A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California
Abstract
:1. Introduction
2. Study Area
3. Background on 2018 Debris Flows
3.1. Wildfire and Burnt Areas
3.2. Relevant Rainfall Records before and during the Debris Flows
3.3. Field Observations of the Debris Flows
4. Numerical Modeling
4.1. Background
4.2. Field-Scale Simulations of Post-Wildfire Debris Flows
4.2.1. The Montecito Creek Debris Flows
4.2.2. The San Ysidro Creek Debris Flows
4.2.3. The Buena Vista Creek Debris Flows
4.2.4. The Romero Creek Debris Flows
4.3. Simulations of Pre-Wildfire Debris Flows
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flannigan, M.D.; Bergeron, Y.; Engelmark, O.; Wotton, B.M. Future wildfire in circumboreal forests in relation to global warming. J. Veg. Sci. 1998, 9, 469–476. [Google Scholar] [CrossRef]
- Running, S.W. Is global warming causing more, larger wildfires? Science 2006, 313, 927–928. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.; Duan, Q.; Ji, D.; Li, H. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Yan, H.; Zhang, W.; Dodson, J.; Heijnis, H.; Burrows, M. Rapid warming has resulted in more wildfires in northeastern Australia. Sci. Total Environ. 2021, 771, 144888. [Google Scholar] [CrossRef]
- Santi, P.M.; dewolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E. Sources of debris flow material in burned areas. Geomorphology 2008, 96, 310–321. [Google Scholar] [CrossRef]
- Cannon, S.H.; DeGraff, J. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change. In Landslides-Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–190. [Google Scholar]
- Ren, D.; Leslie, L.M. Climate warming enhancement of catastrophic southern California debris flows. Sci. Rep. 2020, 10, 10507. [Google Scholar] [CrossRef] [PubMed]
- Campo, J.; Andreu, V.; Gimeno-Garcia, E.; Gonzalez, O.; Rubio, J.L. Occurrence of soil erosion after repeated experimental fires in a Mediterranean environment. Geomorphology 2006, 82, 376–387. [Google Scholar] [CrossRef]
- Moody, J.A.; Kinner, D.A.; Ubeda, X. Linking hydraulic properties of fire-affected soils to infiltration and water repellency. J. Hydrol. 2009, 379, 291–303. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Rethinking infiltration in wildfire-affected soils. Hydrol. Processes 2013, 27, 1510–1514. [Google Scholar] [CrossRef]
- Meyer, G.A.; Wells, S.G.; Timothy Jull, A.J. Fire and alluvial chronology in Yellowstone National Park: Climatic and intrinsic controls on Holocene geomorphic processes. Geol. Soc. Am. Bull. 1995, 107, 1211–1230. [Google Scholar] [CrossRef]
- Cannon, S.H.; Reneau, S.L. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico. Earth Surf. Processes Landforms 2000, 25, 1103–1121. [Google Scholar] [CrossRef]
- Kean, J.W.; Staley, D.M.; Cannon, S.H. In situ measurements of post-fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris? Flow events with rainfall and soil moisture conditions. J. Geophys. Res. Earth Surf. 2011, 116, F04019. [Google Scholar] [CrossRef]
- Cannon, S.H.; Kirkham, R.M.; Parise, M. Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado. Geomorphology 2001, 39, 171–188. [Google Scholar] [CrossRef]
- Nyman, P.; Sheridan, G.J.; Smith, H.G.; Lane, P.N. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology 2011, 125, 383–401. [Google Scholar] [CrossRef]
- Bagnold, R.A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1954, 225, 49–63. [Google Scholar]
- Savage, S.B. Gravity flow of cohesionless granular materials in chutes and channels. J. Fluid Mech. 1979, 92, 53–96. [Google Scholar] [CrossRef]
- Takahashi, T. Debris flow. Annu. Rev. Fluid Mech. 1981, 13, 57–77. [Google Scholar] [CrossRef]
- DeLeon, A.A.; Jeppson, R.W. Hydraulic and Numerical Solutions of Steady-State but Spatially Varied Debris Flow; Utah Water Research Laboratory, Utah State University: Logan, UT, USA, 1982; pp. 4–24. [Google Scholar]
- Takahashi, T.; Tsujimoto, H. Delineation of the debris flow hazardous zone by a numerical simulation method. In Proceedings of the International Symposium on Erosion, Debris Flow and Disaster Prevention, Tsukuba, Japan, 3–5 September 1985; pp. 457–462. [Google Scholar]
- O’Brien, J.S. Physical Processes, Rheology and Modeling of Mudflows. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 1986. [Google Scholar]
- Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 1989, 199, 177–215. [Google Scholar] [CrossRef]
- Ancey, C. Dry granular flows down an inclined channel: Experimental investigations on the frictional-collisional regime. Phys. Rev. 2001, 65, 011304. [Google Scholar] [CrossRef]
- Midi, G.D.R. On dense granular flows. Eur. Phys. J. 2004, 14, 341–365. [Google Scholar]
- Parez, S.; Aharonov, E.; Toussaint, R. Unsteady granular flows down an inclined plane. Phys. Rev. 2016, 93, 042902. [Google Scholar] [CrossRef] [PubMed]
- Jop, P.; Forterre, Y.; Pouliquen, O. A constitutive law for dense granular flows. Nature 2006, 441, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Denlinger, R.P.; Iverson, R.M. Flow of variably fluidized granular masses across three dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. Solid Earth 2001, 106, 553–566. [Google Scholar] [CrossRef]
- Pitman, E.B.; Le, L. A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A 2005, 363, 1573–1601. [Google Scholar] [CrossRef]
- Hutter, K.; Schneider, L. Important aspects in the formulation of solid-fluid debris-flow models. Part I: Thermodynamic implications. In Continuum Mechanics and Thermodynamics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 22, pp. 363–390. [Google Scholar]
- Pudasaini, S.P. A general two-phase debris flow model. J. Geophys. Res. Earth Surf. 2012, 117, F03010. [Google Scholar] [CrossRef]
- Luca, I.; Tai, Y.C.; Kuo, C.Y. Shallow Geophysical Mass Flows Down Arbitrary Topography; Springer: Berlin/Heidelberg, Germany, 2016; pp. 203–250. [Google Scholar]
- Pudasaini, S.P.; Mergili, M. A multi-phase mass flow model. J. Geophys. Res. Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef]
- Keller, E.; Adamaitis, C.; Alessio, P.; Goto, E.; Gray, S.; Heermance, R.V.; Schwartz, J.J. Montecito debris flows of 9 January 2018: Physical processes and social implications. In From the Islands to the Mountains: A; Geological Society of America: Boulder, CO, USA, 2020; pp. 95–114. [Google Scholar]
- Kean, J.W.; Staley, D.M.; Lancaster, J.T.; Rengers, F.K.; Swanson, B.J.; Coe, J.A.; Hernandez, J.L.; Sigman, A.J.; Allstadt, K.E.; Lindsay, D.N. Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment. Geosphere 2019, 15, 1140–1163. [Google Scholar] [CrossRef]
- Flash Flood & Debris Flow Event Montecito, California January 9, 2018. Available online: https://noaa.maps.arcgis.com/apps/MapJournal/index.html?appid=541c23aa483b48978d1bc9904a6fb14d (accessed on 20 February 2022).
- Ventura County Fire Department (VCFD). VCFD Determines Cause of the Thomas Fire. Available online: https://vcfd.org/news/vcfd-determines-cause-of-the-thomas-fire (accessed on 27 May 2022).
- United States Geological Survey (USGS). Available online: https://earthexplorer.usgs.gov/ (accessed on 1 March 2022).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 1 May 2022).
- Meddens, A.J.; Kolden, C.A.; Lutz, J.A. Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States. Remote Sens. Environ. 2016, 186, 275–285. [Google Scholar] [CrossRef]
- Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T.H. Using landsat spectral indices in time-series to assess wildfire disturbance and recovery. Remote Sens. 2018, 10, 460. [Google Scholar] [CrossRef]
- KC, D.; Hu, L. Post-Wildfire Debris Flows in Montecito, California (USA): A Case Study and Empirically Based Debris Volume Estimation. Geotechnics 2023, 3, 347–359. [Google Scholar] [CrossRef]
- Zoomash Ltd. WorldWeather Online (WWO). Available online: https://www.worldweatheronline.com/ (accessed on 14 January 2022).
- Cui, Y.; Cheng, D.; Chan, D. Investigation of post-fire debris flows in Montecito. ISPRS Int. J. Geo Inf. 2018, 8, 5. [Google Scholar] [CrossRef]
- Alessio, P.; Dunne, T.; Morell, K. Post-wildfire generation of debris-flow slurry by rill erosion on colluvial hillslopes. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006108. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.-T.; Krenn, J.; Pudasaini, S.P. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef]
- Mergili, M.; Jaboyedoff, M.; Pullarello, J.; Pudasaini, S.P. Back calculation of the 2017 piz cengalo-bondo landslide cascade with r.avaflow: What we can do and what we can learn. Nat. Hazards Earth Syst. Sci. 2020, 20, 505–520. [Google Scholar] [CrossRef]
- Naqvi, M.W.; KC, D.; Hu, L. Numerical modeling and a parametric study of various mass flows based on a multi-phase computational framework. Geotechnics 2022, 2, 506–522. [Google Scholar] [CrossRef]
- Naqvi, M.W.; KC, D.; Hu, L. Numerical Modelling and Sensitivity Analysis of the Pitztal Valley Debris Flow Event. Geosciences 2023, 13, 378. [Google Scholar] [CrossRef]
- Alaska Satellite Facility (ASF). Available online: https://search.asf.alaska.edu (accessed on 8 March 2022).
- Baggio, T.; Mergili, M.; D’Agostino, V. Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017. Geomorphology 2021, 381, 107664. [Google Scholar] [CrossRef]
- Stoof, C.R.; Ferreira, A.J.; Mol, W.; Van den Berg, J.; De Kort, A.; Drooger, S.; Slingerland, E.C.; Mansholt, A.U.; Ferreira, C.S.; Ritsema, C.J. Soil surface changes increase runoff and erosion risk after a low-moderate severity fire. Geoderma 2015, 239, 58–67. [Google Scholar] [CrossRef]
Station ID | Station | Elevation (m) | Total Rainfall (mm) | Peak Rainfall (mm) |
---|---|---|---|---|
227 | KTYD | 724 | 81 | 28 |
231 | Doulton Tunnel | 541 | 91 | 39 |
252 | Edison Trail | 503 | 80 | 37 |
325 | Montecito | 41 | 54 | 24 |
328 | Summerland | 26 | 56 | 26 |
208 | Carpinteria Fire | 9 | 61 | 35 |
Creek | Observed () |
---|---|
Montecito | 231,000 |
San Ysidro | 297,000 |
Buena Vista | 41,000 |
Romero | 100,000 |
Creek | Internal Angle | Basal Friction | Erosion Coefficient |
---|---|---|---|
(s, fs) | (s, fs) | ||
Montecito | (, ) | (, ) | |
San Ysidro | (, ) | (, ) | |
Buena Vista | (, ) | (, ) | |
Romero | (, ) | (, ) |
Creek | Estimated () | Simulated () | Difference (%) | Erosion Coefficient | Basal Friction |
---|---|---|---|---|---|
(s, fs) | |||||
Montecito | 231,000 | 215,500 | −6.69 | (, ) | |
San Ysidro | 297,000 | 306,022 | +3.04 | (, ) | |
Buena Vista | 41,000 | 39,320 | −4.10 | (, ) | |
Romero | 100,000 | 101,160 | +1.16 | (, ) |
Creek | Internal Angle | Basal Friction | Erosion Coefficient | Generated Debris |
---|---|---|---|---|
(s, fs) | (s, fs) | |||
Montecito | (, ) | (, ) | 34,000 | |
San Ysidro | (, ) | (, ) | 41,000 | |
Buena Vista | (, ) | (, ) | 5900 | |
Romero | (, ) | (, ) | 15,200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
K. C., D.; Naqvi, M.W.; Hu, L. A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California. Water 2024, 16, 1285. https://doi.org/10.3390/w16091285
K. C. D, Naqvi MW, Hu L. A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California. Water. 2024; 16(9):1285. https://doi.org/10.3390/w16091285
Chicago/Turabian StyleK. C., Diwakar, Mohammad Wasif Naqvi, and Liangbo Hu. 2024. "A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California" Water 16, no. 9: 1285. https://doi.org/10.3390/w16091285
APA StyleK. C., D., Naqvi, M. W., & Hu, L. (2024). A Case Study and Numerical Modeling of Post-Wildfire Debris Flows in Montecito, California. Water, 16(9), 1285. https://doi.org/10.3390/w16091285