m3 eq ton−1 raw milk) | 1.01 × 103 | 2.49 × 103 | 2.90 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Colmenero, M.; Bàllega, A.; Andón, M.; Terré, M.; Devant, M.; Antón, A.; Rosenbaum, R.K.; Targa, A.; Núñez, M. Challenges When Assessing Water-Related Environmental Impacts of Livestock Farming: A Case Study of a Cow Milk Production System in Catalonia. Water 2024, 16, 1299. https://doi.org/10.3390/w16091299
Ruiz-Colmenero M, Bàllega A, Andón M, Terré M, Devant M, Antón A, Rosenbaum RK, Targa A, Núñez M. Challenges When Assessing Water-Related Environmental Impacts of Livestock Farming: A Case Study of a Cow Milk Production System in Catalonia. Water. 2024; 16(9):1299. https://doi.org/10.3390/w16091299
Chicago/Turabian StyleRuiz-Colmenero, Marta, Ariadna Bàllega, Miquel Andón, Marta Terré, Maria Devant, Assumpció Antón, Ralph K. Rosenbaum, Anna Targa, and Montserrat Núñez. 2024. "Challenges When Assessing Water-Related Environmental Impacts of Livestock Farming: A Case Study of a Cow Milk Production System in Catalonia" Water 16, no. 9: 1299. https://doi.org/10.3390/w16091299
APA StyleRuiz-Colmenero, M., Bàllega, A., Andón, M., Terré, M., Devant, M., Antón, A., Rosenbaum, R. K., Targa, A., & Núñez, M. (2024). Challenges When Assessing Water-Related Environmental Impacts of Livestock Farming: A Case Study of a Cow Milk Production System in Catalonia. Water, 16(9), 1299. https://doi.org/10.3390/w16091299