Photodegradation of Methylene Blue Using a UV/H2O2 Irradiation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Effect of the Amount/Concentration of H2O2 in the Reacting Solution
3.2. Effect of Initial MB Concentration
3.3. Kinetics of MB Photodegradation
- (1)
- Ct/Co versus time (linear for a zero-order reaction), rate = k;
- (2)
- ln (Ct/Co) versus time (linear for a first-order reaction), rate = k[Ct];
- (3)
- 1/(Ct/Co) versus time (linear for a second-order reaction), rate = k[Ct]2.
3.4. Photodegradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Zhu, T.; Ye, X.; Zhang, Q.; Hui, Z.; Wang, X.; Chen, S. Efficient Utilization of Photogenerated Electrons and Holes for Photocatalytic Redox Reactions using Visible Light-Driven Au/ZnIn2S4 Hybrid. J. Hazard. Mater. 2019, 367, 277–285. [Google Scholar] [CrossRef]
- Phuc, N.H.; Lin, T.H.; Viet, T.Q.Q.; Nam, N.T.H.; Dat, N.M.; Hung, P.N.P.; Dat, N.T.; Minh, D.T.C.; Giang, N.T.H.; Huong, Q.T.T.; et al. Photodegradation of Methylene Blue and Photoproduction of Hydrogen Peroxide Using Magnesium Ferrite-Titanium Dioxide/Reduced Graphene Oxide as a Photo-Catalyst Under Visible Light. Opt. Mater. 2023, 139, 113832. [Google Scholar] [CrossRef]
- Ersöz, E.; Yildirim, A.O. Green Synthesis and Characterization of Ag-Doped ZnO Nanofibers for Photodegradation of MB, RhB and MO Dye Molecules. J. Korean Ceram. Soc. 2022, 59, 655–670. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Khaleefa, S.A.; Basheer, M.I. Photolysis of Methylene Blue Dye Using an Advanced Oxidation Process (Ultraviolet Light and Hydrogen Peroxide). J. Eng. Sustain. Dev. 2021, 25, 59–67. [Google Scholar] [CrossRef]
- Cao, Y.; Ren, Y.; Zhang, J.; Xie, T.; Lin, Y. Activation of H2O2 by Photo-Generated Electrons for Enhanced Visible Light Driven Methylene Blue Degradation with ZnFe2O4/BiVO4 Heterojunction. Opt. Mater. 2021, 121, 111637. [Google Scholar] [CrossRef]
- Mohammadzadeh, A.; Khoshghadam-Pireyousefan, M.; Shokrianfard-Ravasjan, B.; Azadbeh, M.; Rashedi, H.; Dibazar, M.; Mostafaei, A. Synergetic Photocatalytic Effect of High Purity ZnO Pod Shaped Nanostructures with H2O2 on Methylene Blue Dye Degradation. J. Alloys Compd. 2020, 845, 156333. [Google Scholar] [CrossRef]
- El-Sheshtawy, H.S.; Ghubish, Z.; Shoueir, K.R.; El-Kemary, M. Activated H2O2 on Ag/SiO2–SrWO4 Surface for Enhanced Dark and Visible-Light Removal of Methylene Blue and p-Nitrophenol. J. Alloys Compd. 2020, 842, 155848. [Google Scholar] [CrossRef]
- Waimbo, M.; Anduwan, G.; Renagi, O.; Badhula, S.; Michael, K.; Park, J.; Senthilkumar, V.; Kim, Y.S. Improved Charge Separation Through H2O2 Assisted Copper Tungstate for Enhanced Photocatalytic Efficiency for the Degradation of Organic Dyes Under Simulated Sun Light. J. Photochem. Photobiol. B Biol. 2020, 204, 111781. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, P.; Yang, J.; Xu, G.; Yang, H.; Shi, Z.; Hu, Q.; Dong, B.; Guo, Z. Photocatalytic Degradation of Organic Dye and Phytohormone by a Cu(II) Complex Powder Catalyst with Added H2O2. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125147. [Google Scholar] [CrossRef]
- Shi, X.; Yu, Y.; Yang, Q.; Hong, X. Carboxyl Groups as Active Sites for H2O2 Decomposition in Photodegradation over Graphene Oxide/Polythiophene Composites. Appl. Surf. Sci. 2020, 524, 146397. [Google Scholar] [CrossRef]
- Zhang, D.; Dai, F.; Zhang, P.; An, Z.; Zhao, Y.; Chen, L. The Photodegradation of Methylene Blue in Water with PVDF/GO/ZnO Composite Membrane. Mater. Sci. Eng. C 2019, 96, 684–692. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Nan, Z. Effect of N Content in g-C3N4 as Metal-Free Catalyst on H2O2 Decomposition for MB Degradation. Sep. Purif. Technol. 2019, 224, 152–162. [Google Scholar] [CrossRef]
- Liu, J.; Asan, O.; Li, Z.; Wu, Z.; Zhu, K.; Zhuang, J.; Xi, Q.; Hou, Y.; Chen, J.; Cong, M.; et al. Jiankang Chen, Mengqi Cong, Jun Li, Guoming Qian, Zixia Lin. Photo-Fenton Reaction and H2O2 Enhanced Photocatalytic Activity of α-Fe2O3 Nanoparticles Obtained by a Simple Decomposition Route. J. Alloys Compd. 2019, 771, 398–405. [Google Scholar] [CrossRef]
- Kalam, A.; Al-Sehemi, A.G.; Assiri, M.A.; Du, G.; Ahmad, T.; Ahmad, I.; Pannipara, M. Modified Solvothermal Synthesis of Cobalt Ferrite (CoFe2O4) Magnetic Nanoparticles Photocatalysts for Degradation of Methylene Blue with H2O2/Visible Light. Results Phys. 2018, 8, 1046–1053. [Google Scholar] [CrossRef]
- Banerjee, S.; Benjwal, P.; Singh, M.; Kar, K.K. Graphene Oxide (rGO)-Metal Oxide (TiO2/Fe3O4) Based Nanocomposites for the Removal of Methylene Blue. Appl. Surf. Sci. 2018, 439, 560–568. [Google Scholar] [CrossRef]
- Liu, T.; Li, X.; Yuan, X.; Wang, Y. Enhanced Visible-Light Photocatalytic Activity of a TiO2 Hydrosol Assisted by H2O2: Surface Complexation and Kinetic Modeling. J. Mol. Catal. A Chem. 2016, 414, 122–129. [Google Scholar] [CrossRef]
- Gao, F.; Zhu, L.; Wang, Y.; Xie, H.; Li, J. Room Temperature Facile Synthesis of Cu2Se Hexagonal Nanoplates Array Film and Its High Photodegradation Activity to Methyl Blue with the Assistance of H2O2. Mater. Lett. 2016, 183, 425–428. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Li, T. Rapid Photocatalytic Decolorization of Methylene Blue Using High Photon Flux UV/TiO2/H2O2 Process. J. Chem. Eng. 2013, 217, 407–413. [Google Scholar] [CrossRef]
- Shu, Z.; Bolton, J.R.; Belosevic, M.; Gamal El Din, M. Photodegradation of Emerging Micropollutants Using the Medium-Pressure UV/H2O2 Advanced Oxidation Process. Water Res. 2013, 47, 2881–2889. [Google Scholar] [CrossRef]
- Jiang, G.; Zheng, X.; Wang, Y.; Li, T.; Sun, X. Photo-Degradation of Methylene Blue by Multi-Walled Carbon Nanotubes/TiO2 Composites. Powder Technol. 2011, 207, 465–469. [Google Scholar] [CrossRef]
- Yao, J.; Wang, C. Decolorization of Methylene Blue with TiO2 Sol via UV Irradiation Photocatalytic Degradation. Int. J. Photoenergy 2010, 2010, 643182. [Google Scholar] [CrossRef]
- Pouretedal, H.R.; Kadkhodaie, A. Synthetic CeO2 Nanoparticle Catalysis of Methylene Blue Photodegradation: Kinetics and Mechanism. Chin. J. Catal. 2010, 31, 1328–1334. [Google Scholar] [CrossRef]
- Zou, J.; Gao, J.; Xie, F. An Amorphous TiO2 Sol Sensitized with H2O2 with the Enhancement of Photocatalytic Activity. J. Alloys Compd. 2010, 497, 420–427. [Google Scholar] [CrossRef]
- Andronic, L.; Duta, A. Influence of pH and H2O2 on Dyes Photodegradation. Phys. Status Solidi C 2008, 5, 3332–3337. [Google Scholar] [CrossRef]
- Banat, F.; Al-Asheh, S.; Al-Rawashdeh, M.; Nusair, M. Photodegradation of Methylene Blue Dye by the UV/H2O2 and UV/Acetone Oxidation Processes. Desalination 2005, 181, 225–232. [Google Scholar] [CrossRef]
- Bessy, T.C.; Sarojoni, V.; Johnson, J.B.; Bakri, M.M.; Manna, C.E.; Florence, S.S.; Bindhu, M.R. Optical, Structural, Morphological, Antibacterial, and Photodegradation Characteristics of BaxMg0.8−xFe2O4 (x = 0.2, 0.4, and 0.6) Nanocrystalline Powders Synthesized by Combustion Method. Phys. Status Solidi A Appl. Mater. Sci. 2022, 219, 202200366. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.; Khan, S.; Luque, R.; Almutairi, T.M.; Karami, A.M. A Facile Co-Precipitation Synthesis of Novel WO3/NiWO4 Nanocomposite with Improved Photocatalytic Activity. Mater. Sci. Semicond. 2021, 133, 105970. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, M.; Khan, S.; Luque, R.; Almutairi, T.M.; Karami, A.M. Bio-Construction of MgO Nanoparticles Using Texas Sage Plant Extract for Catalytical Degradation of Methylene Blue via Photocatalysis. Int. J. Environ. Sci. Technol. 2023, 20, 1451–1462. [Google Scholar] [CrossRef]
- Alahmadi, M.; Alsaedi, W.H.; Mohamed, W.S.; Hassan, H.M.A.; Ezzeldien, M.; Abu-Dief, A.M. Development of Bi2O3/MoSe2 Mixed Nanostructures for Photocatalytic Degradation of Methylene Blue Dye. J. Taibah Univ. Sci. 2023, 17, 2161333. [Google Scholar] [CrossRef]
- Abdullah, M.; John, P.; Ashiq, M.N.; Manzoor, S.; Ghori, M.I.; Nisa, M.U.; Abid, A.G.; Butt, K.Y.; Ahmed, S. Development of CuO/CuS/MnO2 Ternary Nanocomposite for Visible Light-Induced Photocatalytic Degradation of Methylene Blue. Nanotechnol. Environ. Eng. 2023, 8, 63–73. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Yahia, I.S.; Shahwan, M.; Zyoud, A.; Zahran, H.Y.; Abdelwahab, M.S.; Daher, M.G.; Nasor, M.; Makhadmeh, G.N.; Hassan, N.; et al. Fast and Excellent Enhanced Photocatalytic Degradation of Methylene Blue Using Silver-Doped Zinc Oxide Submicron Structures Under Blue Laser Irradiation. Crystals 2023, 13, 229. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, C.; Chou, N.-N.; Wang, F.-H.; Yang, C. Synthesis of ZnO Nanoflower Arrays on Patterned Cavity Substrate and Their Application in Methylene Blue Degradation. Materials 2023, 16, 2647. [Google Scholar] [CrossRef]
- Basalius, H.; Mani, A.; Amalanathan, M.; Mary, M.; Lenin, M.; Parvathiraja, C.; Siddiqui, M.R.; Wabaidur, S.M.; Islam, M.M. Green Synthesis of Nano-Silver Using Syzygium samarangense Flower Extract for Multifaceted Applications in Biomedical and Photocatalytic Degradation of Methylene Blue. Appl. Nanosci. 2023, 13, 3735–3747. [Google Scholar] [CrossRef]
- Al-Attar, H.M.; Hussein, H.T.; Zamel, R.S.; Addie, A.J.; Mohammed, M.K.A. Methylene Blue Degradation Using ZnO:CuO:Al2O3 Nanocomposite Synthesized by Liquid Laser Ablation. Opt. Quant. Electron. 2023, 55, 309. [Google Scholar] [CrossRef]
- Jin, Y.; Tang, W.; Wang, J.; Ren, F.; Chen, Z.; Sun, Z.; Ren, P. Construction of Biomass Derived Carbon Quantum Dots Modified TiO2 Photocatalysts with Superior Photocatalytic Activity for Methylene Blue Degradation. J. Alloys Compd. 2023, 932, 167627. [Google Scholar] [CrossRef]
- Elaiyappillai, E.; Elizabeth, I.B.; Wang, S.-F.; Lydia, I.S. Strontium Hexaferrite Microspheres: Synthesis, Characterization and Visible-Light-Driven Photocatalytic Activity Towards the Degradation of Methylene Blue Dye. Opt. Mater. 2023, 137, 113565. [Google Scholar] [CrossRef]
- Fu, C.; Yan, M.; Wang, Z.; Ji, L.; Zhang, X.; Song, W.; Xu, Z.; Bhatt, K.; Wang, Z.; Zhu, S. New Insights into the Degradation and Detoxification of Methylene Blue Using Heterogeneous-Fenton Catalyzed by Sustainable Siderite. Environ. Res. 2023, 216, 114819. [Google Scholar] [CrossRef]
- Chahar, D.; Kumar, D.; Thakur, P.; Thakur, A. Visible Light Induced Photocatalytic Degradation of Methylene Blue Dye by Using Mg Doped Co-Zn Nanoferrites. Mater. Res. Bull. 2023, 162, 112205. [Google Scholar] [CrossRef]
- Waheed, I.F.; Hamad, M.A.; Jasim, K.A.; Gesquiere, A.J. Degradation of Methylene Blue Using a Novel Magnetic CuNiFe2O4/g-C3N4 Nanocomposite as Heterojunction Photocatalyst. Diam. Relat. Mater. 2023, 133, 109716. [Google Scholar] [CrossRef]
- Chen, M.-L.; Li, S.; Wen, L.; Xu, Z.; Li, H.; Li, D.; Cheng, Y.-H. Exploration of Double Z-type Ternary Composite Long-Afterglow/Graphitic Carbon Nitride@Metal–Organic Framework for Photocatalytic Degradation of Methylene Blue. J. Colloid Interface Sci. 2023, 629, 409–421. [Google Scholar] [CrossRef]
- Sun, Q.; Huang, S.; Li, Z.; Su, D.; Sun, J. Synergistic Activation of Persulfate by Heat and Cobalt-Doped-Bimetallic-MOFs for Effective Methylene Blue Degradation: Synthesis, Kinetics, DFT Calculation, and Mechanisms. J. Environ. Chem. Eng. 2023, 11, 109065. [Google Scholar] [CrossRef]
- Javed, M.; Iqbal, S.; Qamar, M.A.; Shariq, M.; Ahmed, I.A.; BaQais, A.; Alzahrani, H.; Ali, S.K.; Masmali, N.A.; Althagafi, T.M.; et al. Fabrication of Effective Co-SnO2/SGCN Photocatalysts for the Removal of Organic Pollutants and Pathogen Inactivation. Crystals 2023, 13, 163. [Google Scholar] [CrossRef]
- Fallatah, A.M.; Alahmari, S.D.; Farid, H.M.T. Facile Synthesis of the MOF Derived ZnMn2O4 Nanorods for Dyes Degradation in Water. J. Mater. Sci. Mater. Electron. 2023, 34, 1630. [Google Scholar] [CrossRef]
- Hussain, S.; Alam, M.M.; Imran, M.; Ali, M.A.; Ahamad, T.; Haidyrah, A.S.; Alotaibi, S.M.A.R.; Naik, M.; Shariq, M. A facile low-cost scheme for highly photoactive Fe3O4-MWCNTs nanocomposite material for degradation of methylene blue. Alex. Eng. J. 2022, 61, 9107–9117. [Google Scholar] [CrossRef]
- Negash, A.; Mohammed, S.; Weldekirstos, H.D.; Ambaye, A.D.; Gashu, M. Enhanced Photocatalytic Degradation of Methylene Blue Dye Using Eco-friendly Synthesized rGO@ZnO Nanocomposites. Sci. Rep. 2023, 13, 22234. [Google Scholar] [CrossRef]
- Naffeti, M.; Zaïbi, M.A.; Nefzi, C.; García-Arias, A.V.; Chtourou, R.; Postigo, P.A. Highly Efficient Photodegradation of Methylene Blue by A Composite Photocatalyst of Bismuth Nanoparticles on Silicon Nanowires. Environ. Technol. Innov. 2023, 30, 103133. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Ajala, O.J.; Umenweke, G.; Ogunniyi, S.; Adeyanju, C.A.; Igwegbe, C.A.; Adeniyi, A.G. Mitigation of Clofibric Acid Pollution by Adsorption: A Review of Recent Developments. J. Environ. Chem. Eng. 2020, 8, 104264. [Google Scholar] [CrossRef]
- Sugha, A.; Bhatti, M.S. Degradation of methylene blue dye by UV/H2O2 advanced oxidation process: Reaction kinetics, residual H2O2 and specific energy consumption evaluation. Desalin. Water Treat. 2022, 274, 297–307. [Google Scholar] [CrossRef]
- Tantubay, K.; Das, P.; Baskey, M. Hydrogen peroxide–assisted photocatalytic dye degradation over reduced graphene oxide integrated ZnCr2O4 nanoparticles. Environ. Sci. Pollut. Res. 2022, 29, 17309–17318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, J.; Feng, Q.; Chen, X.; Hu, Z. Visible Light Photocatalytic Degradation of MB using UiO-66/g-C3N4 Heterojunction Nanocatalyst. Chemosphere 2018, 212, 523–532. [Google Scholar] [CrossRef] [PubMed]
Process Conditions | Zero-Order Kinetics (Ct/Co) vs. Time | First-Order Kinetics Ln (Ct/Co) vs. Time | Second-Order Kinetics 1/(Ct/Co) vs. Time | |||
---|---|---|---|---|---|---|
5 ppm MB solution (100 mL) | R2 | k, min−1 | R2 | k, min−1 | R2 | k, min−1 |
5 mL 30% H2O2 | 0.9057 | 0.0028 | 0.8528 | 0.0032 | 0.7980 | 0.0066 |
10 mL 30% H2O2 | 0.8963 | 0.0046 | 0.8245 | 0.0055 | 0.6000 | 0.0157 |
15 mL 30% H2O2 | 0.8744 | 0.0078 | 0.7100 | 0.0109 | 0.7981 | 0.0370 |
10 ppm MB solution (100 mL) | R2 | k, min−1 | R2 | k, min−1 | R2 | k, min−1 |
5 mL 30% H2O2 | 0.9515 | 0.0047 | 0.8520 | 0.0050 | 0.7880 | 0.0130 |
10 mL 30% H2O2 | 0.9055 | 0.0068 | 0.8528 | 0.0108 | 0.7985 | 0.0160 |
15 mL 30% H2O2 | 0.9143 | 0.0082 | 0.8245 | 0.0128 | 0.7980 | 0.0217 |
15 ppm MB solution (100 mL) | R2 | k, min−1 | R2 | k, min−1 | R2 | k, min−1 |
5 mL 30% H2O2 | 0.9059 | 0.0075 | 0.8750 | 0.0106 | 0.7988 | 0.0155 |
10 mL 30% H2O2 | 0.9459 | 0.0080 | 0.8850 | 0.0136 | 0.8146 | 0.0226 |
15 mL 30% H2O2 | 1.0000 | 0.0100 | 0.8528 | 0.0183 | 0.9063 | 0.0362 |
No. | Catalyst Type | Irradiation Type | Degradation Efficiency, % | Irradiation Time, Min | Ref. |
---|---|---|---|---|---|
1 | CuWO4 NPs | sunlight | 70 | 240 | [10] |
2 | rGO-Fe3O4-TiO2 (1:1:2) NCs | visible light | 87 | 9 | [17] |
3 | rGO-Fe3O4-TiO2 (1:1:2) NCs | UV light | 90 | 6 | [17] |
4 | WO3/NiWO4 (having 20 wt% Ni) NCs | UV light | 90 | 80 | [29] |
5 | MgO NPs | visible light | 90 | 120 | [30] |
6 | Bi2O3/MoSe2 NCs | visible light | 96 | 80 | [31] |
7 | CuO/CuS/MnO2 NCs | visible light | 98 | 160 | [32] |
8 | Ag NPs | sunlight | 80 | 120 | [35] |
9 | ZnO/CuO/Al2O3(3:1:1) NCs | sunlight | 98 | 15 | [36] |
10 | TiO2/3.0 wt% N-doped carbon quantum dots | visible light | 93 | 60 | [37] |
11 | Co0.5Zn0.5MgFeO4 | visible light | 100 | 60 | [40] |
12 | CNFO/g-C3N4 | sunlight | 97 | 180 | [41] |
13 | SrAl2O4:Eu2+Dy3+/g-C3N4@NH2-UiO-66 | visible light | 100 | 30 | [42] |
14 | Co-SnO2/sulfur-doped graphitic carbon nitride (50%) NCs | sunlight | 96 | 150 | [44] |
15 | ZnO@ olive fruit extract NPs | sunlight | 75 | 180 | [46] |
16 | UiO-66/g-C3N4 | visible light | 100 | 240 | [52] |
17 | UV/H2O2 system | UV light | 99 | 80 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.A.; Maafa, I.M.; Qudsieh, I.Y. Photodegradation of Methylene Blue Using a UV/H2O2 Irradiation System. Water 2024, 16, 453. https://doi.org/10.3390/w16030453
Ali MA, Maafa IM, Qudsieh IY. Photodegradation of Methylene Blue Using a UV/H2O2 Irradiation System. Water. 2024; 16(3):453. https://doi.org/10.3390/w16030453
Chicago/Turabian StyleAli, Mohammad Ashraf, Ibrahim M. Maafa, and Isam Y. Qudsieh. 2024. "Photodegradation of Methylene Blue Using a UV/H2O2 Irradiation System" Water 16, no. 3: 453. https://doi.org/10.3390/w16030453
APA StyleAli, M. A., Maafa, I. M., & Qudsieh, I. Y. (2024). Photodegradation of Methylene Blue Using a UV/H2O2 Irradiation System. Water, 16(3), 453. https://doi.org/10.3390/w16030453