Review of Machine Learning Methods for River Flood Routing
Abstract
1. Introduction
2. ML Methods
2.1. Single Application
2.1.1. Support Vector Regression (SVR)
2.1.2. Artificial Neural Network (ANN)
2.1.3. Recurrent Neural Network (RNN)
2.1.4. Random Forest Regression (RFR)
2.1.5. K-Nearest Neighbor (KNN)
2.1.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.1.7. Gradient-Boosted Machine (GBM)
2.1.8. Genetic Programming (GP)
2.1.9. Other ML Methods
2.2. Hybrid Application
2.2.1. ML-Based Optimization Technique
2.2.2. Hybrid Application of a Hydraulic Model and the ML Method
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACO | Ant colony optimization |
ANFIS | Adaptive neuro-fuzzy inference system |
ANN | Artificial neural network |
ANSE | Arithmetic mean |
ARIMA | Auto-regressive integrated moving average |
ARMA | Auto-regressive moving average |
BA | Bat algorithm |
BFGS | Broyden-fletcher-goldfarb-shanno |
BSA | Backtracking search algorithm |
BT | Bagged tree |
CC | Coefficient of correlation |
CE | Coefficient of efficiency |
CFBNN | Cascade forward backpropagation neural network |
CNN | Convolutional neural network |
C-QPSO | Cuckoo quantum-behavior particle swarm optimization |
CSA | Clonal selection algorithm |
DE | Differential evolution |
DE | Differential evolution |
DLCM | Discrete linear cascade model |
DP | Difference in peak |
DPF | Difference in peak flow |
EA | Evolutionary algorithm |
EEMD | Ensemble empirical mode decomposition |
EMD | Empirical model decomposition |
EQp | Error of peak discharge |
ETp | Error of time to peak |
FFBNN | Feed-forward backpropagation neural network |
FMLP | Feed forward multilayer perceptron |
GA | Genetic algorithm |
GBM | Gradient-boosted machine |
GEP | Gene expression programming |
GMC | Gaussian mixture copula |
GP | Genetic programming |
GPR | Gaussian process regression |
GRG | Generalized reduced gradient |
GRP | Gaussian process regression |
GRU | Gated recurrent unit |
GWO | Grey wolf optimizer |
HBSA | Hybrid bat-swarm algorithm |
HPSO | Hybrid particle swarm optimization |
HS | Harmony search |
ICA | Imperialist competitive algorithm |
ICSA | Immune clonal selection algorithm |
IOA | Index of agreement |
KF | Kalman filter |
KGE | Kling–Gupta efficiency |
KN2K | KNN-KF |
KNN | K-nearest neighbor |
LM | Levenberg–Marquardt |
LMM | Lagrange multiplier |
LSSVM | Least squares support vector machine |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
MBE | Mean bias error |
MHBMO | Modified honeybee mating optimization |
ML | Mahine Learning |
MLFN | Multilayer-feedforward network |
MLP | Multilayer perceptron |
MRE | Mean relative error |
MSE | Mean square error |
MWLP | MLP-based water level prediction |
NMM | Nonlinear Muskingum model |
NMS | Nelder-mead simplex |
NSE | Nash-Sutcliffe Coefficient |
PCC | Pearson correlation coefficient |
PI | Persistence index |
PSF-HS | Parameter setting free-harmony search |
PSO | Particle swarm optimization |
PWRMSE | Peak-weighted root mean square error |
R2 | Coefficient of determination |
RAPID | Routing application for parallel computation of discharge |
RCM | Rating curve method |
RF | Random forest |
RFR | Random forest regression |
RMSE | Root mean square error |
RNN | Recurrent neural network |
RWLP | RNN-based water level prediction |
SA | Shark algorithm |
SBA | Social-based algorithm |
SDE | Standard deviation of the NSE |
SFLA | Shuffled frog leaping algorithm |
SI | Scatter index |
S-LSM | Segmented least square method |
SSE | Sum of squared error |
SSQ | Sum of the square of the deviations between the observed and routed outflows |
SVM | Support vector machine |
SVR | Support vector regression |
TDNN | Time delay neural network |
TDRNN | Time delay recurrent neural network |
TSS | Taylor skill score |
VMD | Variational model decomposition |
WI | Willmott’s index of agreement |
WOA | Weed optimization algorithm |
WPANFIS | Wavelet packet-based adaptive neuro-fuzzy inference system |
WPANN | Wavelet packet-based artificial neural network |
XGBoost | Extreme gradient boosting |
References
- Yuan, X.; Wu, X.; Tian, H.; Yuan, Y.; Adnan, R.M. Parameter identification of nonlinear Muskingum model with Backtracking Search Algorithm. Water Resour. Manag. 2016, 30, 2767–2783. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, P.; Cheng, L.; Chen, G.; Zhou, Y.; Zhang, X.; Xu, W. Determining dynamic water level control boundaries for a multi-reservoir system during flood seasons with considering channel storage. J. Flood Risk Manag. 2020, 13, e12586. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Yang, Z.-L.; Wang, J.; Lin, P.; Liang, J.; Li, Z.; Gu, Z. Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. J. Hydrol. 2021, 592, 125814. [Google Scholar] [CrossRef]
- Dhote, P.R.; Thakur, P.K.; Domeneghetti, A.; Chouksey, A.; Garg, V.; Aggarwal, S.P.; Chauhan, P. The use of SARAL/AltiKa altimeter measurements for multi-site hydrodynamic model validation and rating curves estimation: An application to Brahmaputra River. Adv. Space Res. 2021, 68, 691–702. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar Villuri, V.G.; Pasupuleti, S.; Nune, R. Hydrodynamic modeling for identifying flood vulnerability zones in lower Damodar River of eastern India. Ain Shams Eng. J. 2020, 11, 1035–1046. [Google Scholar] [CrossRef]
- Chatterjee, C.; Förster, S.; Bronstert, A. Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrol. Process. 2008, 22, 4695–4709. [Google Scholar] [CrossRef]
- Fang, P.; Li, J.; Liu, Q. Flood routing models in confluent and dividing channels. Appl. Math. Mech. 2004, 25, 1333–1343. [Google Scholar]
- Wang, K.; Wang, Z.; Liu, K.; Cheng, L.; Bai, Y.; Jin, G. Optimizing flood diversion siting and its control strategy of detention basins: A case study of the Yangtze River, China. J. Hydrol. 2021, 597, 126201. [Google Scholar] [CrossRef]
- Li, L.; Jun, K.S. Distributed parameter unsteady flow model for the Han River. J. Hydro-Environ. Res. 2018, 21, 86–95. [Google Scholar] [CrossRef]
- Li, L.; Jun, K.S. A hybrid approach to improve flood forecasting by combining a hydrodynamic flow model and artificial neural networks. Water 2022, 14, 1393. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, H.; Fang, H. Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model. Water Resour. Manag. 2022, 36, 433–448. [Google Scholar] [CrossRef]
- Yan, B.; Mu, R.; Guo, J.; Liu, Y.; Tang, J.; Wang, H. Flood risk analysis of reservoirs based on full-series ARIMA model under climate change. J. Hydrol. 2022, 610, 127979. [Google Scholar] [CrossRef]
- Karahan, H.; Iplikci, S.; Yasar, M.; Gurarslan, G. River flow estimation from upstream flow records using support vector machines. J. Appl. Math. 2014, 2014, 714213. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, L. Comparative analysis of multiple machine learning methods for flood routing in the Yangtze River. Water 2023, 15, 1556. [Google Scholar] [CrossRef]
- Panda, R.K.; Pramanik, N.; Bala, B. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Comput. Geosci. 2010, 36, 735–745. [Google Scholar] [CrossRef]
- Elsafi, S.H. Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 2014, 53, 655–662. [Google Scholar] [CrossRef]
- Ren, T.; Liu, X.; Niu, J.; Lei, X.; Zhang, Z. Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network. J. Hydrol. 2020, 585, 124783. [Google Scholar] [CrossRef]
- Vizi, Z.; Batki, B.; Ratki, L.; Szalanczi, S.; Rehevary, I.; Kozak, P.; Kiss, T. Water level prediction using long short-term memory neural network model for a lowland river: A case study on the Tisza River, Central Europe. Environ. Sci. Eur. 2023, 35, 92. [Google Scholar] [CrossRef]
- Sivapragasam, C.; Maheswaran, R.; Venkatesh, V. Genetic programming approach for flood routing in natural channels. Hydrol. Process. 2008, 22, 623–628. [Google Scholar] [CrossRef]
- Latt, Z.Z. Application of feedforward artificial neural network in Muskingum flood routing: A black-box forecasting approach for a natural river system. Water Resour. Manag. 2015, 29, 4995–5014. [Google Scholar] [CrossRef]
- Nikoo, M.; Ramezani, F.; Hadzima-Nyarko, M.; Nyarko, E.K.; Nikoo, M. Flood-routing modeling with neural network optimized by social-based algorithm. Nat. Hazards. 2016, 82, 1–24. [Google Scholar] [CrossRef]
- Hassanvand, M.R.; Karami, H.; Mousavi, S.-F. Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing. Nat. Hazards 2018, 94, 1057–1080. [Google Scholar] [CrossRef]
- Tayfur, G.; Singh, V.P.; Moramarco, T.; Barbetta, S. Flood hydrograph prediction using machine learning methods. Water 2018, 10, 968. [Google Scholar] [CrossRef]
- Pashazadeh, A.; Javan, M. Comparison of the gene expression programming, artificial neural network (ANN), and equivalent Muskingum inflow models in the flood routing of multiple branched rivers. Theor. Appl. Climatol. 2020, 139, 1349–1362. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yeh, H.-C.; Kao, S.-P.; Wei, C.; Su, P.-Y. Water level forecasting in tidal rivers during typhoon periods through ensemble empirical model decomposition. Hydrology 2023, 10, 47. [Google Scholar] [CrossRef]
- Katipoglu, O.M.; Sarigo, M. Coupling machine learning with signal process techniques and particle swarm optimization for forecasting flood routing calculations in the Eastern Black Sea Basin, Turkiye. Environ. Sci. Pollut. Res. 2023, 30, 46074–46091. [Google Scholar] [CrossRef] [PubMed]
- Katipoglu, O.M.; Sarigol, M. Prediction of flood routing results in the Central Anatolian region of Turkiye with various machine learning models. Stoch. Environ. Res. Risk Assess. 2023, 37, 2205–2224. [Google Scholar] [CrossRef]
- Katipoglu, O.M.; Sarigol, M. Boosting flood routing prediction performance through a hybrid approach using empirical model decomposition and neural networks: A case of the Mera River in Ankara. Water Supply 2023, 23, 4403–4415. [Google Scholar] [CrossRef]
- Safavi, H.R.; Esmikhani, M. Conjunctive use of surface water and groundwater: Application of support vector machines (SVMs) and generic algorithms. Water Resour. Manag. 2013, 27, 2623–2644. [Google Scholar] [CrossRef]
- Rahbar, A.; Mirarabi, A.; Nakhaei, M.; Talkhabi, M.; Jamali, M. A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction. Water Resour. Manag. 2022, 36, 589–609. [Google Scholar] [CrossRef]
- Mokhtarzad, M.; Eskandari, F.; Vanjani, N.J.; Arabasadi, A. Drought forecasting by ANN, ANFIS and SVM and comparison of the models. Environ. Earth Sci. 2017, 76, 729. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Rasmussen, P.; Bobee, B. A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrol. Process. 2000, 14, 2755–2777. [Google Scholar] [CrossRef]
- Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Tiwari, R.K. A comparative study of artificial neural networks Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ. Earth Sci. 2013, 71, 3147–3160. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4666. [Google Scholar]
- Rumelhart, D.E.; McClelland, J.L.; James, L. Parallel Distribution Processing: Exploration in the Microstructure of Cognition; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Mohan, S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraul. Eng. 1997, 123, 137–142. [Google Scholar] [CrossRef]
- Barati, R. Parameter estimation of nonlinear Muskingum models using the Nelder-Mead simplex algorithm. J. Hydrol. Eng. 2011, 16, 946–954. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation for the nonlinear Muskingum model using the BFGS techniques. J. Irrig. Drain. Eng. 2006, 132, 474–478. [Google Scholar] [CrossRef]
- Li, Z.; Kang, L.; Zhou, L.; Zhu, M. Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction. Water 2021, 13, 575. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Dolatabadi, M.; Mehrabpour, M.; Esfandyari, M.; Alidadi, H.; Davoudi, M. Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS. Chemom. Intell. Lab. Syst. 2018, 181, 72–78. [Google Scholar] [CrossRef]
- Firat, M.; Gungor, M. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simul. 2007, 75, 87–96. [Google Scholar] [CrossRef]
- Mwaura, A.M.; Liu, Y.-K. Adaptive neuro-fuzzy inference system (ANFIS) based modelling of incipient steam generator tube rupture diagnosis. Ann. Nucl. Energy 2021, 147, 108262. [Google Scholar] [CrossRef]
- Chu, H.-J. The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J. Civ. Eng. 2009, 13, 371–376. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26, pp. 203–206. [Google Scholar]
- Park, S.; Jung, S.; Lee, J.; Hur, J. A short-term forecasting of wind power outputs based on gradient boosting regression tree algorithms. Energies 2023, 16, 1132. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S. River stage forecasting using wavelet packet decomposition and data-driven models. Procedia Eng. 2016, 154, 1225–1230. [Google Scholar] [CrossRef]
- Dantzig, G.B. Linear programming. Oper. Res. 2002, 50, 42–47. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability 2023, 15, 9434. [Google Scholar] [CrossRef]
- Salgotra, R.; Sharma, P.; Raju, S.; Gandomi, A.H. A Contemporary Systematic Review on Meta-heuristic Optimization Algorithms with Their MATLAB and Python Code Reference. In Archives of Computational Methods in Engineering; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Kumar, N.; Shaikh, A.A.; Mahato, S.K.; Bhunia, A.K. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Expert Syst. Appl. 2021, 172, 114646. [Google Scholar] [CrossRef]
- McCarthy, G.T. The Unit Hydrograph and Flood Routing. In Proceedings of Conference of the North Atlantic Division; U.S. Army Corps of Engineers: New London, CT, USA, 1938. [Google Scholar]
- Akbari, K.; Hessami-kermani, M.-R. Parameter estimation of Muskingum model using grey wolf optimizer algorithm. MethodsX 2021, 8, 101589. [Google Scholar] [CrossRef]
- Kim, J.H.; Geem, Z.W.; Kim, E.S. Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 2001, 37, 1131–1138. [Google Scholar] [CrossRef]
- Chu, H.J.; Chang, L.C. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J. Hydrol. Eng. 2009, 14, 1024–1027. [Google Scholar] [CrossRef]
- Luo, J.; Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J. Hydrol. Eng. 2010, 15, 844–851. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search. J. Hydrol. Eng. 2011, 16, 684–688. [Google Scholar] [CrossRef]
- Xu, D.M.; Qiu, L.; Chen, S.Y. Estimation of nonlinear Muskingum model parameter using Differential Evolution. J. Hydrol. Eng. 2012, 17, 348–353. [Google Scholar] [CrossRef]
- Karahan, H.; Gurarslan, G.; Geem, Z.W. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J. Hydro. Eng. 2013, 18, 352–360. [Google Scholar] [CrossRef]
- Ouyang, A.; Li, K.; Truong, T.K.; Sallam, A.; Sha, E.H.M. Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Comput. Appl. 2014, 25, 1785–1799. [Google Scholar] [CrossRef]
- Haddad, O.B.; Hamedi, F.; Fallah-Mehdipour, E.; Orouji, H.; Marino, M.A. Application of a hybrid optimization method in Muskingum parameter estimation. Irrig. Drain. Eng. 2015, 141, 482–489. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J. Hydrol. Eng. 2015, 20, 04014055. [Google Scholar] [CrossRef]
- Hamedi, F.; Bozorg-Haddad, O.; Pazoki, M.; Asgari, H.R.; Parsa, M.; Loaiciga, H.A. Parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J. Irrig. Drain. Eng. 2016, 142, 04016059. [Google Scholar] [CrossRef]
- Moghaddam, A.; Behmanesh, J.; Farsijani, A. Parameter estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water Resour. Manag. 2016, 30, 2143–2160. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour. Manag. 2016, 30, 4713–4730. [Google Scholar] [CrossRef]
- Ehteram, M.; Othman, F.B.; Yaseen, Z.M.; Afan, H.A.; Allawi, M.F.; Malek, M.B.A.; Ahmed, A.N.; Shahid, S.; Singh, V.P.; EI-Shafie, A. Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm. Water 2018, 1, 807. [Google Scholar] [CrossRef]
- Farahani, N.; Karami, H.; Farzin, S.; Ehteram, M.; Kisi, O.; El Shafie, A. A new method for flood routing utilizing four-parameter nonlinear Muskingum an Shark algorithm. Water Resour. Manag. 2019, 33, 4879–4893. [Google Scholar] [CrossRef]
- Akbari, R.; Hessami-Kermani, M.R.; Shojaee, S. Flood routing: Improving outflow using a new nonlinear muskingum model with four variable parameters coupled with PSO-GA algorithm. Water Resour. Manag. 2020, 34, 3219–3316. [Google Scholar] [CrossRef]
- Norouzi, H.; Bazargan, J. Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm. J. Water Clim. Change 2021, 12, 2055–2067. [Google Scholar] [CrossRef]
- Okkan, U.; Kirdemir, U. Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model. J. Water Clim. Change 2020, 11 (Suppl. S1), 343–358. [Google Scholar] [CrossRef]
- Mai, X.; Liu, H.-B.; Liu, L.-B. A new hybrid cuckoo quantum-behavior particle swarm optimization algorithm and its application in Muskingum model. Neural Process. Lett. 2023, 55, 8309–8337. [Google Scholar] [CrossRef]
- Zhao, Y.; Chadha, M.; Olsen, N.; Yeates, E.; Turner, J.; Gugaratshan, G.; Qian, G.; Todd, M.D.; Hu, Z. Machine learning-enabled calibration of river routing model parameters. J. Hydroinform. 2023, 25, 1799. [Google Scholar] [CrossRef]
- Peters, R.; Schmitz, G.; Cullmann, J. Flood routing modelling with Artificial Neural Network. Adv. Geosci. 2006, 9, 131–136. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Theobald, S.; Nestmann, F. Simulation of flood flow in a river system using artificial neural networks. Hydrol. Earth Syst. Sci. 2005, 9, 313–321. [Google Scholar] [CrossRef]
- Razavi, S.; Karamouz, M. Adaptive neural networks for flood routing in river systems. Water Int. 2007, 32, 360–375. [Google Scholar] [CrossRef]
- Ghalkhani, H.; Golian, S.; Saghafian, B.; Farokhnia, A.; Shamseldin, A. Application of surrogate artificial intelligent models for real-time flood routing. Water Environ. J. 2013, 27, 535–548. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016, 31, 146–158. [Google Scholar] [CrossRef]
- Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Tawfik, A.M. River flood routing using artificial neural networks. Ain Shams Eng. J. 2023, 14, 101904. [Google Scholar] [CrossRef]
- Peng, A.; Zhang, X.; Xu, W.; Tian, Y. Effects of Training Data on the Learning Performance of LSTM Network for Runoff Simulation. Water Resour. Manag. 2022, 36, 2381–2394. [Google Scholar] [CrossRef]
Paper | No. of Citations | Journal | Impact Factor | Studied River | Adopted Method | Compared Models | Modeling Performance Criteria |
---|---|---|---|---|---|---|---|
[19] | 73 | Hydrological Processes | 3.2 | Walla Walla River, USA | GP | NMM | RMSE, CC |
[15] | 125 | Computers and Geosciences | 8.1 | Kushabhadra River, India | ANN | MIKE 11 HD | RMSE, R2, NSE, IOA, DP |
[16] | 164 | Alexandria Engineering Journal | 6.8 | River Nile, Sudan | ANN | R2, RMSE | |
[13] | 7 | Journal of Applied Mathematics | - | River Wyre, UK | SVM | Muskingum model | SSE |
[20] | 19 | Water Resources Management | 4.2 | Chindwin River, Myanmar | ANN | CE, MRE, EQp, ETp | |
[21] | 46 | Natural Hazards | 3.7 | Kheir Abad River, Iran | ANN (FF-SBA) | FF-GA, FF-PSO, Linear regression, Non-linear regression | R2, MSE |
[22] | 18 | Natural Hazards | 3.7 | Maryam Negar River, Iran | ANN, ANFIS | MAE, RMSE, Bias, SI, SSQ | |
[23] | 40 | Water | 3.4 | Tiber River, Italy | ANN | RCM, GA_RCM, PSO_RCM, ACO_RCM, Saint-Venant, PSO_NMM, ACO_NMM, GA_NMM | EQp, ETp, MAE, RMSE |
[24] | 10 | Theoretical and Applied Climatology | 3.4 | Gharesoo River, Iran | GEP, ANN | Muskingum model | R2, RMSE |
[17] | 53 | Journal of Hydrology | 6.4 | South-to-North water Diversion Project channel, China | MWLP, RWLP, LSTM, GRU | SVM, ANN | RMSE, MAE, NSE, PCC, PI |
[25] | 3 | Hydrology | 3.2 | Tanshui River, Taiwan | EEMD and stepwise regression | CC, RMSE | |
[26] | 4 | Environmental Science and Pollution Research | 5.8 | Turnasuyu Stream, Turkey | LSSVM, EMD-LSSVM, PSO-LSSVM, VMD-LSSVM, Wavelet-LSSVM | MAPE, NSE, MBE, R2 | |
[27] | 1 | Stochastic Environmental Research and Risk Assessment | 4.2 | Mera Stream, Sarisu Stream, Kizilirmak River, Turkey | BT, GBM, KNN, RF, SVM, XGBoost | R2, RMSE, MAE | |
[28] | 0 | Water Supply | 1.7 | Mera River, Turkey | EMD-CFBNN, EME-FFBNN | CFBNN, FFBNN | CC |
[18] | 0 | Environmental Sciences Europe | 5.9 | Tisza River, Central Europe | LSTM | DLCM, MLP, Linear model, | MAE, RMSE, R2, WI |
[14] | 2 | Water | 3.4 | Yangtze River, China | SVR, GPR, RFR, MLP, LSTM, GRU | MAPE, RMSE, NSE, TSS, KGE |
Paper | No. of Citations | Journal | Impact Factor | Adopted Method |
---|---|---|---|---|
[37] | 261 | Journal of Hydraulic Engineering | 2.4 | GA |
[60] | 278 | Journal of the American Water Resources Association | 2.4 | HS |
[39] | 95 | Journal of Irrigation and Drainage Engineering | 2.6 | BFGS |
[19] | 73 | Hydrological Processes | 3.2 | GP |
[61] | 87 | Journal of Hydrologic Engineering | 2.4 | PSO |
[62] | 55 | Journal of Hydrologic Engineering | 2.4 | ICSA |
[38] | 218 | Journal of Hydrologic Engineering | 2.4 | NMS algorithm |
[63] | 65 | Journal of Hydrologic Engineering | 2.4 | Parameter-setting-free HS |
[64] | 55 | Journal of Hydrologic Engineering | 2.4 | DE |
[65] | 157 | Journal of Hydrologic Engineering | 2.4 | BFGS-HS |
[66] | 55 | Neural Computing and Application | 6 | HPSO |
[67] | 15 | Journal of Irrigation and Drainage Engineering | 2.6 | SFLA-NMS |
[68] | 65 | Journal of Hydrologic Engineering | 2.4 | MHBMO algorithm |
[69] | 23 | Journal of Irrigation and Drainage Engineering | 2.6 | WOA |
[70] | 42 | Water Resources Management | 4.3 | PSO |
[71] | 37 | Water Resources Management | 4.3 | MHBMO-GRG |
[1] | 33 | Water Resources Management | 4.3 | BSA evolutionary algorithm |
[72] | 39 | Water | 3.4 | HBSA |
[23] | 40 | Water | 3.4 | PSO, ACO, GA |
[73] | 11 | Water Resources Management | 4.3 | SA |
[74] | 13 | Water Resources Management | 4.3 | PSO-GA |
[75] | 9 | Water and Climate Change | 2.8 | PSO |
[76] | 13 | Water and Climate Change | 2.8 | PSO-LM |
[59] | 4 | MethodsX | 1.9 | GWO algorithm |
[77] | 0 | Neural Processing Letters | 3.1 | C-QPSO |
[78] | 0 | Journal of Hydroinformatics | 2.7 | GPR, GMC, RF, XGBoost |
Paper | No. of Citations | Journal | Impact Factor | Studied River | Adopted Method | Compared Model | Modeling Performance Criteria |
---|---|---|---|---|---|---|---|
[80] | 88 | Hydrology and Earth System Science | 6.3 | Neckar River, Germany | ANN and a one-dimensional hydrodynamic numerical model | - | CE, R2, RMSE, DPF |
[79] | 40 | Advances in Geosciences | 1.6 | Freiberger Mulde River, Germany | HEC-RAS and ANN | HEC-RAS | R2 |
[81] | 14 | Water International | 2.6 | Karoon River, Iran | HEC-RAS and adaptive ANNs | HEC-RAS, Muskingum routing method | CE, PWRMSE, volume error of the highest peaks, mean error of time to peak |
[82] | 36 | Water and Environment Journal | 2 | Doogh River, Iran | HEC-RAS and ANN; HEC-RAS and ANFIS | HEC-RAS | NSE, MRE, RMSE |
[83] | 64 | International Journal of Sediment Research | 3.6 | Huai River, China | KN2K and one-dimensional hydraulic model | KF and one-dimensional hydraulic model | NSE, ANSE, SDE |
[84] | 101 | Journal of Hydrology | 6.4 | Eden Catchment, UK | LISFLOOD-FP and CNN | LISFLOOD-FP, SVR | NSE, RMSE |
[10] | 0 | Water | 3.4 | Han River, South Korea | HM-ANN | HM, ANN | RMSE, NSE |
[85] | 2 | Ain Shams Engineering Journal | 6 | HEC-RAS and ANN | HEC-RAS, Muskingum method | Standard error, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jun, K.S. Review of Machine Learning Methods for River Flood Routing. Water 2024, 16, 364. https://doi.org/10.3390/w16020364
Li L, Jun KS. Review of Machine Learning Methods for River Flood Routing. Water. 2024; 16(2):364. https://doi.org/10.3390/w16020364
Chicago/Turabian StyleLi, Li, and Kyung Soo Jun. 2024. "Review of Machine Learning Methods for River Flood Routing" Water 16, no. 2: 364. https://doi.org/10.3390/w16020364
APA StyleLi, L., & Jun, K. S. (2024). Review of Machine Learning Methods for River Flood Routing. Water, 16(2), 364. https://doi.org/10.3390/w16020364