Groundwater Potential Zone Delineation through Analytical Hierarchy Process: Diyala River Basin, Iraq
Abstract
:1. Introduction
Literature | R 1 | LI 2 | S 3 | DD 4 | LULC 5 | RL 6 | SOI 7 | LD 8 | GE 9 | WD 10 | FI 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Ahmed et al., 2021 [9] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Roy et al., 2020 [24] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Gururani et al., 2023 [25] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Shaban et al., 2024 [26] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Aykut, 2021 [27] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | |||
Ifediegwu, 2022 [28] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | |||
Rajesh et al., 2021 [29] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | |||
Saranya and Saravanan, 2020 [30] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Lentswe and Molwalefhe, 2020 [32] | ■ | ■ | ■ | ■ | ■ | ||||||
Kadam et al., 2020 [40] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Yıldırım, 2021 [41] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||
Beshir et al., 202 4 [43] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Kawara et al., 2024 [44] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Gachari et al., 2011 [45] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Aju et al., 2021 [46] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||
Ndhlovu and Woyessa, 2021 [47] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||||
Zhu and Abdelkareem, 2021 [48] | ■ | ■ | ■ | ■ | ■ | ||||||
Al-Manmi and Rauf, 2016 [49] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Allafta et al., 2021 [50] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ||
Anbarasu et al., 2019 [51] | ■ | ■ | ■ | ■ | ■ | ■ | |||||
Arya et al., 2021 [52] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
2. Materials and Methods
2.1. The Illustrated Basin
2.2. Data and Thematic Layers Preparation
2.3. Thematic Layers Evaluation and Weighting
- (1)
- Selecting the factors that govern groundwater recharge.
- (2)
- Estimating the relative measure weights of selected factors by a particular decision based on Saaty’s rating scale of 1–9 (Table 2). Table 2 presents the value range that is used to quantify the expert opinions. The AHP methodology in the pairwise comparison matrix (PCM) assessment involves incorporating the insights of experts and the results of literature reviews from multiple researchers [28,30]. The authors assigned weights based on the potential impact on groundwater recharge. A thematic layer with a high weight indicates significant influence, while a layer with a low weight suggests minimal impact on groundwater potential. The findings from the PCM, which were used to evaluate the significance and impact of each theme, are summarized in Table 3. According to [42], the values assigned to the thematic layers range from 1 (equal significance) to 9 (extreme significance). A value of 1 denotes equal significance for the two specified criteria, while a value of 9 denotes exceptional importance for one over the other. The outcomes of the inverse comparison are shown by the reciprocals of these values, which range from 1/2 to 1/9.
- (3)
- Utilising a pairwise judgement matrix.
- (4)
- Evaluating the consistency percentage (Cr) and variation indicator (CI) of the matrix using Equations (2) and (3) as well as Table 2 to determine the reliability of the matrix. The subjective judgement needs to be changed, if the consistency ratio Cr is more than 10%, but if it is less than or equal to 10%, the inconsistency is acceptable [42]. For all thematic layers in the current study, Cr ≤ 0.1. Hence, the variation is sufficient (Table 3, Table 4 and Table 5).
- (5)
- Gaining and applying all resultant loads to factors.
3. Results
3.1. Rainfall
3.2. Lithology
3.3. Slope
3.4. Drainage Density
3.5. Land Use and Land Cover
3.6. Relief
3.7. Soil
3.8. Groundwater Potential Zones
3.9. Groundwater Potential Zones Validation
3.10. Groundwater Potential Zone Sensitivity Analysis
4. Discussion
5. Conclusions
6. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammed, R.; Scholz, M. Quality control and homogeneity analysis of precipitation time series in the climatic region of Iraq. Atmosphere 2023, 14, 197. [Google Scholar] [CrossRef]
- Mohammed, D.R.; Mohammed, R.K. Climate Change’s Impacts on Drought in Upper Zab Basin, Iraq: A Case Study. Tikrit J. Eng. Sci. 2023, 31, 161–171. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Climate Change Scenarios for Impact Assessment: Lower Zab River Basin (Iraq and Iran). Atmosphere 2024, 15, 673. [Google Scholar] [CrossRef]
- Allan Freeze, R.; Cherry, J.A. Groundwater; Prentice-Hall: Hoboken, NJ, USA, 1979. [Google Scholar]
- Schiavo, M. Entropy, fractality, and thermodynamics of groundwater pathways. J. Hydrol. 2023, 617, 128930. [Google Scholar] [CrossRef]
- Zehe, E.; Loritz, R.; Jackisch, C.; Westhoff, M.; Kleidon, A.; Blume, T.; Hassler, S.K.; Savenije, H.H. Energy states of soil water–a thermodynamic perspective on soil water dynamics and storage-controlled streamflow generation in different landscapes. Hydrol. Earth Syst. Sci. 2019, 23, 971–987. [Google Scholar] [CrossRef]
- Mohammed, R.; Scholz, M. Flow–duration curve integration into digital filtering algorithms for simulating climate variability based on river baseflow. Hydrol. Sci. J. 2018, 63, 1558–1573. [Google Scholar] [CrossRef]
- Al-Jawad, J.Y.; Al-Jawad, S.B.; Kalin, R.M. Decision-making challenges of sustainable groundwater strategy under multi-event pressure in arid environments: The Diyala River Basin in Iraq. Water 2019, 11, 2160. [Google Scholar] [CrossRef]
- Ahmed, A.; Alrajhi, A.; Alquwaizany, A.S. Identification of Groundwater Potential Recharge Zones in Flinders Ranges, South Australia Using Remote Sensing, GIS, and MIF Techniques. Water 2021, 13, 2571. [Google Scholar] [CrossRef]
- Michel, D. Iran’s impending water crisis. In Water, Security and US Foreign Policy; Routledge: London, UK, 2017; pp. 168–188. [Google Scholar]
- Alkhafaji, H. Iraq’s Water Crisis: Challenges and Solutions. Al-Bayan Centre for Planning and Studies. 2018. Available online: https://www.bayancenter.org/en/wp-content/uploads/2018/01/980987665.pdf (accessed on 1 September 2023).
- Al-Khafaji, M.S.; Al-Chalabi, R.D. Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq. Hydrology 2019, 6, 63. [Google Scholar] [CrossRef]
- Khayyun, T.S.; Alwan, I.A.; Hayder, A.M. Hydrological model for Hemren dam reservoir catchment area at the middle River Diyala reach in Iraq using ArcSWAT model. Appl. Water Sci. 2019, 9, 133. [Google Scholar] [CrossRef]
- Younus, M.H.; Mohammed, R. Geo-informatics techniques for detecting changes in land use and land cover in response to regional weather variation. Theor. Appl. Climatol. 2023, 154, 89–106. [Google Scholar] [CrossRef]
- Younus, M.H.; Mohammed, R. Spectral drought indices: A methodology for detecting basin-wide drought. Ecohydrol. Hydrobol. 2024, 24, 178–187. [Google Scholar] [CrossRef]
- Mahdi, Z.A.; Mohammed, R. Land use/land cover changing aspect implications: Lesser Zab River Basin, northeastern Iraq. Environ. Monit. Assess. 2023, 194, 652. [Google Scholar] [CrossRef] [PubMed]
- Jalut, Q.H.; Abbas, N.L.; Mohammad, A.T. Management of groundwater resources in the Al-Mansourieh zone in the Diyala River Basin in Eastern Iraq. Groundw. Sustain. Dev. 2018, 6, 79–86. [Google Scholar] [CrossRef]
- Al-Sudani, H.I.; Ramadhan, A.A.; Saeed, B.M.A.M. Groundwater System of Khanaqin Basin in Diyala Governorate–East of Iraq. Tikrit J. Pure Sci. 2018, 23, 111–121. [Google Scholar] [CrossRef]
- Al-Mashhadani, R.B.; Al-Kubaisi, Q.Y. Calculating Groundwater Recharge Using Water Balance in Mandaly City, Diyala Governorate, Eastern Iraq. Iraqi J. Sci. 2023, 64, 1820–1828. [Google Scholar] [CrossRef]
- Sangawi, A.; Al-Manmi, D.A.M.; Aziz, B.Q. Integrated GIS, Remote Sensing, and Electrical Resistivity Tomography Methods for the Delineation of Groundwater Potential Zones in Sangaw Sub-Basin, Sulaymaniyah, KRG-Iraq. Water 2023, 15, 1055. [Google Scholar] [CrossRef]
- Alparuany, K.B.N.; Ajeena, A.R.; Yassian, A.K.Q.; Falih, A.H.; Abd AlSalam, A.; Abass, A.; Abt, A.; Hameed, E. Application of stable isotopes to evaluate the interaction between surface water and groundwater in Northeast of Diyala, Iraq. Iraqi Geol. J. (IGJ) 2020, 53, 108–121. Available online: https://igj-iraq.org/igj/index.php/igj/article/view/257 (accessed on 25 September 2023). [CrossRef]
- Huseen, M.R.; Abed, B.S. Groundwater simulation and wells distribution at Qazaniyah city in Diyala governorate. J. Eng. 2020, 26, 95–113. [Google Scholar] [CrossRef]
- Jalut, Q.H. Groundwater Modeling of Ahmed Taher and Bakhtiari areas southwest of Khanaqin Basin in Diyala Governorate–Iraq. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1076, p. 012093. [Google Scholar] [CrossRef]
- Roy, S.; Hazra, S.; Chanda, A.; Das, S. Assessment of groundwater potential zones using multi-criteria decision-making technique: A micro-level case study from red and lateritic zone (RLZ) of West Bengal, India. Sustain. Water Resour. Manag. 2020, 6, 1–14. [Google Scholar] [CrossRef]
- Gururani, D.M.; Singh, S.; Joshi, H.; Kumar, Y.; Kumar, A.; Bohra, M.S.; Mehta, P. Assessment of groundwater prospects zones using RS, GIS, and MIF methods. In Surface and Groundwater Resources Development and Management in Semi-Arid Region: Strategies and Solutions for Sustainable Water Management; Springer International Publishing: Cham, Switzerland, 2023; pp. 317–335. [Google Scholar]
- Shaban, A.; Farhat, N.; El-Hage, M.; Fadel, B.; Sheib, A.; Bitar, A.; Darwish, D. Litho SFR Model for Mapping Groundwater Potential Zones Using Remote Sensing and GIS. Water 2024, 16, 1951. [Google Scholar] [CrossRef]
- Aykut, T. Determination of groundwater potential zones using Geographical Information Systems (GIS) and Analytic Hierarchy Process (AHP) between Edirne-Kalkansogut (northwestern Turkey). Groundw. Sustain. Dev. 2021, 12, 100545. [Google Scholar] [CrossRef]
- Ifediegwu, S.I. Assessment of groundwater potential zones using GIS and AHP techniques: A case study of the Lafia district, Nasarawa State, Nigeria. Appl. Water Sci. 2022, 12, 1–17. [Google Scholar] [CrossRef]
- Rajesh, J.; Pande, C.B.; Kadam, S.A.; Gorantiwar, S.D.; Shinde, M.G. Exploration of groundwater potential zones using analytical hierarchical process (AHP) approach in the Godavari river basin of Maharashtra in India. Appl. Water Sci. 2021, 11, 182. [Google Scholar] [CrossRef]
- Saranya, T.; Saravanan, S. Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Model. Earth Syst. Environ. 2020, 6, 1105–1122. [Google Scholar] [CrossRef]
- Verma, N.; Patel, R.K. Delineation of groundwater potential zones in lower Rihand River Basin, India using geospatial techniques and AHP. Egypt J. Remote Sens. Space Sci. 2021, 24, 559–570. [Google Scholar] [CrossRef]
- Lentswe, G.B.; Molwalefhe, L. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J. Hydrol. Reg. Stud. 2020, 28, 100674. [Google Scholar] [CrossRef]
- Ozdemir, A. GIS-Based Groundwater Spring Potential Mapping in the Sultan Mountains (Konya, Turkey) Using Frequency Ratio, Weights of Evidence and Logistic Regression Methods and Their Comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Madani, A.; Niyazi, B. Groundwater Potential Mapping Using Remote Sensing Techniques and Weights of Evidence GIS Model: A Case Study from Wadi Yalamlam Basin, Makkah Province, Western Saudi Arabia. Environ. Earth Sci. 2015, 74, 5129–5142. [Google Scholar] [CrossRef]
- Park, S.; Hamm, S.-Y.; Jeon, H.-T.; Kim, J. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS. Sustainability 2017, 9, 1157. [Google Scholar] [CrossRef]
- Miraki, S.; Zanganeh, S.H.; Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Pham, B.T. Mapping Groundwater Potential Using a Novel Hybrid Intelligence Approach. Water Resour. Manag. 2019, 33, 281–302. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.-M.; Jung, H.-S. GIS-Based Groundwater Potential Mapping Using Artificial Neural Network and Support Vector Machine Models: The Case of Boryeong City in Korea. Geocarto Int. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R. A Comparative Assessment between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping. Water Resour. Manag. 2015, 29, 5217–5236. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted Regression Tree, Classification and Regression Tree, and Random Forest Machine Learning Models in Iran. Environ. Monit. Assess. 2016, 188, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Kadam, A.K.; Umrikar, B.N.; Sankhua, R.N. Assessment of recharge potential zones for groundwater development and management using geospatial and MCDA technologies in semiarid region of Western India. SN Appl. Sci. 2020, 2, 312. [Google Scholar] [CrossRef]
- Yıldırım, Ü. Identification of Groundwater Potential Zones Using GIS and Multi-Criteria Decision-Making Techniques: A Case Study Upper Coruh River Basin (NE Turkey). ISPRS Int. J. Geoinf. 2021, 10, 396. [Google Scholar] [CrossRef]
- Saaty, T. How to make a decision: The analytic hierarchy process? Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Beshir, S.; Moges, A.; Dananto, M. Assessing Groundwater Potential Zones and Their Implications for Landslides in the Upper Wabe-Shebele River Basin of Southeastern Ethiopia. J. Eng. 2024, 1, 7044576. [Google Scholar] [CrossRef]
- Kawara, A.Q.; Elsebaie, I.H.; Alnahit, A.O. Groundwater recharge potential zone modeling in the Wadi Al-Lith Basin, Saudi Arabia. Appl. Water Sci. 2024, 14, 117. [Google Scholar] [CrossRef]
- Gachari, D.N.K.M.K.; Mary, W.; Mungai, E. Mapping groundwater potential in Kitui District, Kenya using geospatial technologies. Int. J. Water Res. Environ. Eng. 2021, 4, 15–22. [Google Scholar]
- Aju, C.D.; Achu, A.L.; Raicy, M.C.; Reghunath, R. Identification of suitable sites and structures for artificial groundwater recharge for sustainable water resources management in Vamanapuram River Basin, South India. Hydrol. Res. 2021, 4, 24–37. [Google Scholar] [CrossRef]
- Ndhlovu, G.Z.; Woyessa, Y.E. Integrated Assessment of Groundwater Potential Using Geospatial Techniques in Southern Africa: A Case Study in the Zambezi River Basin. Water 2021, 13, 2610. [Google Scholar] [CrossRef]
- Zhu, Q.; Abdelkareem, M. Mapping groundwater potential zones using a knowledge-driven approach and GIS analysis. Water 2021, 13, 579. [Google Scholar] [CrossRef]
- Al-Manmi, D.A.M.; Rauf, L.F. Groundwater potential mapping using remote sensing and GIS-based, in Halabja City, Kurdistan, Iraq. Arab. J. Geosci. 2016, 9, 357. Available online: https://link.springer.com/article/10.1007/s12517-016-2385-y (accessed on 25 September 2023). [CrossRef]
- Allafta, H.; Opp, C.; Patra, S. Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab Basin. Remote Sens. 2021, 13, 112. Available online: https://www.mdpi.com/2072-4292/13/1/112 (accessed on 25 September 2023). [CrossRef]
- Anbarasu, S.; Brindha, K.; Elango, L. Multi-influencing factor method for delineation of groundwater potential zones using remote sensing and GIS techniques in the western part of Perambalur district, southern India. Earth Sci. Inform. 2019, 13, 317–332. [Google Scholar] [CrossRef]
- Arya, S.; Subramani, T.; Karunanidhi, D. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin, South India. Environ. Earth Sci. 2021, 79, 102. [Google Scholar] [CrossRef]
- Jothibasu, A.; Anbazhagan, S. Spatial mapping of groundwater potential in Ponnaiyar River basin using probabilistic-based frequency ratio model. Model. Earth Syst. Environ. 2017, 3, 33. Available online: https://link.springer.com/article/10.1007/s40808-017-0283-2 (accessed on 25 September 2023). [CrossRef]
- GADM. Global Administrative Areas Database Boundaries without Limits. Available online: http://www.gadm.org (accessed on 10 March 2024).
- GLCF, Global and Land Cover Facility. Earth Science Data Interface. Available online: https://www.sciencebase.gov/catalog/item/4f4e4ae0e4b07f02db687f5d (accessed on 5 March 2024).
- FAO. Food and Agriculture Organization of the United Nations. Available online: https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8 (accessed on 7 October 2023).
- USGS. United States Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 25 September 2023).
- Alattar, M.H. Mapping groundwater dynamics in Iraq: Integrating multi-data sources for comprehensive analysis. Model. Earth Syst. Environ. 2024, 10, 4375–4385. [Google Scholar] [CrossRef]
- Patle, D.; Awasthi, M.K.; Nema, S. Validation of Derived Groundwater Potential Zones Using Well Yield Data through Agreement Scheme Approach with Geoinformatics in Ken River Basin. Indian J. Ecol. 2024, 51, 118–125. [Google Scholar]
Intensity of Importance | Definition (Important) |
---|---|
1 | Equally |
2 | Equally to moderately |
3 | Moderately |
4 | Moderately to strongly |
5 | Strongly |
6 | Strongly to very strongly |
7 | Very strong importance |
8 | Very strongly to extremely |
9 | Extremely |
Layers | R 1 | LI 2 | S 3 | DD 4 | LULC 5 | RL 6 | SOI 7 |
---|---|---|---|---|---|---|---|
R 1 | 1 | 3 | 3 | 5 | 5 | 5 | 7 |
LI 2 | 1/3 | 1 | 3 | 3 | 5 | 5 | 5 |
S 3 | 1/3 | 1/3 | 1 | 1 | 3 | 3 | 5 |
DD 4 | 1/5 | 1/3 | 1 | 1 | 1 | 2 | 3 |
LULC 5 | 1/5 | 1/5 | 1/3 | 1 | 1 | 1 | 3 |
RL 6 | 1/5 | 1/5 | 1/3 | 1/2 | 1 | 1 | 1 |
SOI 7 | 1/7 | 1/5 | 1/5 | 1/3 | 1/3 | 1 | 1 |
Sum | 2.41 | 5.27 | 8.67 | 11.83 | 16.33 | 18 | 25 |
Layer | R 1 | LI 2 | S 3 | DD 4 | LULC 5 | RL 6 | SOI 7 | NPE * | PR ** | Eigenvalue |
---|---|---|---|---|---|---|---|---|---|---|
R 1 | 0.41 | 0.57 | 0.34 | 0.42 | 0.31 | 0.28 | 0.28 | 0.37 | 37.27 | 0.90 |
LI 2 | 0.14 | 0.19 | 0.34 | 0.25 | 0.31 | 0.28 | 0.20 | 0.24 | 24.34 | 1.28 |
S 3 | 0.14 | 0.06 | 0.11 | 0.08 | 0.18 | 0.17 | 0.20 | 0.14 | 13.56 | 1.20 |
DD 4 | 0.08 | 0.06 | 0.11 | 0.08 | 0.06 | 0.11 | 0.12 | 0.09 | 9.08 | 1.00 |
LULC 5 | 0.08 | 0.04 | 0.04 | 0.08 | 0.06 | 0.06 | 0.12 | 0.07 | 6.85 | 1.12 |
RL 6 | 0.08 | 0.04 | 0.04 | 0.04 | 0.06 | 0.06 | 0.04 | 0.05 | 5.11 | 0.92 |
SOI 7 | 0.06 | 0.04 | 0.02 | 0.03 | 0.02 | 0.06 | 0.04 | 0.04 | 3.77 | 0.94 |
Sum | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 100.0 | 7.36 |
N 1 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
RI | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.53 | 1.56 |
Layer | Features | GWP * | Area (km2) | Area (%) |
---|---|---|---|---|
Rainfall (mm/year) | 108–331 | Very low a | 1955.13 | 5.97 |
331–570 | Low b | 3550.87 | 10.84 | |
570–731 | Moderate c | 9511.43 | 29.04 | |
731–872 | High d | 14,549.89 | 44.42 | |
872–1107 | Very high e | 3184.35 | 9.72 | |
Lithology | VR 1 | Very low a | 380.96 | 1.16 |
PB 2 | Low b | 675.17 | 2.05 | |
SC 3 | Moderate c | 10,051.73 | 30.52 | |
PY 4 | High d | 5899.80 | 17.91 | |
SU 5 | Very high e | 15,927.76 | 48.36 | |
Drainage density (km/km2) | 7.50–5.60 | Very low a | 6587 | 20.13 |
5.50–4.80 | Low b | 8591 | 26.26 | |
4.70–4.00 | Moderate c | 10,509 | 32.12 | |
3.00–3.90 | High d | 4807 | 14.69 | |
3.90–0.48 | Very high e | 2222 | 6.79 | |
Slope (degree) | >33 | Very low a | 1,478,417.15 | 4.49 |
23–33 | Low b | 3,788,685.20 | 11.52 | |
14–23 | Moderate c | 5,250,351.57 | 15.96 | |
14–23 | High d | 6,673,001.24 | 20.28 | |
<6 | Very high e | 15,709,218.58 | 47.75 | |
LULC ** | Built area | Very low a | 1454.25 | 4.41 |
Trees | Low b | 219.95 | 0.67 | |
Crops | Moderate c | 29,878.43 | 90.61 | |
Bare ground | High d | 1055.60 | 3.20 | |
Water bodies | Very high e | 367.41 | 1.11 | |
Relief | 18–510 | Very low a | 533.63 | 1.63 |
520–1000 | Low b | 3945.095 | 12.05 | |
1100–1400 | Moderate c | 7803.975 | 23.83 | |
1500–1800 | High d | 9689.905 | 29.59 | |
1900–2700 | Very high e | 10,779.06 | 32.91 | |
Soil | Clay | Very low a | 2060.33 | 6.25 |
Clay˗Loam | Low b | 2991.56 | 9.07 | |
Loam | Moderate c | 23,845.43 | 72.31 | |
Sandy˗Loam | High d | 4078.29 | 12.37 |
Well No | Latitude | Longitude | Yield (LPM a) |
---|---|---|---|
1 | 34.64583 | 45.29167 | 112.50 3 |
2 | 34.10000 | 45.18333 | 412.50 1 |
3 | 34.06111 | 45.11639 | 134.03 3 |
4 | 34.26667 | 45.38333 | 611.81 1 |
5 | 34.21722 | 45.15000 | 550.00 1 |
6 | 34.06667 | 45.30000 | 900.00 1 |
7 | 34.34389 | 45.02667 | 1575.00 1 |
8 | 34.51667 | 45.41667 | 450.00 1 |
9 | 34.80000 | 45.66667 | 595.83 1 |
10 | 34.50833 | 45.32500 | 320.83 2 |
11 | 34.26389 | 45.15833 | 460.42 1 |
12 | 34.32778 | 45.23333 | 450.00 1 |
13 | 34.10543 | 44.90585 | 720.00 1 |
14 | 34.10244 | 44.91385 | 780.00 1 |
15 | 34.09533 | 44.92158 | 720.00 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, R.; Scholz, M. Groundwater Potential Zone Delineation through Analytical Hierarchy Process: Diyala River Basin, Iraq. Water 2024, 16, 2891. https://doi.org/10.3390/w16202891
Mohammed R, Scholz M. Groundwater Potential Zone Delineation through Analytical Hierarchy Process: Diyala River Basin, Iraq. Water. 2024; 16(20):2891. https://doi.org/10.3390/w16202891
Chicago/Turabian StyleMohammed, Ruqayah, and Miklas Scholz. 2024. "Groundwater Potential Zone Delineation through Analytical Hierarchy Process: Diyala River Basin, Iraq" Water 16, no. 20: 2891. https://doi.org/10.3390/w16202891
APA StyleMohammed, R., & Scholz, M. (2024). Groundwater Potential Zone Delineation through Analytical Hierarchy Process: Diyala River Basin, Iraq. Water, 16(20), 2891. https://doi.org/10.3390/w16202891