HYPOSO Map Viewer: A Web-Based Atlas of Small-Scale Hydropower for Selected African and Latin American Countries
Abstract
:1. Introduction
- To review the open-access web-based maps of hydropower resources in the African and Latin American continents and compare their main features;
- To present the HYPOSO map viewer, a web-based atlas of hydropower in the selected countries in Africa and Latin America;
- To validate the HYPOSO Map viewer.
2. Materials and Methods
3. Results and Discussion
3.1. Review of Web-Based Hydropower Atlases in Africa and Latin America
3.2. The HYPOSO Map Viewer—Hydropower Atlas
3.2.1. Background and Infrastructure
3.2.2. Operational Hydropower Plants
3.2.3. Climate and Hydrology
3.2.4. Hydropower Potential
- Stream reach length (km).
- Gradient (m/km).
- Reach gross hydraulic head (m).
- Drainage areas (upstream and downstream) (km2).
- Flow rate (m3/s).
- Power capacity in MW.
- Potential capacity per kilometre (MW/km).
- Strahler stream order.
- Environmental sensitivity.
- Exploitation status (whether it is already exploited or not).
- Site type (e.g., run-of-the-river, storage/reservoir, power grid proximity, if any);
- Address, water stream, river basin name (hydrologic/hydrographic unit), and WGS84 coordinates of a site;
- Approximate site capacity (MW), flow rate (m3/s), and gross hydraulic head (m);
- Protected areas, if any;
- Development opportunities (if any).
3.2.5. Validation of the HYPOSO Map
- The quality of the hydrological data (stream flow);
- The spatial location of the sites along the river depends on the accuracy of DEM.
4. Conclusions
- Web-based hydropower atlases have been developed for a long time in industrialised countries. In African and Latin American (LATAM) countries, they have started to be produced recently, five to eight years ago. However, map viewers are not and cannot be the final project design solution; they provide preliminary information.
- There are a number of GIS hydro assessments but not many open-access GIS Map viewers. Five web-based hydro atlases available on two continents were reviewed.
- As practice shows, web hydro atlases are created in countries with sufficient geospatial data. However, they are most welcome in data-scarce countries for hydropower development.
- Map viewers use external resources; they cannot be overloaded with detailed information. Making them requires much effort. First of all, it is the production of DEM (digital elevation model). There are rarely accurate DEMs for emerging countries, or they are available only for limited areas. Open-source DEM products usually are not precise, especially in flat areas.
- Validation is necessary for hydro map viewers; this is a major challenge for large areas. The HYPOSO map showed satisfactory results.
- Developed open-access hydropower map viewers, including the HYPOSO map viewer, are expected to significantly improve the hydropower development database in these countries and provide valuable information for small and medium projects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Web-Based Assessment Tool | Features, Layers | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Product Name | Developer and Year | Applicable Countries | Operating System/Platform | Base Maps | Administrative Boundaries, Population | Infrastructure | Transmission Lines | Hydrography | Hydrology | Gauging Stations | Topography, Land Cover, Geology, Protected Areas | Operational HPPs | Hydropower (SHP) Potential | Potential SHP Sites | Climate change Projections | Help (Tutorial) | Comment | |
1 | GIS Hydro Resource Mapping in West Africa (ECOWAS region). ECOWREX Map Viewer [13] | Pöyry Energy GmbH, 2017 | West Africa, 14 ECOWAS countries | Web | OSM | (x) | x | x | x | x | - | (x) | x | x | (x) | x | x | Comprehensive hydro atlas and tutorial together with other renewables and energy parameters. |
2 | Colombian Hydropower Potential Atlas [16] | UPME (Colombia Energy Mining Planning Unit), 2015 | Colombia | ArcGIS online. ArcGIS REST Services Directory | ESRI | - | - | x | x | x | - | - | - | x | x | - | - | In Spanish, pico, small, and LHP. Only data repository. Not easily accessible from other continents. A hard copy of the atlas is available. |
3 | African hydropower atlas (AHA) [19] | Sterl et al., 2021 | Africa | Online repository of datasets (xlsx, txt, GIS shapefile) | - | - | - | - | - | - | - | - | x | - | - | x | (x) | Mostly large hydro. Existing and future plants. No operating system is offered. |
4 | Tanzania Small Hydro GIS Atlas [14] | SHER and Mhylab (World Bank), 2018 | Tanzania | QGIS, Google Earth | x | x | x | x | x | (x) | - | x | x | x | x | - | - | QGIS project with nine groups of layers. |
5 | Madagascar—Small Hydro GIS Atlas [15] | SHER and Mhylab (World Bank), 2017 | Madagascar | QGIS, Google Earth | x | x | x | x | x | (x) | - | x | x | x | x | - | - | Similar to Tanzania. |
6 | HYPOSO Map [20] | HYPOSO project, 2023 | Bolivia, Colombia, Ecuador, Cameroon and Uganda | Web | OSM | (x) | (x) | (x) | x | x | x | (x) | x | x | x | x | (x) | Registration is required. |
References
- Jjunju, E.; Killingtveit, A.; Gimbo, F. A GIS tool for investigating potential hydropower sites in sparsely studied areas. In Proceedings of the Hydro 2015, Bordeaux, France, 26–28 October 2015; p. 15. [Google Scholar]
- Müller, M.F.; Thompson, S.E.; Kelly, M.N. Bridging the information gap: A webGIS tool for rural electrification in data-scarce regions. Appl. Energy 2016, 171, 277–286. [Google Scholar] [CrossRef]
- Minaya, V.G.; Haro, P.L.; Guerra, M.J. Small hydro in Ecuador: Potential and prospects. Int. J. Hydropower Dams. 2020, 2020, 52–57. [Google Scholar]
- Amaya, A.G.; Gomez, M.V.; Guzman, S.Z. The increasing importance of hydropower in Bolivia’s electricity sector. Int. J. Hydropower Dams. 2020, 2020, 58–61. [Google Scholar]
- Katutsi, V.; Kaddu, M.; Migisha, A.G.; Rubanda, M.E.; Adaramola, M.S. Overview of hydropower resources and development in Uganda. AIMS Energy 2021, 9, 1299–1320. [Google Scholar] [CrossRef]
- Kenfack, J.; Nzotcha, U.; Voufo, J.; Ngohe-Ekam, P.S.; Nsangou, J.C.; Bignom, B. Cameroon’s hydropower potential and development under the vision of Central Africa power pool (CAPP): A review. Renew. Sustain. Energy Rev. 2021, 151, 111596. [Google Scholar] [CrossRef]
- UNIDO; ICSHP World Small Hydropower Development Report 2022. Available online: www.unido.org/WSHPDR2022 (accessed on 10 January 2024).
- Hydropower Solutions HYPOSO. Hydropower Solutions for Developing and Emerging Countries. 2023. Available online: https://www.hyposo.eu/en/home (accessed on 10 January 2024).
- ORNL (Oak Ridge National Laboratory). HydroSource Data Explorer 2023. Available online: https://hydrosource-data.ornl.gov/#externalaccess (accessed on 10 January 2024).
- GECOsistema, S.W.I.T.C.H.-O.N. Pan-European Small Hydropower Atlas (SHPA) 2017. Available online: http://hydropower-atlas.climate-tools.com/ (accessed on 10 January 2024).
- European Small Hydropower Association (ESHA). RESTOR Hydro Map 2015. Available online: https://restor.eref-europe.org/ (accessed on 10 January 2024).
- Lunetta, R.S.; Lyon, J.G. Remote Sensing and GIS Accuracy Assessment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- ECREEE (ECOWAS centre for Renewable Energy and Energy Efficiency). Results of ECOWAS Small Scale Hydropower Program. GIS Hydro Resource Mapping in West Africa 2017. Available online: http://www.ecowrex.org/smallhydro (accessed on 10 January 2024).
- World Bank Group, ESMAP (Energy Sector Management Assistance Program). Small Hydro Resource Mapping in Tanzania: Hydropower Atlas: Final Report (English) 2018. Available online: http://documents.worldbank.org/curated/en/873041518179010553/Small-hydro-resource-mapping-in-Tanzania-hydropower-atlas-final-report (accessed on 10 January 2024).
- World Bank Group. Madagascar—Small Hydro GIS Atlas 2017. Available online: https://energydata.info/dataset/madagscar-small-hydro-gis-atlas-2017 (accessed on 10 January 2024).
- UPME (Colombia Energy Mining Planning Unit). Primer Atlas hidroenergético revela gran potencial en Colombia 2015. Available online: https://www1.upme.gov.co/Paginas/Primer-Atlas-hidroenergetico-revela-gran-potencial-en-Colombia.aspx (accessed on 10 January 2024).
- Velpuri, N.M.; Pervez, S.; Cushing, W.M. Hydropower Assessment of Bolivia 2016; 2016-1156. Available online: https://purl.fdlp.gov/GPO/gpo121841 (accessed on 10 January 2024).
- Korkovelos, A.; Mentis, D.; Siyal, S.; Arderne, C.; Rogner, H.; Bazilian, M.; De Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef]
- Sterl, S.; Devillers, A.; Chawanda, C.J.; van Griensven, A.; Thiery, W.; Russo, D. A spatiotemporal atlas of hydropower in Africa for energy modelling purposes. Open Res. Eur. 2021, 1, 1–29. [Google Scholar]
- HYPOSO (Hydropower Solutions). HYPOSO Map 2023. Available online: https://www.hyposo.eu/en/hyposo-map/ (accessed on 10 January 2024).
- Punys, P.; Vyčienė, G.; Jurevičius, L.; Kvaraciejus, A. Small Hydropower Assessment of Uganda Based on Multisource Geospatial Data. Water 2023, 15, 2051. [Google Scholar] [CrossRef]
- GeoServer. 2023. Available online: http://geoserver.org/ (accessed on 10 January 2024).
- World Maps of Köppen-Geiger Climate Classification 2023. Available online: http://koeppen-geiger.vu-wien.ac.at/present.htm (accessed on 10 January 2024).
- Protected Planet. Protected Areas (WDPA) 2023. Available online: https://www.protectedplanet.net/en (accessed on 10 January 2024).
- World Bank: Climate Change Knowledge Portal 2020 (CCKP). Available online: https://climateknowledgeportal.worldbank.org/ (accessed on 10 January 2024).
- IPCC Data Distribution Center. What Is a GCM? Available online: https://www.ipcc-data.org/guidelines/pages/gcm_guide.html (accessed on 2 April 2024).
- Lee, H.; Romero, J. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar]
- Guo, Y.; Xu, Y.; Yu, X.; Xie, J.; Chen, H.; Si, Y. Impacts of GCM credibility on hydropower production robustness under climate change: CMIP5 vs CMIP6. J. Hydrol. 2023, 618, 129233. [Google Scholar] [CrossRef]
- Wasti, A.; Ray, P.; Wi, S.; Folch, C.; Ubierna, M.; Karki, P. Climate change and the hydropower sector: A global review. WIREs Clim. Chang. 2022, 13, e757. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Climate Impacts on African Hydropower 2020; p. 58. Available online: https://www.iea.org/reports/climate-impacts-on-african-hydropower (accessed on 10 January 2024).
- International Energy Agency IEA). Climate Impacts on Latin American Hydropower. IEA 2021; p. 57. Available online: https://www.iea.org/reports/climate-impacts-on-latin-american-hydropower (accessed on 10 January 2024).
- GISGeography. Inverse Distance Weighting (IDW) Interpolation 2023. Available online: https://gisgeography.com/inverse-distance-weighting-idw-interpolation/ (accessed on 10 January 2024).
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- MERIT DEM. 2019. Available online: https://www.usna.edu/Users/oceano/pguth/md_help/html/merit_dem.htm (accessed on 10 January 2024).
- NASA. Earthdata. Shuttle Radar Topography Mission (SRTM) 2000. Available online: https://www.earthdata.nasa.gov/sensors/srtm (accessed on 10 January 2024).
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Process. 1991, 5, 81–100. [Google Scholar] [CrossRef]
- USACE (US Army Corps of Engineers). National Hydroelectric Power Resources Study; USACE (US Army Corps of Engineers): Washington, DC, USA, 1983; IWR-82-H-1. [Google Scholar]
- Kao, S.; McManamay, R.A.; Stewart, K.M.; Samu, N.M.; Hadjerioua, B.; DeNeale, S.T.; Yeasmin, D. New Stream-Reach Development: A Comprehensive Assessment of Hydropower Energy Potential in the United States; U.S. Department of Energy: Washington, DC, USA, 2014; pp. 1–197. [Google Scholar]
- The International Journal on Hydropower & Dams. Available online: https://www.hydropower-dams.com/ (accessed on 10 January 2024).
- Kling, H.; Stanzel, P.; Fuchs, M. Regional Assessment of the Hydropower Potential of Rivers in West Africa. Energy Procedia 2016, 97, 286–293. [Google Scholar] [CrossRef]
- Karamage, F.; Liu, Y.; Liu, Y. Data Construction and Spatiotemporal Trend Attribution of Runoff over the African Continent (1981–2016). J. Hydrometeorol. 2021, 22, 1949–1971. [Google Scholar] [CrossRef]
- UPME; PUJ; COLCIENCIAS; IDEAM; IGAC. Atlas Potencial Hidroenergético De Colombia 2015. Available online: https://www.ariae.org/servicio-documental/atlas-potencial-hidroenergetico-de-colombia-2015 (accessed on 7 March 2024).
- ECOWASCentre for Renewable Energy Energy Efficiency Pöyry Energy, GmbH. Hydropower Resource Mapping and Climate Change Scenarios for the ECOWAS region—Technical Report on Methodology and Lessons Learnt for ECOWAS Countries. 2017. Available online: http://www.ecowrex.org/document/technical-report-methodology-and-lessons-learnt-ecowas-countries-gis-hydropower-resource (accessed on 10 January 2024).
- Girvetz, E.; Ramirez-Villegas, J.; Claessens, L.; Lamanna, C.; Navarro-Racines, C.; Nowak, A.; Rosenstock, T.S. Future Climate Projections in Africa: Where are we headed? In The Climate-Smart Agriculture Papers; Rosenstock, T., Nowak, A., Girvetz, E., Eds.; Springer: Cham, Switzerland, 2019; pp. 15–27. [Google Scholar]
- Schaefli, B. Projecting hydropower production under future climates: A guide for decision-makers and modelers to interpret and design climate change impact assessments. WIREs Water 2015, 2, 271–289. [Google Scholar] [CrossRef]
- Jjunju, E.; Killingtveit, Å.; Hamududu, B. Hydropower and Climate Change. In Comprehensive Renewable Energy; Letcher, T.M., Ed.; Elsevier: Oxford, UK, 2022; pp. 259–283. [Google Scholar]
- Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union. 1957, 38, 913–920. [Google Scholar]
- Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M. Sustainable energy planning: Leapfrogging the energy poverty gap in Africa. Renew. Sustain. Energy Rev. 2013, 28, 500–509. [Google Scholar] [CrossRef]
- Pandey, A.; Lalrempuia, D.; Jain, S.K. Assessment of hydropower potential using spatial technology and SWAT modelling in the Mat River, southern Mizoram, India. Hydrol. Sci. J. 2015, 60, 1651–1665. [Google Scholar] [CrossRef]
- Sammartano, V.; Liuzzo, L.; Freni, G. Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure. Energies 2019, 12, 3446. [Google Scholar] [CrossRef]
- Kouadio, C.A.; Kouassi, K.L.; Diedhiou, A.; Obahoundje, S.; Amoussou, E.; Kamagate, B.; Paturel, J.E.; Coulibaly, T.J.; Coulibaly, H.S.; Didi, R.S.; et al. Assessing the Hydropower Potential Using Hydrological Models and Geospatial Tools in the White Bandama Watershed (Côte d’Ivoire, West Africa). Front. Water 2022, 4, 844934. [Google Scholar] [CrossRef]
- Biondi, D.; Freni, G.; Iacobellis, V.; Mascaro, G.; Montanari, A. Validation of hydrological models: Conceptual basis, methodological approaches and a proposal for a code of practice. Phys. Chem. Earth Parts A/B/C 2012, 42–44, 70–76. [Google Scholar] [CrossRef]
- Mukul, M.; Srivastava, V.; Jade, S.; Mukul, M. Uncertainties in the Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian Himalaya and Peninsula. Sci. Rep. 2017, 7, 41672. [Google Scholar] [CrossRef] [PubMed]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Nandam, V.; Patel, P.L. Assessment of Vertical Accuracy of Freely Available Global Digital Elevation Models for Heterogeneous Terrains in India; HYDRO 2021. Lecture Notes in Civil Engineering; Springer: Singapore, 2023; Volume 339, pp. 169–182. [Google Scholar] [CrossRef]
- Rodríguez, E.; Morris, C.S.; Belz, J.E. A Global Assessment of the SRTM Performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Ferreira, Z.A.; Cabral, P. Vertical Accuracy Assessment of ALOS PALSAR, GMTED2010, SRTM and Topodata Digital Elevation Models. In Proceedings of the 7th International Conference on Geographical Information Systems Theory, Applications and Management GISTAM, Prague, Czechia, 23–25 April 2021; Volume 1, pp. 116–124. [Google Scholar]
- WMO (World Meteorological Organization). Guide to Hydrological Practices. In Hydrology—From Measurement to Hydrological Information WMO; WMO-No 168: Geneva, Switzerland, 2020; Volume I. [Google Scholar]
- Punys, P.; Kvaraciejus, A.; Dumbrauskas, A.; Šilinis, L.; Popa, B. An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries. Renew. Energy 2019, 133, 1108–1123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Punys, P.; Jurevičius, L.; Balčiūnas, A. HYPOSO Map Viewer: A Web-Based Atlas of Small-Scale Hydropower for Selected African and Latin American Countries. Water 2024, 16, 1276. https://doi.org/10.3390/w16091276
Punys P, Jurevičius L, Balčiūnas A. HYPOSO Map Viewer: A Web-Based Atlas of Small-Scale Hydropower for Selected African and Latin American Countries. Water. 2024; 16(9):1276. https://doi.org/10.3390/w16091276
Chicago/Turabian StylePunys, Petras, Linas Jurevičius, and Andrius Balčiūnas. 2024. "HYPOSO Map Viewer: A Web-Based Atlas of Small-Scale Hydropower for Selected African and Latin American Countries" Water 16, no. 9: 1276. https://doi.org/10.3390/w16091276
APA StylePunys, P., Jurevičius, L., & Balčiūnas, A. (2024). HYPOSO Map Viewer: A Web-Based Atlas of Small-Scale Hydropower for Selected African and Latin American Countries. Water, 16(9), 1276. https://doi.org/10.3390/w16091276