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Abstract: This study presents an efficient way to degrade methylene blue (MB) present in water via
photodegradation using H2O2 as an oxidant in the presence of UV irradiation and without the use
of a catalyst. The reaction variables, employed to evaluate the performance of the photodegradation
process using the UV/H2O2 system, were the amount of H2O2 in the reacting solution and the initial
concentration of methylene blue. The degradation of methylene blue in the presence of H2O2 was not
observed during agitation in darkness. The degradation time decreased as the H2O2 concentration
increased after the ideal concentration was reached. At this stage, as it began to scavenge the generated
hydroxyl radicals, the rate of degradation became inversely proportional to the concentration of H2O2.
An increase in the quantities of MB and H2O2 improved the degradation efficiency because the oxidation
process was aided by using the appropriate amount of H2O2 and an ideal length of UV light exposure.
The experimental data obtained were well-fitted to zero-order reaction kinetics based on the high values
of the correlation coefficient. It is believed that the OH radicals (OH•) generated during the breakdown
of H2O2 and the generated O2

•− species attack the MB molecules and produce MB radicals (MB•).
These MB radicals further experience oxidation and convert to intermediates and finally to CO2 and
H2O. The UV/H2O2 system proved to be quite efficient for the photodegradation of methylene blue
without the use of any solid catalyst. This UV/H2O2 system can be employed in the degradation of
other organic pollutants in industrial wastewater.

Keywords: photodegradation; methylene blue; UV/H2O2 irradiation system; zero-order reaction kinetics

1. Introduction

Methylene blue (MB) is a colored cationic organic compound that is used as a commer-
cial dye dissolved in water for printing cotton, wool, and silk. The industries produce large
volumes of hazardous wastewater, adversely affecting our environment. These effluents
contain organic species, such as MB, that harm human health and the environment. Various
health hazards are associated with MB, such as nausea, vomiting, mental disorders, and
damage to the human eyes [1]. MB is quite stable in the environment, and it is difficult
to biodegrade it [2]. The ultimate solution to get rid of this pollutant from wastewater
is photodegradation. In photodegradation, a light source interacts with a molecule and
causes a chemical change in it. During this process, at least two reactions must occur at
the same time: oxidation from photogenerated holes and reduction from photogenerated
electrons [3].

Several studies have been conducted and are in progress to either remove MB via
adsorption from wastewater or degrade the pollutant into smaller and less hazardous
molecules and then finally convert it into water and carbon dioxide. Several studies have
utilized H2O2 to enhance MB degradation, with or without a semiconductor catalyst.
The usage of H2O2 accomplishes two purposes; it acts as a strong oxidant and an elec-
tron scavenger that prevents electron–hole recombination at the semiconductor surface.
Phuc et al. [4] synthesized a ternary composite material, MgFe2O4–TiO2/rGO, and achieved
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95% efficiency in MB photodegradation under UV and visible light. Ersöz and Altintas [5]
used Ag-doped ZnO nanofibers for the photodegradation of MB and concluded that adding
H2O2 to the process produces reactive OH radicals that enhance MB degradation. Hanadi
et al. [6] reported the photolysis of MB using a UV/H2O2 system and achieved 100%
efficiency of MB degradation. Cao et al. [7] synthesized ZnFe2O4/BiVO4 nanocomposites
for MB photodegradation. They concluded that adding H2O2 to the reaction system sig-
nificantly improved MB degradation due to the generation of OH radicals. Ahad et al. [8]
investigated ZnO nanostructures for the photocatalytic degradation of MB. They concluded
that H2O2 has a significant synergetic effect on photocatalytic activity as an electron scav-
enger agent. El-Sheshtawy et al. [9] synthesized activated H2O2 on the surface of Ag/SiO2
NPs immobilized on SrWO4 and used it for MB photodegradation. The interaction between
Ag/SiO2 and SrWO4 led to a high catalytic improvement due to the activation of H2O2
surface molecules in the absence of light. The catalyst exhibited high catalytic activity
over a wide pH range of 4–10. Waimbo et al. [10] utilized nanostructured CuWO4 for the
degradation of MB and achieved a 70% conversion in 240 min. Due to the addition of H2O2,
which acts as an electron-capturing agent, MB degradation was completed within 30 min.
Wang et al. [11] prepared a one-dimensional [Cu(tba)2(H2O)]2H2O complex and conducted
a successful photodegradation of MB. The addition of H2O2 enhanced the MB degradation
efficiency of the complex. Shi et al. [12] synthesized different GO/polythiophene compos-
ites and used them for the photodegradation of MB. The presence of H2O2 in the reaction
mixture enhanced MB degradation due to the formation of hydroxyl free radicals. Zhang
et al. [13] utilized PVDF/GO/ZnO composite membranes for MB photodegradation while
using H2O2 as an electron-trapping agent. The radical-trapping experiments showed that
the oxidizing species (O2

−) plays an important role in MB degradation. Wang et al. [14]
fabricated graphitic carbon nitrides (g-C3N4) and utilized them for MB photodegradation
under visible light. They observed that H2O2 addition significantly enhanced MB photo-
decomposition. Liu et al. [15] synthesized α-Fe2O3 nanoparticles with different sizes and
used them for MB photodegradation; when they added H2O2 to the system, the photo-
catalytic efficiency increased to more than 90% due to the generation of highly oxidative
OH radicals. AbulKalam et al. [16] prepared cobalt ferrites (CoFe2O4) and used them for
MB photodegradation with H2O2/visible light. The presence of H2O2 significantly en-
hanced the reaction towards MB mineralization. Banerjee et al. [17] used rGO-Fe3O4-TiO2
nanocomposite for the photocatalytic degradation of MB under visible and UV light. The
catalyst performed better in UV light (99% of MB degraded) than in visible light (94%).
The addition of H2O2 provided highly reactive hydroxyl ions that efficiently degraded
the MB molecules. Liu et al. [18] concluded that a complex formed between H2O2 and
TiO2 hydrosols significantly exhibited enhanced visible light photocatalytic activity for
MB degradation. Gao et al. [19] synthesized a Cu2Se hexagonal nanoplate array film on
a Cu substrate at room temperature. When H2O2 was added to the reaction, the catalyst
exhibited a high photocatalytic degradation of MB. Zhang et al. [20] reported MB pho-
todegradation under UV irradiation using TiO2 and then adding H2O2; they found that the
H2O2 addition significantly enhanced MB degradation. Shu et al. [21] used H2O2 in the
photodegradation of wastewater pollutants such as diclofenac, gemfibrozil, ibuprofen, and
caffeine with UV irradiation. They found enhanced degradation rates due to the generation
of OH radicals. Jiang et al. [22] used MWCNTs/TiO2 composites for MB photodegradation
and observed enhanced MB degradation by adding H2O2 as an electron acceptor. Yao and
Wang [23] investigated the photocatalytic degradation of MB with TiO2 and UV irradiation.
They concluded that adding H2O2 to TiO2 produces an increased MB degradation effect.
Pouretedal and Kadkhodaie [24] utilized CeO2 nanoparticles for the photodegradation of
MB under UV and sunlight irradiation. Adding H2O2 advanced the degradation towards
completion. Zou et al. [25] utilized amorphous TiO2 with H2O2 and achieved higher MB
photodegradation under both visible light and UV irradiation. Andronic and Duta [26]
reported the photocatalytic activities of TiO2 thin film for the photodegradation of MB. They
found that H2O2 addition enhanced MB photodegradation due to the formation of OH
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radicals. Banat et al. [27] investigated the photodegradation of MB under UV irradiation
and H2O2. The presence of acetone further increased MB degradation due to photosensi-
tization. Bessy et al. [28] prepared barium-doped magnesium ferrite [Bax Mg0.8−x Fe2O4
(x = 0.2–0.6)] NPs with metal nitrates and egg white solution and achieved the degradation
of Congo red and MB under UV irradiation. Thilagavathi et al. [29] synthesized pure WO3
NPs and WO3/NiWO4 (having Ni 5 to 20 wt%) nanocomposites and used them for MB
photodegradation. Their study achieved the highest degradation of about 90% for 20 wt%
Ni in 80 min under UV irradiation.

Some recently published papers have been discussed here to provide an understand-
ing of the latest trends in catalysis for MB photodegradation. Ahmad et al. [30] synthesized
MgO NPs that exhibited 90% MB degradation in 120 min of visible light irradiation. Alah-
madi et al. [31] performed a hydrothermal synthesis of Bi2O3/MoSe2 nanocomposite and
used it for MB photodegradation. The Bi2O3/MoSe2 nanocomposite exhibited an MB
photocatalytic degradation efficiency of 96.5% in 80 min of visible light irradiation. The
increased photocatalytic activity was attributed to the high crystallinity and surface area,
as well as the small particle size of the catalyst. Abdullah et al. [32] synthesized a ternary
CuO/CuS/MnO2 nanocomposite that showed 98% MB degradation under visible light
irradiation in 160 min. Zyoud et al. [33] synthesized a 10% Ag-doped ZnO catalyst and
achieved higher MB photodegradation at 444.5 nm irradiation as compared to ZnO. Zhao
et al. [34] synthesized ZnO nanoflower arrays (ZnO NFAs), in which the ZnO nanorods
were grown vertically downward and formed ZnO NFAs. Different ZnO NFAs synthesized
were used for MB degradation, and it was observed that the MB degradation efficiency
of ZnO NFAs was enhanced with increasing synthesis times of ZnO NFAs. Basalius
et al. [35] reported the use of Ag NPs to achieve 80% photocatalytic degradation of MB
in 120 min of sunlight. Al-Attar et al. [36] adopted a green approach to prepare a ternary
ZnO/CuO/Al2O3 nanocomposite (ratio 3:1:1) with a mean particle size of around 40 nm
using the pulsed laser ablation method. They employed it as a photocatalyst to degrade
MB at a pH of 10.37. They achieved an MB degradation efficiency of 98.6% within 15 min of
irradiation, with a rate constant of 0.2265/min. Jin et al. [37] utilized TiO2 decorated with
3.0 wt% N-doped carbon quantum dots and reported a visible light MB photodegradation
rate of 93.1% in 60 min which was 2.25 times greater than that of pristine TiO2. Elanthami-
lan et al. [38] used M-type magnetic strontium hexaferrite (SrFe12O19) microspheres and
showed 90.2% MB degradation efficiency with higher recyclability. Fu et al. [39] used
iron (II) carbonate mineral as a catalyst and reported that 99.7% of MB was degraded
in 480 min at a pH of 7.0, an H2O2 dosage of 122.38 mM, and a reaction temperature of
25 ◦C using 2.5 g/L of mineral. Chahar et al. [40] reported the use of Mg2+-substituted
Co-Zn nanoferrite particles of the composition Co0.5Zn0.5MgFeO4 having good magnetic
properties and achieved complete MB photodegradation in one hour of visible light ir-
radiation. Waheed et al. [41] synthesized CNFO/g-C3N4 heterojunction photocatalyst
and accomplished an MB photodegradation efficiency of 97.2% in 3 h under solar light
irradiation, which was twofold greater than g-C3N4. Chen et al. [42] synthesized a ternary
novel composite (SrAl2O4:Eu2+Dy3+/g-C3N4@NH2-UiO-66) and accomplished complete
photocatalytic degradation of MB within 30 min of irradiation. Sun et al. [43] synthesized
Co-doped bimetallic MIL-88B(Fe/Co) and activated potassium persulfate that showed
100% MB removal in 15 min. Javed et al. [44] used cobalt-doped tin oxide Co-SnO2 NPs
and Co-SnO2/sulfur-doped graphitic carbon nitride (SGCN) NCs under sunlight. The
Co-SnO2/SGCN (50%) nanocomposite exhibited a significant increase in MB degradation
and achieved 96% MB degradation in 150 min of sunlight irradiation. Fallatah et al. [45]
synthesized spinel MOF material using the hydrothermal method and achieved a photo-
catalytic degradation efficiency of 94.25% for rhodamine B and 90.52% for crystal violet.
Hussain et al. [46] biosynthesized olive fruit extract-based zinc oxide (ZnO@OFE) NPs
and achieved 75% and 87% photocatalytic degradation of MB and methyl orange (MO)
under sunlight irradiation within 180 min. Negash et al. [47] synthesized reduced graphene
oxide (rGO), zinc oxide (ZnO), and reduced graphene oxide-zinc oxide (rGO@ZnO) to
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achieve efficient photodegradation of MB. The photocatalytic degradation of MB was per-
formed using direct sunlight irradiation. Using optimum conditions, the MB photocatalytic
degradation efficiency achieved was 66%, 96.5%, and 99.0%, and the rate constants were
2.16 × 10−3 min−1, 4.97 × 10−3 min−1, and 5.03 × 10−3 min−1, for rGO, ZnO, and
rGO@ZnO nanocatalysts, respectively. This study also has the advantage of using a low
amount of catalyst (20 mg) for achieving efficient MB photodegradation. Naffeti et al. [48]
conducted a study to synthesize green, economical, and novel bismuth-altered silicon
nanowires (Bi@SiNWs) for the photocatalytic degradation of MB using UV and solar irradi-
ations. Bi@SiNWs showed remarkable photocatalytic ability for the degradation of MB up
to 44% and 89% under UV and solar irradiation, respectively, within 120 min. Recyclability
runs showed strong reusability and photostability of the Bi@SiNWs composite. Ighalo
et al. [49] developed a review and reported several techniques used for the mitigation of
clofibric acid pollution via adsorption. The studies cited above agree on the enhancing
effect that H2O2 has on MB photodegradation in the presence of semiconductor catalysts.
We utilized UV irradiation with H2O2 in this study to perform MB degradation. The pa-
rameters tested were the variable concentrations of H2O2 and MB in the irradiated solution.
This study aimed to use a simple method of photolysis in combination with an oxidant,
H2O2, to perform the photodegradation of MB without using expensive catalytic materials
which need lots of time, effort, and resources for their preparation and characterization.
In addition, after the reaction, the catalyst particle be separated using a high-speed cen-
trifuge from the irradiated solution to determine the amount of unreacted MB, which is
quite difficult. Figure 1 shows photos of MB in solid and solution form along with its
molecular structure.
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intensity UV light. The temperature of the solution was maintained at 30 °C during the 
irradiation process. Every 20 min, 5 mL of the solution was withdrawn from the beaker. 
A UV–visible spectrophotometer was used to measure the absorbance of the solution at a 
wavelength of 656 nm (λmax for MB) to monitor the presence of MB. The absorbance of all 

Figure 1. Methylene blue dye as a solid and in solution form, along with its molecular structure.

2. Materials and Methods
2.1. Materials

The chemicals used in this study were MB dye, a 30% hydrogen peroxide (H2O2)
solution, and drinking water.

2.2. Methods

MB solutions were prepared in drinking water at 5, 10, and 15 ppm concentrations.
100 mL of MB solution from each concentration was taken in separate glass beakers, and
a known amount of 30% H2O2 solution was added to the beakers and stirred for 20 min
in the dark. This step was performed to monitor the degradation of MB with H2O2 in
the dark. Then, the mixture was irradiated with UV light under continuous agitation.
The UV/H2O2 reaction system used in this study is shown in Figure 2, equipped with
6W-intensity UV light. The temperature of the solution was maintained at 30 ◦C during the
irradiation process. Every 20 min, 5 mL of the solution was withdrawn from the beaker.
A UV–visible spectrophotometer was used to measure the absorbance of the solution at
a wavelength of 656 nm (λmax for MB) to monitor the presence of MB. The absorbance of
all MB samples exposed to UV radiation was measured for 20 to 80 min. The absorbance
data were converted to MB concentration, which remained unconverted in the solution,
from which the percent degradation of MB was calculated. The parameters studied were
the variable concentration of H2O2 (5, 10, and 15 mL) and the concentration of MB (5 ppm,
10 ppm, and 15 ppm) in the reacting solution.
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3. Results and Discussion
3.1. Effect of the Amount/Concentration of H2O2 in the Reacting Solution

The effect of different amounts of H2O2 (5, 10, and 15 mL) on the photocatalytic degrada-
tion of MB was investigated. It was observed that MB degradation increased with increasing
amounts of H2O2 solution and UV irradiation time. Figure 3 shows the percent degradation
of MB for the variable amount of H2O2. The 15 mL H2O2 solution (green) exhibited higher
MB degradation compared to the 10 mL (red) and 5 mL H2O2 solutions (blue).

3.2. Effect of Initial MB Concentration

The effect of the initial MB dye concentration on the degradation efficiency was
investigated by varying the MB dye concentration to 5, 10, and 15 ppm. As shown in
Figure 3, at lower MB concentrations (Figure 3A), a higher MB degradation was observed
as compared to those in higher MB concentrations (Figure 3B,C). A higher amount of H2O2
was quite helpful in the complete degradation of MB. A higher degradation of MB was
observed in the reaction solutions having 5 and 10 ppm MB as compared to those having
15 ppm MB. The best and highest degradation trend was observed for 5 ppm MB solution,
using 15 mL of H2O2 solution.

3.3. Kinetics of MB Photodegradation

The kinetics of the reaction were determined by developing three types of plots, as follows:

(1) Ct/Co versus time (linear for a zero-order reaction), rate = k;
(2) ln (Ct/Co) versus time (linear for a first-order reaction), rate = k[Ct];
(3) 1/(Ct/Co) versus time (linear for a second-order reaction), rate = k[Ct]2.

These plots were observed for straight line and correlation coefficient values. Out of the
three types of plots (Figures 4–6), the plot of Ct/Co vs. irradiation time (Figure 4) yielded the
highest correlation coefficient values and the best straight-line equation, in which the slope of
the equation symbolized the rate constant, k, min−1. This implies that the kinetics of the MB
photodegradation reaction are zero-order using the UV/H2O2 reaction system. The trends in
Figure 4 are similar to those in Figure 3. The data plotted in Figure 5 are the natural logs of
Ct/Co values, while the data plotted in Figure 6 are the inverses of Ct/Co.
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Figure 3. Percent degradation of MB for the initial MB concentration and the variable amount of
30% H2O2 solution. Blue line (5 mL 30% H2O2 solution), red line (10 mL 30% H2O2 solution), and
green line (15 mL 30% H2O2 solution). (A) = 5 ppm MB solution, (B) = 10 ppm MB solution, and
(C) = 15 ppm MB solution.
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30% H2O2 solution), red line (10 mL 30% H2O2 solution), and green line (15 mL 30% H2O2 solution). 
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30% H2O2 solution), red line (10 mL 30% H2O2 solution), and green line (15 mL 30% H2O2 solution).
(A) = 5 ppm MB solution, (B) = 10 ppm MB solution, and (C) = 15 ppm MB solution.
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solution). (A) = 5 ppm MB solution, (B) = 10 ppm MB solution, and (C) = 15 ppm MB solution.
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(5 mL 30% H2O2 solution), red line (10 mL 30% H2O2 solution), and green line (15 mL 30% H2O2

solution). (A) = 5 ppm MB solution, (B) = 10 ppm MB solution, (C) = 15 ppm MB solution.
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Table 1 displays the correlation coefficient and the rate constant values achieved for
MB degradation under UV irradiation for the zero, first, and second orders of reaction. The
correlation coefficient values indicate that the data fit well with the zero-order kinetics.

Table 1. Correlation coefficient (R2) and rate constant (k) values for the degradation of MB under UV
irradiation for the zero, first, and second orders of reaction.

Process Conditions Zero-Order Kinetics
(Ct/Co) vs. Time

First-Order Kinetics
Ln (Ct/Co) vs. Time

Second-Order Kinetics
1/(Ct/Co) vs. Time

5 ppm MB solution (100 mL) R2 k, min−1 R2 k, min−1 R2 k, min−1

5 mL 30% H2O2 0.9057 0.0028 0.8528 0.0032 0.7980 0.0066

10 mL 30% H2O2 0.8963 0.0046 0.8245 0.0055 0.6000 0.0157

15 mL 30% H2O2 0.8744 0.0078 0.7100 0.0109 0.7981 0.0370

10 ppm MB solution (100 mL) R2 k, min−1 R2 k, min−1 R2 k, min−1

5 mL 30% H2O2 0.9515 0.0047 0.8520 0.0050 0.7880 0.0130

10 mL 30% H2O2 0.9055 0.0068 0.8528 0.0108 0.7985 0.0160

15 mL 30% H2O2 0.9143 0.0082 0.8245 0.0128 0.7980 0.0217

15 ppm MB solution (100 mL) R2 k, min−1 R2 k, min−1 R2 k, min−1

5 mL 30% H2O2 0.9059 0.0075 0.8750 0.0106 0.7988 0.0155

10 mL 30% H2O2 0.9459 0.0080 0.8850 0.0136 0.8146 0.0226

15 mL 30% H2O2 1.0000 0.0100 0.8528 0.0183 0.9063 0.0362

3.4. Photodegradation Mechanism

Several studies have concluded that adding H2O2 to the reaction system significantly
improves MB degradation due to the generation of OH radicals [7–17,19–21]. The pho-
todegradation of MB with H2O2 and UV irradiation is believed to work as per the following
reaction schemes [50,51]. Initially, the H2O2 under UV irradiation produces OH radicals
(OH•), which attack MB molecules and produce MB radicals (MB•). These MB radicals
further undergo oxidation and finally convert to the intermediates CO2 and H2O. This
reaction scheme advocates that the critical part is the generation of hydroxyl radicals from
the photolysis of H2O2 molecules that react with the organic molecules. In addition, the
O2

•− species also attack MB molecules and degrade them into intermediates, CO2 and
H2O. The reaction mechanism is given below. The complete reaction mechanism using the
UV/H2O2 system is illustrated in Figure 7.

H2O2 + hν → OH (1)

2H2O2 → 2H2O + O2 (2)

e− + H2O2 → OH• + OH− (3)

h+ + OH− → OH• (4)

e− + O2 → O2
•− (5)

OH• + MB → Intermediates + CO2 + H2O (6)

O2
•− + MB → Intermediates + CO2 + H2O (7)

Table 2 presents a performance summary of different types of nanomaterials used
for MB photodegradation in the literature along with the results of our study. The results
obtained in our study are comparable and even better than most of the results provided in
the literature.
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Table 2. Performance of nanomaterials used for MB photodegradation and comparison with our results.

No. Catalyst Type Irradiation Type Degradation
Efficiency, %

Irradiation
Time, Min Ref.

1 CuWO4 NPs sunlight 70 240 [10]

2 rGO-Fe3O4-TiO2 (1:1:2) NCs visible light 87 9 [17]

3 rGO-Fe3O4-TiO2 (1:1:2) NCs UV light 90 6 [17]

4 WO3/NiWO4 (having 20 wt% Ni) NCs UV light 90 80 [29]

5 MgO NPs visible light 90 120 [30]

6 Bi2O3/MoSe2 NCs visible light 96 80 [31]

7 CuO/CuS/MnO2 NCs visible light 98 160 [32]

8 Ag NPs sunlight 80 120 [35]

9 ZnO/CuO/Al2O3(3:1:1) NCs sunlight 98 15 [36]

10 TiO2/3.0 wt% N-doped carbon quantum dots visible light 93 60 [37]

11 Co0.5Zn0.5MgFeO4 visible light 100 60 [40]

12 CNFO/g-C3N4 sunlight 97 180 [41]

13 SrAl2O4:Eu2+Dy3+/g-C3N4@NH2-UiO-66 visible light 100 30 [42]

14 Co-SnO2/sulfur-doped graphitic carbon nitride
(50%) NCs sunlight 96 150 [44]

15 ZnO@ olive fruit extract NPs sunlight 75 180 [46]

16 UiO-66/g-C3N4 visible light 100 240 [52]

17 UV/H2O2 system UV light 99 80 this
work

4. Conclusions

This study demonstrated the efficient photodegradation of MB using H2O2 as an
oxidant in the presence of UV irradiation. The effects of the concentrations of MB and
H2O2 in the irradiated solution are examined. The following conclusions can be drawn
from this study: MB degradation in the presence of H2O2 is not observed in the dark. MB
degradation decreased in the presence of a higher initial concentration of MB in the reacting
solution but increased with a higher concentration of H2O2 in the reacting solution. After
the optimal H2O2 concentration was attained, the degradation time decreased with rising
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H2O2 concentration. At this instant, the rate of degradation became inversely proportional
to H2O2 concentration, as it started to scavenge the produced hydroxyl radicals. The
oxidation process was facilitated with the proper addition of H2O2 and an optimum
duration of exposure to UV radiation, therefore increasing the concentrations of MB and
H2O2 which enhanced the degradation efficiency. The experimental data obtained are
well-fitted with the zero-order reaction kinetics, as evident from the higher values of
the correlation coefficient. It is anticipated that the OH radicals (OH•) generated during
the breakdown of H2O2 and the O2

•− species attack the MB molecules and produce
MB radicals (MB•). These MB radicals undergo an oxidation reaction and convert to
intermediates and finally to CO2 and H2O. The UV/H2O2 system proved quite efficient
for the MB photodegradation of low-MB-concentration aqueous solutions without using a
solid catalyst, and this system can be employed to degrade other organic dyes and drug
pollutants present in industrial wastewater. Future studies should be conducted using
batch and continuous stirred reactors, in natural sunlight, as well as in UV and visible lights
of different wavelengths and intensities. It is also recommended to perform accelerated
photodegradation using lasers.
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