Future Trade-Off for Water Resource Allocation: The Role of Land Cover/Land Use Change
Abstract
:1. Introduction
- i.
- What is the historical, current, and future land use and land cover trend for the Kilombero River catchment?
- ii.
- What is the rate of change of the natural ecosystem services offered by this catchment?
- iii.
- In the face of these changes, what are the policy tradeoffs given the role that KRC is poised to play in the national economy?
2. Material and Methods
2.1. Study Area
2.2. Methods
2.3. Data Acquisition
2.4. Image Pre-Processing and Classification
2.5. Accuracy Assessment and Change Detection Analysis
2.6. Predicting Future Land Use/Land Cover Change
2.7. CA-Markov Model Set-Up and Validation
3. Results
3.1. Accuracy Assessment
3.2. Historical Land use/Land Cover Change Pattern
3.3. Land Use/Land Cover Change Detection Matrix
3.4. Future Land Use/Land Cover Simulation for 2031 and 2041
4. Discussion
5. Conclusions
- (a)
- Develop and support the implementation of guidelines for participatory land use planning that are responsive to nature conservation but reflect the livelihood means of poor people.
- (b)
- Re-evaluate modern protection mechanisms vs traditional ones that are inculcated in the cultural norms of local people.
- (c)
- Reevaluation of the status of Swero (1KB17) gauging station cross-section to ascertain the credibility of the ratting curve and hence the discharge data generated from its stuff gauge reading.
- (d)
- Implement agroforest policy to obtain two objectives, i.e., conservation (land and water) and economic growth from agriculture, which is the main economic activity.
- (e)
- Evaluate the implementability and socio-economic impact of a 60 m buffer zone from any water source as required in the Water Resources Management Act No. 11 of 2009 and the National Environmental Management Act No. 20 of 2004.
- (f)
- Continuous capacity building for locals (through WUAs and other institutions) and participatory law enforcement embedding water and natural resources management.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human--environment interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Turner, B.; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. Ambio. Stock. 1994, 23, 91–95. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Khan, I.; Javed, T.; Khan, A.; Lei, H.; Muhammad, I.; Ali, I.; Huo, X. Impact assessment of land use change on surface temperature and agricultural productivity in Peshawar-Pakistan. Environ. Sci. Pollut. Res. 2019, 26, 33076–33085. [Google Scholar] [CrossRef]
- Meyer, W.B.; Turner, B.L. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 1992, 23, 39–61. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Gao, J.; Deng, W. Land use/cover changes, the environment and water resources in Northeast China. Environ. Manag. 2005, 36, 691–701. [Google Scholar] [CrossRef]
- Liu, Y. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Lupo, F.; Reginster, I.; Lambin, E.F. Monitoring land-cover changes in West Africa with SPOT Vegetation: Impact of natural disasters in 1998–1999. Int. J. Remote Sens. 2001, 22, 2633–2639. [Google Scholar] [CrossRef]
- Mbungu, W.B.; Kashaigili, J.J. Assessing the hydrology of a data-scarce tropical watershed using the soil and water assessment tool: Case of the Little Ruaha River Watershed in Iringa, Tanzania. Open J. Mod. Hydrol. 2017, 7, 65–89. [Google Scholar] [CrossRef]
- Li, R.-Q.; Dong, M.; Cui, J.-Y.; Zhang, L.-L.; Cui, Q.-G.; He, W.-M. Quantification of the impact of land-use changes on ecosystem services: A case study in Pingbian County, China. Environ. Monit. Assess. 2007, 128, 503–510. [Google Scholar] [CrossRef]
- Näschen, K.; Diekkrüger, B.; Leemhuis, C.; Steinbach, S.; Seregina, L.S.; Thonfeld, F.; der Linden, R. Hydrological modeling in data-scarce catchments: The Kilombero floodplain in Tanzania. Water 2018, 10, 599. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, X.; Fang, G.; Xu, Y.-P. Many-objective optimization with improved shuffled frog leaping algorithm for inter-basin water transfers. Adv. Water Resour. 2020, 138, 103531. [Google Scholar] [CrossRef]
- Ma, R.; Li, Y.L.; Ji, A.D. Evaluation of spatial equilibrium status for the Yellow River basin based on comprehensive multi-index method. South North Water Transf. Water Sci. Technol. 2021, 2, 217–225. [Google Scholar]
- Hou, C.; Wen, Y.; Liu, X.; Dong, M. Impacts of regional water shortage information disclosure on public acceptance of recycled water—Evidences from China’s urban residents. J. Clean. Prod. 2021, 278, 123965. [Google Scholar] [CrossRef]
- Roozbahani, R.; Schreider, S.; Abbasi, B. Optimal water allocation through a multi-objective compromise between environmental, social, and economic preferences. Environ. Model. Softw. 2015, 64, 18–30. [Google Scholar] [CrossRef]
- Xu, J.; Lv, C.; Yao, L.; Hou, S. Intergenerational equity based optimal water allocation for sustainable development: A case study on the upper reaches of Minjiang River, China. J. Hydrol. 2019, 568, 835–848. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Zhou, Q.; Wu, F. Optimal water allocation scheme based on trade-offs between economic and ecological water demands in the Heihe River Basin of Northwest China. Sci. Total Environ. 2020, 703, 134958. [Google Scholar] [CrossRef]
- Huang, Y.; Cai, Y.; Xie, Y.; Zhang, F.; He, Y.; Zhang, P.; Li, B.; Li, B.; Jia, Q.; Wang, Y.; et al. An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities. Sci. Total Environ. 2022, 820, 153198. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Munishi-Kongo, S. Ground and Satellite-Based Assessment of Hydrological Responses to Land Cover Change in the Kilombero River Basin, Tanzania. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2013. [Google Scholar]
- Tumbo, M.; Hughes, D.A. Uncertain hydrological modelling: Application of the Pitman model in the Great Ruaha River basin, Tanzania. Hydrol. Sci. J. 2015, 60, 2047–2061. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote sensing techniques to assess water quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef]
- Cetin, M.; Aksoy, T.; Cabuk, S.N.; Kurkcuoglu, M.A.S.; Cabuk, A. Employing remote sensing technique to monitor the influence of newly established universities in creating an urban development process on the respective cities. Land Use Policy 2021, 109, 105705. [Google Scholar] [CrossRef]
- Goodchild, M.F. A GIScience perspective on the uncertainty of context. Ann. Am. Assoc. Geogr. 2018, 108, 1476–1481. [Google Scholar] [CrossRef]
- Lü, G.; Batty, M.; Strobl, J.; Lin, H.; Zhu, A.-X.; Chen, M. Reflections and speculations on the progress in Geographic Information Systems (GIS): A geographic perspective. Int. J. Geogr. Inf. Sci. 2019, 33, 346–367. [Google Scholar] [CrossRef]
- Chilagane, N.A.; Kashaigili, J.J.; Mutayoba, E. Historical and future spatial and temporal changes in land use and land cover in the little Ruaha River catchment, Tanzania. J. Geosci. Environ. Prot. 2020, 8, 76–96. [Google Scholar] [CrossRef]
- Milder, J.C.; Hart, A.; Buck, L.E. Applying an Agriculture Green Growth Approach in the SAGCOT Clusters: Challenges and Opportunities in Kilombero, Ihemi and Mbarali; SAGCOT Center: Dar Es Salaam, Tanzania, 2013. [Google Scholar]
- Buck, L.; Milder, J. SAGCOT Green Growth Leaders Workshop Report; SAGCOT Center Ltd.: Dar Es Salaam, Tanzania, 2012; 61p. [Google Scholar]
- Mutayoba, E.; Kashaigili, J.J.; Kahimba, F.C.; Mbungu, W.; Chilagane, N.A. Assessing the impacts of land use and land cover changes on hydrology of the Mbarali River Sub-Catchment. The Case of Upper Great Ruaha Sub-Basin, Tanzania. Engineering 2018, 10, 616. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M.F. Land-use and land-cover (LULC) change detection in Wami River Basin, Tanzania. Land 2019, 8, 136. [Google Scholar] [CrossRef]
- Twisa, S.; Mwabumba, M.; Kurian, M.; Buchroithner, M.F. Impact of land-use/land-cover change on drinking water ecosystem services in Wami River Basin, Tanzania. Resources 2020, 9, 37. [Google Scholar] [CrossRef]
- WREM International Inc. WREM & RBWB Rufiji Basin Integrated Water Resources Management and Development Plan Draft Final Report. Volume 1: Rufiji Basin Plan. Report Prepared for the United Republic of Tanzania; Ministry of Water: Atlanta, GA, USA, 2013; p. 11.
- WREM International Inc. WREM & RBWB Rufiji IWRMD Plan Draft Final Report. Volume 1: Climate and Hydrologic Modeling and Assessments. Report Prepared for the United Republic of Tanzania; Ministry of Water: Atlanta, GA, USA, 2013.
- Dye, B.; Hartmann, J. The True Cost of Power: The Facts and Risks of Building the Stiegler’s Gorge Hydropower Dam in the Selous Game Reserve, Tanzania; The University of Manchester: Manchester, UK, 2017. [Google Scholar]
- Monga, E.; Mangora, M.M.; Mayunga, J.S. Mangrove cover change detection in the Rufiji Delta in Tanzania. West. Indian Ocean J. Mar. Sci. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Ajonina, G.; Diamé, A.; Kairo, J. Current status and conservation of mangroves in Africa: An overview. World Rainfor. Mov. Bull. 2008, 133, 1–6. [Google Scholar]
- Mangora, M.M.; Shalli, M.S.; Semesi, I.S.; Njana, M.A.; Mwainunu, E.J.; Otieno, J.E.; Ntibasubile, E.; Mallya, H.C.; Mukama, K.; Wambura, M.; et al. Designing a mangrove research and demonstration forest in the rufiji delta, Tanzania. In Proceedings of the 5th Interagency Conference on Research in the Watersheds, Amherst, MA, USA, 9–11 September 2016; pp. 190–192. [Google Scholar]
- Kato, F. Development of a major rice cultivation area in the Kilombero Valley, Tanzania. Afr. Study Monogr. Suppl. Issue. 2007, 36, 3–18. [Google Scholar]
- Mombo, F.; Speelman, S.; Huylenbroeck, G.; Van Hella, J.; Pantaleo, M. Ratification of the Ramsar convention and sustainable wetlands management: Situation analysis of the Kilombero Valley wetlands in Tanzania. J. Agric. Ext. Rural. Dev. 2011, 3, 153–164. [Google Scholar]
- Kangalawe, R.Y.M.; Liwenga, E.T. Livelihoods in the wetlands of Kilombero Valley in Tanzania: Opportunities and challenges to integrated water resource management. Phys. Chem. Earth Parts A/B/C 2005, 30, 968–975. [Google Scholar] [CrossRef]
- Wilson, E.; McInnes, R.; Mbaga, D.P.; Ouedraogo, P. Kilombero Valley, United Republic of Tanzania: Ramsar Advisory Mission Report; Ramsar Site No. 1173; Ramsar Site: Ramsar, Iran, 2017. [Google Scholar]
- Zhang, Y.; Woodcock, C.E.; Arévalo, P.; Olofsson, P.; Tang, X.; Stanimirova, R.; Bullock, E.; Tarrio, K.R.; Zhu, Z.; Friedl, M.A. A global analysis of the spatial and temporal variability of usable Landsat observations at the pixel scale. Front. Remote Sens. 2022, 3, 894618. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef]
- Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608. [Google Scholar]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Larbi, I.; Forkuor, G.; Hountondji, F.C.C.; Agyare, W.A.; Mama, D. Predictive land use change under business-as-usual and afforestation scenarios in the vea catchment, West Africa. Int. J. Adv. Remote Sens. GIS 2019, 8, 3011–3029. [Google Scholar] [CrossRef]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ. Syst. Res. 2017, 6, 17. [Google Scholar] [CrossRef]
- Gong, W.; Yuan, L.; Fan, W.; Stott, P. Analysis and simulation of land use spatial pattern in Harbin prefecture based on trajectories and cellular automata—Markov modelling. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 207–216. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef]
- Donner, A.; Klar, N. The statistical analysis of kappa statistics in multiple samples. J. Clin. Epidemiol. 1996, 49, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Dettori, J.R.; Norvell, D.C. Kappa and beyond: Is there agreement? Glob. Spine J. 2020, 10, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Kashaigili, J.J.; McCartney, M.; Mahoo, H.F.; Lankford, B.A.; Mbilinyi, B.P.; Yawson, D.K.; Tumbo, S.D. Use of a Hydrological Model for Environmental Management of the Usangu Wetlands, Tanzania; IWMI: Colombo, Sri Lanka, 2006; Volume 104. [Google Scholar]
- Kashaigili, J.J.; Majaliwa, A.M. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania. Phys. Chem. Earth Parts A/B/C 2010, 35, 730–741. [Google Scholar] [CrossRef]
- Al-Bakri, J.T.; Duqqah, M.; Brewer, T. Application of remote sensing and GIS for modeling and assessment of land use/cover change in Amman/Jordan. J. Geogr. Inf. Syst. 2013, 2013, 38390. [Google Scholar] [CrossRef]
- Araya, Y.H.; Cabral, P. Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens. 2010, 2, 1549–1563. [Google Scholar] [CrossRef]
- Wang, T.; Wu, W.; Xue, X. Spatial-temporal changes of sandy desertified land during last 5 decades in northern China. ACTA Geogr. Sin. Ed. 2004, 59, 203–212. [Google Scholar]
- Wu, N.; Silva, E.A. Artificial intelligence solutions for urban land dynamics: A review. J. Plan. Lit. 2010, 24, 246–265. [Google Scholar]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.K.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Silva, E.A. Cellular Automata and Agent Base Models for Urban Studies: From Pixels to Cells to Hexa-dpi’s. Urban Remote Sens. Monit. Synth. Model. Urban Environ. 2011, 250, 323–334. [Google Scholar]
- Rutherford, J.; Kobryn, H.; Newsome, D. A case study in the evaluation of geotourism potential through geographic information systems: Application in a geology-rich island tourism hotspot. Curr. Issues Tour. 2015, 18, 267–285. [Google Scholar] [CrossRef]
- Wen, W. Wetland Change Prediction Using Markov Cellular Automata Model in Lore Lindu National Park Central Sulawesi Province, Indonesia (Seminar); IPB University: Bogor, Indonesia, 2008. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- Jensen, J.R. Digital Image Processing: A Remote Sensing Perspective; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- MoW The National Water Policy (NAWAPO). Ministry of Water under the Government of the United Republic of Tanzania; MoW The National Water Policy (NAWAPO): Dar es Salaam, Tanzania, 2002.
- United Nations (UN). The Seventeen (17) Sustainable Development Goals. Department of Economic and Social Affairs for Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 22 March 2021).
- Mansourian, S.; Berrahmouni, N.; Blaser, J.; Dudley, N.; Maginnis, S.; Mumba, M.; Vallauri, D. Reflecting on twenty years of forest landscape restoration. Restor. Ecol. 2021, 29, e13441. [Google Scholar] [CrossRef]
- Saint-Laurent, C.; Begeladze, S.; Vidal, A.; Hingorani, S. The Bonn Challenge: Building momentum on restoration. Unasylva 2020, 252, 82–91. [Google Scholar]
- Munishi, P.K.T.; Chuwa, J.J.; Kilungu, H.; Moe, S.R.; Temu, R.P.C. Management Effectiveness and Conservation Initiatives in the Kilombero Valley Flood Plains Ramsar Site, Tanzania. Tanzan. J. For. Nat. Conserv. 2012, 81, 1–10. [Google Scholar]
- Balama, C.; Augustino, S.; Eriksen, S.; Makonda, F.S.B.; Amanzi, N. Climate change adaptation strategies by local farmers in Kilombero District, Tanzania. Ethiop. J. Environ. Stud. Manag. 2013, 6, 724–736. [Google Scholar]
- Sigalla, O.Z.; Valimba, P.; Selemani, J.R.; Tumbo, M.H. Analysis of Spatial and Temporal Trend for Hydro-climatic Parameters in the Kilombero River Catchment, Tanzania. Sci. Rep. 2023, 13, 7864. [Google Scholar] [CrossRef]
- Duvail, S.; Hamerlynck, O. The Rufiji River flood: Plague or blessing? Int. J. Biometeorol. 2007, 52, 33–42. [Google Scholar] [CrossRef]
- Wagner, G.M.; Sallema-Mtui, R. The Rufiji Estuary: Climate change, anthropogenic pressures, vulnerability assessment and adaptive management strategies. In Estuaries: A Lifeline of Ecosystem Services in the Western Indian Ocean; Springer: Cham, Switzerland, 2016; pp. 183–207. [Google Scholar]
- Sigalla, O.Z.; Kadigi, R.M.J.; Komakech, H.C. Profitability Analysis of Paddy Farming Systems in Wetland Areas: An Additional Layer in Water Allocation Decisions. Curr. Res. Environ. Sustain. 2022, 14, 3459. [Google Scholar]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Rast, W.; Holland, M. Eutrophication of lakes and reservoirs: A framework for making management decisions. Ambio 1988, 17, 2–12. [Google Scholar]
- Downing, J.A.; Polasky, S.; Olmstead, S.M.; Newbold, S.C. Protecting local water quality has global benefits. Nat. Commun. 2021, 12, 2709. [Google Scholar] [CrossRef]
Year | Spacecraft ID | Sensor ID | Path/Row | Acquisition Date | Cloud Cover (%) |
---|---|---|---|---|---|
1991 | Landsat 5 | TM (SAM) | 167/65 | 5 June 1991 | 4 |
TM (SAM) | 167/66 | 24 August 1991 | 10 | ||
TM (SAM) | 168/65 | 15 August 1991 | 2 | ||
TM (SAM) | 168/66 | 15 August 1991 | 8 | ||
TM (SAM) | 168/67 | 15 August 1991 | 4 | ||
2001 | Landsat 7 | ETM (SAM) | 167/65 | 7 July 2000 | 2 |
ETM (SAM) | 167/66 | 7 July 2000 | 1 | ||
ETM (SAM) | 168/65 | 6 September 2002 | 1 | ||
ETM (SAM) | 168/66 | 18 June 2002 | 7 | ||
ETM (SAM) | 168/67 | 18 June 2002 | 10 | ||
2011 | Landsat 5/7 | ETM (BUMPER) | 167/65 | 8 July 2012 | 6 |
ETM (BMPER) | 167/66 | 23 August 2011 | 10 | ||
TM (SAM) | 168/65 | 21 July 2011 | 3 | ||
TM (SAM) | 168/66 | 5 July 2011 | 3 | ||
TM (SAM) | 168/67 | 5 July 2011 | 5 | ||
2021 | Landsat 8 | OLI_TIRS | 167/65 | 26 August 2021 | 13 |
OLI_TIRS | 167/66 | 9 July 2021 | 1 | ||
OLI_TIRS | 168/65 | 5 November 2021 | 2 | ||
OLI_TIRS | 168/66 | 24 November 2021 | 2 | ||
OLI_TIRS | 168/67 | 24 November 2021 | 1 |
Land Use/Land Cover | Description |
---|---|
Forest | Area of land covered with at least 10% tree crown cover, naturally grown or planted and or 50% or more shrub and tree regeneration cover |
Woodland | Area of land covered with low density trees with height between forming closed to open habitat with plenty of sunlight and limited shade |
Bushland | Area dominated with bushes and shrubs with occasional short emergent trees |
Grassland | Land area dominated by grasses |
Water body | Area within body of land, filled with water, localized in a basin, which rivers flow into or out of them |
Wetland | Land area that is saturated with water either permanent or seasonally including valley bottoms |
Cultivated land | Area subjected to agricultural production farms with crops and harvested crop land |
Built-up area | Manmade infrastructure (roads and buildings) and settlement (town and villages) |
Assigned LULC Class | Probability of Changing to | |||||||
---|---|---|---|---|---|---|---|---|
FRST | FRSD | RNGB | RNGE | WATR | WETN | CULT | BULT | |
FRST | 0.5620 | 0.2071 | 0.2001 | 0.0033 | 0.0004 | 0.0004 | 0.0264 | 0.0004 |
FRSD | 0.1174 | 0.3510 | 0.4532 | 0.0129 | 0.0002 | 0.0022 | 0.0624 | 0.0006 |
RNGB | 0.0855 | 0.1676 | 0.5174 | 0.0346 | 0.0003 | 0.0049 | 0.1873 | 0.0023 |
RNGE | 0.0087 | 0.0087 | 0.3084 | 0.3346 | 0.0003 | 0.0004 | 0.3356 | 0.0033 |
WATR | 0.0413 | 0.1201 | 0.0886 | 0.0035 | 0.669 | 0.0260 | 0.0515 | 0.0001 |
WETN | 0.0039 | 0.0303 | 0.0595 | 0.0051 | 0.0028 | 0.6302 | 0.2682 | 0 |
CULT | 0.0592 | 0.0192 | 0.1374 | 0.0176 | 0.0002 | 0.0011 | 0.7540 | 0.0114 |
BULT | 0.0157 | 0.0290 | 0.0844 | 0.0416 | 0.0001 | 0 | 0.1858 | 0.6434 |
Land Use/Land Cover | 1991 | 2001 | 2011 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | |
Forest | 90.88 | 79.12 | 90.88 | 79.88 | 90.36 | 86.94 | 87.74 | 81.38 |
Woodland | 82.10 | 73.70 | 82.10 | 73.70 | 86.45 | 72.88 | 81.86 | 78.06 |
Bushland | 88.20 | 96.03 | 88.20 | 96.03 | 88.80 | 95.23 | 92.21 | 96.93 |
Grassland | 95.93 | 99.87 | 95.93 | 99.87 | 95.93 | 99.87 | 96.06 | 95.88 |
Water | 94.89 | 89.56 | 94.89 | 94.09 | 97.87 | 99.57 | 97.87 | 100.00 |
Wetland | 99.06 | 99.66 | 99.69 | 99.66 | 99.08 | 99.69 | 99.64 | 100.00 |
Cultivated land | 99.34 | 95.45 | 95.55 | 93.36 | 88.80 | 96.54 | 88.91 | 94.88 |
Built-up area | 99.56 | 100.00 | 90.63 | 84.65 | 99.56 | 68.36 | 99.14 | 68.69 |
Overall Accuracy (%) | 92.01 | 91.74 | 91.96 | 92.44 | ||||
Kappa | 0.90 | 0.90 | 0.09 | 0.90 |
Year | 1991 | 2001 | 2011 | 2021 | ||||
---|---|---|---|---|---|---|---|---|
Unit | Ha | % | Ha | % | Ha | % | Ha | % |
Forest | 1,192,996 | 29.55 | 1,177,109 | 29.16 | 844,527 | 20.92 | 766,835 | 19.00 |
Woodland | 1,141,382 | 28.27 | 1,121,891 | 27.79 | 1,114,763 | 27.61 | 741,798 | 18.37 |
Bushland | 1,019,128 | 25.25 | 1,029,224 | 25.50 | 972,794 | 24.10 | 1,253,491 | 31.05 |
Grassland | 34,067 | 0.84 | 33,500 | 0.83 | 44,310 | 1.10 | 67,614 | 1.67 |
Water | 18,641 | 0.46 | 15,095 | 0.37 | 11,578 | 0.29 | 10,419 | 0.26 |
Wetland | 302,098 | 7.48 | 311,029 | 7.70 | 256,250 | 6.35 | 196,912 | 4.88 |
Cultivated land | 321,188 | 7.96 | 340,472 | 8.43 | 776,181 | 19.23 | 980,534 | 24.29 |
Built-up area | 7437 | 0.18 | 8615 | 0.21 | 16,531 | 0.41 | 19,331 | 0.48 |
Total | 4,036,935 | 100 | 4,036,935 | 100 | 4,036,935 | 100 | 4,036,935 | 100 |
Year | 1991–2001 | 2001–2011 | 2011–2021 | 1991–2021 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | Ha | % | Ha/Year | Ha | % | Ha/Year | Ha | % | Ha/Year | Ha | % | Ha/Year |
Forest | −15,887 | −1.3 | −1589 | −332,582 | −28.3 | −33,258 | −77,692 | −9.2 | −7769 | −426,161 | −35.7 | −14,205 |
Woodland | −19,491 | −1.7 | −1949 | −7128 | −0.6 | −713 | −372,965 | −33.5 | −37,297 | −399,584 | −35 | −13,319 |
Bushland | 10,096 | 1.0 | 1010 | −56,430 | −5.5 | −5643 | 280,697 | 28.9 | 28,070 | 234,363 | 23 | 7812 |
Grassland | −567 | −1.7 | −57 | 10,810 | 32.3 | 1081 | 23,304 | 52.6 | 2330 | 33,547 | 98.5 | 1118 |
Water | −3546 | −19 | −355 | −3517 | −23.3 | −352 | −1159 | −10 | −116 | −8222 | −44.1 | −274 |
Wetland | 8931 | 3 | 893 | −54,779 | −17.6 | −5478 | −59,338 | −23.2 | −5934 | −105,186 | −34.8 | −3506 |
Cultivated | 19,284 | 6.0 | 1928 | 435,709 | 128 | 43,571 | 204,353 | 26.3 | 20,435 | 659,346 | 205.3 | 21,978 |
Built-up | 1178 | 15.8 | 118 | 7916 | 91.9 | 792 | 2800 | 16.9 | 280 | 11,894 | 159.9 | 396 |
Changing from: 1991 | Area Change to 2021 | Net Change (Ha) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FRST | FRSD | RNGB | RNGE | WATR | WETN | CULT | BULT | LOSS | ||
FRST | 528,049 | 234,022 | 275,309 | 8531 | 832 | 15,163 | 130,260 | 829 | 664,946 | −426,123 |
FRSD | 158,889 | 1991 | 463,685 | 10,166 | 302 | 3645 | 106,025 | 660 | 743,372 | −399,615 |
RNGB | 61,785 | 92,919 | 442,391 | 24,808 | 148 | 2193 | 390,911 | 3973 | 576,737 | 234,373 |
RNGE | 155 | 316 | 11,654 | 16,796 | 7 | 10 | 5071 | 58 | 17,271 | 33,547 |
WATR | 809 | 1714 | 2319 | 196 | 8596 | 3288 | 1690 | 27 | 10,043 | −8220 |
WETN | 838 | 8053 | 17,284 | 1021 | 414 | 170,230 | 104,073 | 184 | 131,867 | −105,187 |
CULT | 16,216 | 6498 | 40,264 | 5812 | 120 | 2381 | 241,550 | 8347 | 79,638 | 659,346 |
BULT | 131 | 235 | 595 | 284 | 0 | 0 | 954 | 5237 | 2199 | 11,879 |
GAIN | 238,823 | 343,757 | 811,110 | 50,818 | 1823 | 26,680 | 738,984 | 14,078 | 1,561,127 |
Changing from: 1991 | Area Change to 2001 | Net Change (Ha) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FRST | FRSD | RNGB | RNGE | WATR | WETN | CULT | BULT | LOSS | ||
FRST | 1,165,330 | 3331 | 12,672 | 0 | 0 | 10,815 | 835 | 11 | 27,664 | −15,886 |
FRSD | 3346 | 1,114,670 | 23,056 | 0 | 0 | 0 | 107 | 202 | 26,711 | −19,491 |
RNGB | 7081 | 3603 | 987,618 | 174 | 8 | 31 | 20,141 | 473 | 31,511 | 10,095 |
RNGE | 2 | 0 | 172 | 33,317 | 0 | 0 | 577 | 0 | 751 | −568 |
WATR | 1210 | 197 | 446 | 9 | 15,076 | 1551 | 131 | 21 | 3565 | −3545 |
WETN | 106 | 89 | 2289 | 0 | 12 | 298,632 | 969 | 0 | 3465 | 8932 |
CULT | 31 | 0 | 2726 | 0 | 0 | 0 | 317,416 | 1015 | 3772 | 19,285 |
BULT | 2 | 0 | 245 | 0 | 0 | 0 | 297 | 6893 | 544 | 1178 |
GAIN | 11,778 | 7220 | 41,606 | 183 | 20 | 12,397 | 23,057 | 1722 | 70,319 |
Changing from: 2001 | Area Change to 2011 | Net Change (Ha) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FRST | FRSD | RNGB | RNGE | WATR | WETN | CULT | BULT | LOSS | ||
FRST | 742,548 | 242,722 | 102,891 | 493 | 904 | 9508 | 77,577 | 457 | 434,552 | −332,574 |
FRSD | 80,626 | 830,707 | 151,851 | 589 | 226 | 2437 | 55,434 | 20 | 291,183 | −7147 |
RNGB | 15,965 | 33,574 | 684,154 | 574 | 7 | 1776 | 292,367 | 826 | 345,089 | −56,430 |
RNGE | 0 | 0 | 0 | 33,500 | 0 | 0 | 0 | 0 | 0 | 10,809 |
WATR | 1012 | 389 | 966 | 155 | 10,058 | 2117 | 396 | 1 | 5036 | −3516 |
WETN | 251 | 2248 | 11,130 | 486 | 319 | 234,274 | 62,151 | 170 | 76,755 | −54,778 |
CULT | 4124 | 5103 | 21,821 | 8512 | 64 | 6139 | 288,257 | 6441 | 52,204 | 435,721 |
BULT | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8615 | 0 | 7915 |
GAIN | 101,978 | 284,036 | 288,659 | 10,809 | 1520 | 21,977 | 487,925 | 7915 | 770,267 |
Changing from: 2011 | Area Change to 2021 | Net change (Ha) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FRST | FRSD | RNGB | RNGE | WATR | WETN | CULT | BULT | LOSS | ||
FRST | 558,295 | 135,303 | 130,717 | 2172 | 263 | 244 | 17,224 | 234 | 286,157 | −77,686 |
FRSD | 118,408 | 460,304 | 456,918 | 13,006 | 200 | 2219 | 62,935 | 604 | 654,290 | −372,978 |
RNGB | 67,442 | 132,180 | 592,540 | 27,325 | 255 | 3874 | 147,745 | 1776 | 380,597 | 280,699 |
RNGE | 350 | 351 | 12,452 | 17,439 | 12 | 16 | 13,550 | 132 | 26,863 | 23,305 |
WATR | 307 | 895 | 660 | 26 | 9112 | 194 | 383 | 1 | 2466 | −1160 |
WETN | 693 | 5425 | 10,667 | 913 | 506 | 189,978 | 48,062 | 2 | 66,268 | −59,339 |
CULT | 21,094 | 6832 | 48,931 | 6257 | 69 | 382 | 688,477 | 4054 | 87,619 | 204,374 |
BULT | 177 | 326 | 951 | 469 | 1 | 0 | 2094 | 12,511 | 4018 | 2785 |
GAIN | 208,471 | 281,312 | 661,296 | 50,168 | 1306 | 6929 | 291,993 | 6803 | 1,222,121 |
Year | 2021 | 2031 | 2041 | |||
---|---|---|---|---|---|---|
Unit | Ha | % | Ha | % | Ha | % |
Forest | 766,835 | 19.00 | 685,239 | 16.98 | 603,307 | 14.95 |
Woodland | 741,798 | 18.37 | 657,047 | 16.27 | 571,806 | 14.16 |
Bushland | 1,253,491 | 31.05 | 1,309,248 | 32.44 | 1,364,920 | 33.81 |
Grassland | 67,614 | 1.67 | 97,030 | 2.40 | 126,654 | 3.14 |
Water | 10,419 | 0.26 | 8159 | 0.20 | 6028 | 0.15 |
Wetland | 196,912 | 4.88 | 133,897 | 3.32 | 71,291 | 1.77 |
Cultivated land | 980,534 | 24.29 | 1,120,396 | 27.76 | 1,260,186 | 31.22 |
Built-up area | 19,331 | 0.48 | 25,918 | 0.64 | 32,742 | 0.81 |
Total | 4,036,935 | 100 | 4,036,935 | 100 | 4,036,935 | 100 |
Year | 2021–2031 | 2031–2041 | ||||
---|---|---|---|---|---|---|
Unit | Ha | % | Ha/Year | Ha | % | Ha/Year |
Forest | −81,596 | −10.64 | −8160 | −81,931 | −11.96 | −8193 |
Woodland | −84,751 | −11.43 | −8475 | −85,241 | −12.97 | −8524 |
Bushland | 55,757 | 4.45 | 5576 | 55,672 | 4.25 | 5567 |
Grassland | 29,416 | 43.51 | 2942 | 29,624 | 30.53 | 2962 |
Water | −2260 | −21.69 | −226 | −2131 | −26.12 | −213 |
Wetland | −63,015 | −32.00 | −6302 | −62,606 | −46.76 | −6261 |
Cultivated land | 139,862 | 14.26 | 13,986 | 139,790 | 12.48 | 13,979 |
Built-up area | 6587 | 34.08 | 659 | 6824 | 26.33 | 682 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigalla, O.Z.; Twisa, S.; Chilagane, N.A.; Mwabumba, M.F.; Selemani, J.R.; Valimba, P. Future Trade-Off for Water Resource Allocation: The Role of Land Cover/Land Use Change. Water 2024, 16, 493. https://doi.org/10.3390/w16030493
Sigalla OZ, Twisa S, Chilagane NA, Mwabumba MF, Selemani JR, Valimba P. Future Trade-Off for Water Resource Allocation: The Role of Land Cover/Land Use Change. Water. 2024; 16(3):493. https://doi.org/10.3390/w16030493
Chicago/Turabian StyleSigalla, Onesmo Zakaria, Sekela Twisa, Nyemo Amos Chilagane, Mohamed Fadhili Mwabumba, Juma Rajabu Selemani, and Patrick Valimba. 2024. "Future Trade-Off for Water Resource Allocation: The Role of Land Cover/Land Use Change" Water 16, no. 3: 493. https://doi.org/10.3390/w16030493
APA StyleSigalla, O. Z., Twisa, S., Chilagane, N. A., Mwabumba, M. F., Selemani, J. R., & Valimba, P. (2024). Future Trade-Off for Water Resource Allocation: The Role of Land Cover/Land Use Change. Water, 16(3), 493. https://doi.org/10.3390/w16030493