Review of Machine Learning Methods for River Flood Routing
Abstract
:1. Introduction
2. ML Methods
2.1. Single Application
2.1.1. Support Vector Regression (SVR)
2.1.2. Artificial Neural Network (ANN)
2.1.3. Recurrent Neural Network (RNN)
2.1.4. Random Forest Regression (RFR)
2.1.5. K-Nearest Neighbor (KNN)
2.1.6. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.1.7. Gradient-Boosted Machine (GBM)
2.1.8. Genetic Programming (GP)
2.1.9. Other ML Methods
2.2. Hybrid Application
2.2.1. ML-Based Optimization Technique
2.2.2. Hybrid Application of a Hydraulic Model and the ML Method
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
ACO | Ant colony optimization |
ANFIS | Adaptive neuro-fuzzy inference system |
ANN | Artificial neural network |
ANSE | Arithmetic mean |
ARIMA | Auto-regressive integrated moving average |
ARMA | Auto-regressive moving average |
BA | Bat algorithm |
BFGS | Broyden-fletcher-goldfarb-shanno |
BSA | Backtracking search algorithm |
BT | Bagged tree |
CC | Coefficient of correlation |
CE | Coefficient of efficiency |
CFBNN | Cascade forward backpropagation neural network |
CNN | Convolutional neural network |
C-QPSO | Cuckoo quantum-behavior particle swarm optimization |
CSA | Clonal selection algorithm |
DE | Differential evolution |
DE | Differential evolution |
DLCM | Discrete linear cascade model |
DP | Difference in peak |
DPF | Difference in peak flow |
EA | Evolutionary algorithm |
EEMD | Ensemble empirical mode decomposition |
EMD | Empirical model decomposition |
EQp | Error of peak discharge |
ETp | Error of time to peak |
FFBNN | Feed-forward backpropagation neural network |
FMLP | Feed forward multilayer perceptron |
GA | Genetic algorithm |
GBM | Gradient-boosted machine |
GEP | Gene expression programming |
GMC | Gaussian mixture copula |
GP | Genetic programming |
GPR | Gaussian process regression |
GRG | Generalized reduced gradient |
GRP | Gaussian process regression |
GRU | Gated recurrent unit |
GWO | Grey wolf optimizer |
HBSA | Hybrid bat-swarm algorithm |
HPSO | Hybrid particle swarm optimization |
HS | Harmony search |
ICA | Imperialist competitive algorithm |
ICSA | Immune clonal selection algorithm |
IOA | Index of agreement |
KF | Kalman filter |
KGE | Kling–Gupta efficiency |
KN2K | KNN-KF |
KNN | K-nearest neighbor |
LM | Levenberg–Marquardt |
LMM | Lagrange multiplier |
LSSVM | Least squares support vector machine |
LSTM | Long short-term memory |
MAE | Mean absolute error |
MAPE | Mean absolute percentage error |
MBE | Mean bias error |
MHBMO | Modified honeybee mating optimization |
ML | Mahine Learning |
MLFN | Multilayer-feedforward network |
MLP | Multilayer perceptron |
MRE | Mean relative error |
MSE | Mean square error |
MWLP | MLP-based water level prediction |
NMM | Nonlinear Muskingum model |
NMS | Nelder-mead simplex |
NSE | Nash-Sutcliffe Coefficient |
PCC | Pearson correlation coefficient |
PI | Persistence index |
PSF-HS | Parameter setting free-harmony search |
PSO | Particle swarm optimization |
PWRMSE | Peak-weighted root mean square error |
R2 | Coefficient of determination |
RAPID | Routing application for parallel computation of discharge |
RCM | Rating curve method |
RF | Random forest |
RFR | Random forest regression |
RMSE | Root mean square error |
RNN | Recurrent neural network |
RWLP | RNN-based water level prediction |
SA | Shark algorithm |
SBA | Social-based algorithm |
SDE | Standard deviation of the NSE |
SFLA | Shuffled frog leaping algorithm |
SI | Scatter index |
S-LSM | Segmented least square method |
SSE | Sum of squared error |
SSQ | Sum of the square of the deviations between the observed and routed outflows |
SVM | Support vector machine |
SVR | Support vector regression |
TDNN | Time delay neural network |
TDRNN | Time delay recurrent neural network |
TSS | Taylor skill score |
VMD | Variational model decomposition |
WI | Willmott’s index of agreement |
WOA | Weed optimization algorithm |
WPANFIS | Wavelet packet-based adaptive neuro-fuzzy inference system |
WPANN | Wavelet packet-based artificial neural network |
XGBoost | Extreme gradient boosting |
References
- Yuan, X.; Wu, X.; Tian, H.; Yuan, Y.; Adnan, R.M. Parameter identification of nonlinear Muskingum model with Backtracking Search Algorithm. Water Resour. Manag. 2016, 30, 2767–2783. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, P.; Cheng, L.; Chen, G.; Zhou, Y.; Zhang, X.; Xu, W. Determining dynamic water level control boundaries for a multi-reservoir system during flood seasons with considering channel storage. J. Flood Risk Manag. 2020, 13, e12586. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, K.; Yang, Z.-L.; Wang, J.; Lin, P.; Liang, J.; Li, Z.; Gu, Z. Improving flood simulation capability of the WRF-Hydro-RAPID model using a multi-source precipitation merging method. J. Hydrol. 2021, 592, 125814. [Google Scholar] [CrossRef]
- Dhote, P.R.; Thakur, P.K.; Domeneghetti, A.; Chouksey, A.; Garg, V.; Aggarwal, S.P.; Chauhan, P. The use of SARAL/AltiKa altimeter measurements for multi-site hydrodynamic model validation and rating curves estimation: An application to Brahmaputra River. Adv. Space Res. 2021, 68, 691–702. [Google Scholar] [CrossRef]
- Singh, R.K.; Kumar Villuri, V.G.; Pasupuleti, S.; Nune, R. Hydrodynamic modeling for identifying flood vulnerability zones in lower Damodar River of eastern India. Ain Shams Eng. J. 2020, 11, 1035–1046. [Google Scholar] [CrossRef]
- Chatterjee, C.; Förster, S.; Bronstert, A. Comparison of hydrodynamic models of different complexities to model floods with emergency storage areas. Hydrol. Process. 2008, 22, 4695–4709. [Google Scholar] [CrossRef]
- Fang, P.; Li, J.; Liu, Q. Flood routing models in confluent and dividing channels. Appl. Math. Mech. 2004, 25, 1333–1343. [Google Scholar]
- Wang, K.; Wang, Z.; Liu, K.; Cheng, L.; Bai, Y.; Jin, G. Optimizing flood diversion siting and its control strategy of detention basins: A case study of the Yangtze River, China. J. Hydrol. 2021, 597, 126201. [Google Scholar] [CrossRef]
- Li, L.; Jun, K.S. Distributed parameter unsteady flow model for the Han River. J. Hydro-Environ. Res. 2018, 21, 86–95. [Google Scholar] [CrossRef]
- Li, L.; Jun, K.S. A hybrid approach to improve flood forecasting by combining a hydrodynamic flow model and artificial neural networks. Water 2022, 14, 1393. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, H.; Fang, H. Component-based Reconstruction Prediction of Runoff at Multi-time Scales in the Source Area of the Yellow River Based on the ARMA Model. Water Resour. Manag. 2022, 36, 433–448. [Google Scholar] [CrossRef]
- Yan, B.; Mu, R.; Guo, J.; Liu, Y.; Tang, J.; Wang, H. Flood risk analysis of reservoirs based on full-series ARIMA model under climate change. J. Hydrol. 2022, 610, 127979. [Google Scholar] [CrossRef]
- Karahan, H.; Iplikci, S.; Yasar, M.; Gurarslan, G. River flow estimation from upstream flow records using support vector machines. J. Appl. Math. 2014, 2014, 714213. [Google Scholar] [CrossRef]
- Zhou, L.; Kang, L. Comparative analysis of multiple machine learning methods for flood routing in the Yangtze River. Water 2023, 15, 1556. [Google Scholar] [CrossRef]
- Panda, R.K.; Pramanik, N.; Bala, B. Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Comput. Geosci. 2010, 36, 735–745. [Google Scholar] [CrossRef]
- Elsafi, S.H. Artificial neural networks (ANNs) for flood forecasting at Dongola Station in the River Nile, Sudan. Alex. Eng. J. 2014, 53, 655–662. [Google Scholar] [CrossRef]
- Ren, T.; Liu, X.; Niu, J.; Lei, X.; Zhang, Z. Real-time water level prediction of cascaded channels based on multilayer perception and recurrent neural network. J. Hydrol. 2020, 585, 124783. [Google Scholar] [CrossRef]
- Vizi, Z.; Batki, B.; Ratki, L.; Szalanczi, S.; Rehevary, I.; Kozak, P.; Kiss, T. Water level prediction using long short-term memory neural network model for a lowland river: A case study on the Tisza River, Central Europe. Environ. Sci. Eur. 2023, 35, 92. [Google Scholar] [CrossRef]
- Sivapragasam, C.; Maheswaran, R.; Venkatesh, V. Genetic programming approach for flood routing in natural channels. Hydrol. Process. 2008, 22, 623–628. [Google Scholar] [CrossRef]
- Latt, Z.Z. Application of feedforward artificial neural network in Muskingum flood routing: A black-box forecasting approach for a natural river system. Water Resour. Manag. 2015, 29, 4995–5014. [Google Scholar] [CrossRef]
- Nikoo, M.; Ramezani, F.; Hadzima-Nyarko, M.; Nyarko, E.K.; Nikoo, M. Flood-routing modeling with neural network optimized by social-based algorithm. Nat. Hazards. 2016, 82, 1–24. [Google Scholar] [CrossRef]
- Hassanvand, M.R.; Karami, H.; Mousavi, S.-F. Investigation of neural network and fuzzy inference neural network and their optimization using meta-algorithms in river flood routing. Nat. Hazards 2018, 94, 1057–1080. [Google Scholar] [CrossRef]
- Tayfur, G.; Singh, V.P.; Moramarco, T.; Barbetta, S. Flood hydrograph prediction using machine learning methods. Water 2018, 10, 968. [Google Scholar] [CrossRef]
- Pashazadeh, A.; Javan, M. Comparison of the gene expression programming, artificial neural network (ANN), and equivalent Muskingum inflow models in the flood routing of multiple branched rivers. Theor. Appl. Climatol. 2020, 139, 1349–1362. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yeh, H.-C.; Kao, S.-P.; Wei, C.; Su, P.-Y. Water level forecasting in tidal rivers during typhoon periods through ensemble empirical model decomposition. Hydrology 2023, 10, 47. [Google Scholar] [CrossRef]
- Katipoglu, O.M.; Sarigo, M. Coupling machine learning with signal process techniques and particle swarm optimization for forecasting flood routing calculations in the Eastern Black Sea Basin, Turkiye. Environ. Sci. Pollut. Res. 2023, 30, 46074–46091. [Google Scholar] [CrossRef] [PubMed]
- Katipoglu, O.M.; Sarigol, M. Prediction of flood routing results in the Central Anatolian region of Turkiye with various machine learning models. Stoch. Environ. Res. Risk Assess. 2023, 37, 2205–2224. [Google Scholar] [CrossRef]
- Katipoglu, O.M.; Sarigol, M. Boosting flood routing prediction performance through a hybrid approach using empirical model decomposition and neural networks: A case of the Mera River in Ankara. Water Supply 2023, 23, 4403–4415. [Google Scholar] [CrossRef]
- Safavi, H.R.; Esmikhani, M. Conjunctive use of surface water and groundwater: Application of support vector machines (SVMs) and generic algorithms. Water Resour. Manag. 2013, 27, 2623–2644. [Google Scholar] [CrossRef]
- Rahbar, A.; Mirarabi, A.; Nakhaei, M.; Talkhabi, M.; Jamali, M. A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction. Water Resour. Manag. 2022, 36, 589–609. [Google Scholar] [CrossRef]
- Mokhtarzad, M.; Eskandari, F.; Vanjani, N.J.; Arabasadi, A. Drought forecasting by ANN, ANFIS and SVM and comparison of the models. Environ. Earth Sci. 2017, 76, 729. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Rasmussen, P.; Bobee, B. A recurrent neural networks approach using indices of low-frequency climatic variability to forecast regional annual runoff. Hydrol. Process. 2000, 14, 2755–2777. [Google Scholar] [CrossRef]
- Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Tiwari, R.K. A comparative study of artificial neural networks Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction. Environ. Earth Sci. 2013, 71, 3147–3160. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4666. [Google Scholar]
- Rumelhart, D.E.; McClelland, J.L.; James, L. Parallel Distribution Processing: Exploration in the Microstructure of Cognition; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Mohan, S. Parameter estimation of nonlinear Muskingum models using genetic algorithm. J. Hydraul. Eng. 1997, 123, 137–142. [Google Scholar] [CrossRef]
- Barati, R. Parameter estimation of nonlinear Muskingum models using the Nelder-Mead simplex algorithm. J. Hydrol. Eng. 2011, 16, 946–954. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation for the nonlinear Muskingum model using the BFGS techniques. J. Irrig. Drain. Eng. 2006, 132, 474–478. [Google Scholar] [CrossRef]
- Li, Z.; Kang, L.; Zhou, L.; Zhu, M. Deep Learning Framework with Time Series Analysis Methods for Runoff Prediction. Water 2021, 13, 575. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Dolatabadi, M.; Mehrabpour, M.; Esfandyari, M.; Alidadi, H.; Davoudi, M. Modeling of simultaneous adsorption of dye and metal ion by sawdust from aqueous solution using of ANN and ANFIS. Chemom. Intell. Lab. Syst. 2018, 181, 72–78. [Google Scholar] [CrossRef]
- Firat, M.; Gungor, M. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simul. 2007, 75, 87–96. [Google Scholar] [CrossRef]
- Mwaura, A.M.; Liu, Y.-K. Adaptive neuro-fuzzy inference system (ANFIS) based modelling of incipient steam generator tube rupture diagnosis. Ann. Nucl. Energy 2021, 147, 108262. [Google Scholar] [CrossRef]
- Chu, H.-J. The Muskingum flood routing model using a neuro-fuzzy approach. KSCE J. Civ. Eng. 2009, 13, 371–376. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26, pp. 203–206. [Google Scholar]
- Park, S.; Jung, S.; Lee, J.; Hur, J. A short-term forecasting of wind power outputs based on gradient boosting regression tree algorithms. Energies 2023, 16, 1132. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S. River stage forecasting using wavelet packet decomposition and data-driven models. Procedia Eng. 2016, 154, 1225–1230. [Google Scholar] [CrossRef]
- Dantzig, G.B. Linear programming. Oper. Res. 2002, 50, 42–47. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Nonlinear Programming. J. Oper. Res. Soc. 1997, 48, 334. [Google Scholar] [CrossRef]
- Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization Algorithms for Power Systems Problems. Sustainability 2023, 15, 9434. [Google Scholar] [CrossRef]
- Salgotra, R.; Sharma, P.; Raju, S.; Gandomi, A.H. A Contemporary Systematic Review on Meta-heuristic Optimization Algorithms with Their MATLAB and Python Code Reference. In Archives of Computational Methods in Engineering; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Kumar, N.; Shaikh, A.A.; Mahato, S.K.; Bhunia, A.K. Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Expert Syst. Appl. 2021, 172, 114646. [Google Scholar] [CrossRef]
- McCarthy, G.T. The Unit Hydrograph and Flood Routing. In Proceedings of Conference of the North Atlantic Division; U.S. Army Corps of Engineers: New London, CT, USA, 1938. [Google Scholar]
- Akbari, K.; Hessami-kermani, M.-R. Parameter estimation of Muskingum model using grey wolf optimizer algorithm. MethodsX 2021, 8, 101589. [Google Scholar] [CrossRef]
- Kim, J.H.; Geem, Z.W.; Kim, E.S. Parameter estimation of the nonlinear Muskingum model using harmony search. J. Am. Water Resour. Assoc. 2001, 37, 1131–1138. [Google Scholar] [CrossRef]
- Chu, H.J.; Chang, L.C. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. J. Hydrol. Eng. 2009, 14, 1024–1027. [Google Scholar] [CrossRef]
- Luo, J.; Xie, J. Parameter estimation for nonlinear Muskingum model based on immune clonal selection algorithm. J. Hydrol. Eng. 2010, 15, 844–851. [Google Scholar] [CrossRef]
- Geem, Z.W. Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search. J. Hydrol. Eng. 2011, 16, 684–688. [Google Scholar] [CrossRef]
- Xu, D.M.; Qiu, L.; Chen, S.Y. Estimation of nonlinear Muskingum model parameter using Differential Evolution. J. Hydrol. Eng. 2012, 17, 348–353. [Google Scholar] [CrossRef]
- Karahan, H.; Gurarslan, G.; Geem, Z.W. Parameter estimation of the nonlinear Muskingum flood-routing model using a hybrid harmony search algorithm. J. Hydro. Eng. 2013, 18, 352–360. [Google Scholar] [CrossRef]
- Ouyang, A.; Li, K.; Truong, T.K.; Sallam, A.; Sha, E.H.M. Hybrid particle swarm optimization for parameter estimation of Muskingum model. Neural Comput. Appl. 2014, 25, 1785–1799. [Google Scholar] [CrossRef]
- Haddad, O.B.; Hamedi, F.; Fallah-Mehdipour, E.; Orouji, H.; Marino, M.A. Application of a hybrid optimization method in Muskingum parameter estimation. Irrig. Drain. Eng. 2015, 141, 482–489. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Assessment of modified honey bee mating optimization for parameter estimation of nonlinear Muskingum models. J. Hydrol. Eng. 2015, 20, 04014055. [Google Scholar] [CrossRef]
- Hamedi, F.; Bozorg-Haddad, O.; Pazoki, M.; Asgari, H.R.; Parsa, M.; Loaiciga, H.A. Parameter estimation of extended nonlinear Muskingum models with the weed optimization algorithm. J. Irrig. Drain. Eng. 2016, 142, 04016059. [Google Scholar] [CrossRef]
- Moghaddam, A.; Behmanesh, J.; Farsijani, A. Parameter estimation for the new four-parameter nonlinear Muskingum model using the particle swarm optimization. Water Resour. Manag. 2016, 30, 2143–2160. [Google Scholar] [CrossRef]
- Niazkar, M.; Afzali, S.H. Application of new hybrid optimization technique for parameter estimation of new improved version of Muskingum model. Water Resour. Manag. 2016, 30, 4713–4730. [Google Scholar] [CrossRef]
- Ehteram, M.; Othman, F.B.; Yaseen, Z.M.; Afan, H.A.; Allawi, M.F.; Malek, M.B.A.; Ahmed, A.N.; Shahid, S.; Singh, V.P.; EI-Shafie, A. Improving the Muskingum flood routing method using a hybrid of particle swarm optimization and bat algorithm. Water 2018, 1, 807. [Google Scholar] [CrossRef]
- Farahani, N.; Karami, H.; Farzin, S.; Ehteram, M.; Kisi, O.; El Shafie, A. A new method for flood routing utilizing four-parameter nonlinear Muskingum an Shark algorithm. Water Resour. Manag. 2019, 33, 4879–4893. [Google Scholar] [CrossRef]
- Akbari, R.; Hessami-Kermani, M.R.; Shojaee, S. Flood routing: Improving outflow using a new nonlinear muskingum model with four variable parameters coupled with PSO-GA algorithm. Water Resour. Manag. 2020, 34, 3219–3316. [Google Scholar] [CrossRef]
- Norouzi, H.; Bazargan, J. Effects of uncertainty in determining the parameters of the linear Muskingum method using the particle swarm optimization (PSO) algorithm. J. Water Clim. Change 2021, 12, 2055–2067. [Google Scholar] [CrossRef]
- Okkan, U.; Kirdemir, U. Locally tuned hybridized particle swarm optimization for the calibration of the nonlinear Muskingum flood routing model. J. Water Clim. Change 2020, 11 (Suppl. S1), 343–358. [Google Scholar] [CrossRef]
- Mai, X.; Liu, H.-B.; Liu, L.-B. A new hybrid cuckoo quantum-behavior particle swarm optimization algorithm and its application in Muskingum model. Neural Process. Lett. 2023, 55, 8309–8337. [Google Scholar] [CrossRef]
- Zhao, Y.; Chadha, M.; Olsen, N.; Yeates, E.; Turner, J.; Gugaratshan, G.; Qian, G.; Todd, M.D.; Hu, Z. Machine learning-enabled calibration of river routing model parameters. J. Hydroinform. 2023, 25, 1799. [Google Scholar] [CrossRef]
- Peters, R.; Schmitz, G.; Cullmann, J. Flood routing modelling with Artificial Neural Network. Adv. Geosci. 2006, 9, 131–136. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Theobald, S.; Nestmann, F. Simulation of flood flow in a river system using artificial neural networks. Hydrol. Earth Syst. Sci. 2005, 9, 313–321. [Google Scholar] [CrossRef]
- Razavi, S.; Karamouz, M. Adaptive neural networks for flood routing in river systems. Water Int. 2007, 32, 360–375. [Google Scholar] [CrossRef]
- Ghalkhani, H.; Golian, S.; Saghafian, B.; Farokhnia, A.; Shamseldin, A. Application of surrogate artificial intelligent models for real-time flood routing. Water Environ. J. 2013, 27, 535–548. [Google Scholar] [CrossRef]
- Liu, K.; Li, Z.; Yao, C.; Chen, J.; Zhang, K.; Saifullah, M. Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sediment Res. 2016, 31, 146–158. [Google Scholar] [CrossRef]
- Kabir, S.; Patidar, S.; Xia, X.; Liang, Q.; Neal, J.; Pender, G. A deep convolutional neural network model for rapid prediction of fluvial flood inundation. J. Hydrol. 2020, 590, 125481. [Google Scholar] [CrossRef]
- Tawfik, A.M. River flood routing using artificial neural networks. Ain Shams Eng. J. 2023, 14, 101904. [Google Scholar] [CrossRef]
- Peng, A.; Zhang, X.; Xu, W.; Tian, Y. Effects of Training Data on the Learning Performance of LSTM Network for Runoff Simulation. Water Resour. Manag. 2022, 36, 2381–2394. [Google Scholar] [CrossRef]
Paper | No. of Citations | Journal | Impact Factor | Studied River | Adopted Method | Compared Models | Modeling Performance Criteria |
---|---|---|---|---|---|---|---|
[19] | 73 | Hydrological Processes | 3.2 | Walla Walla River, USA | GP | NMM | RMSE, CC |
[15] | 125 | Computers and Geosciences | 8.1 | Kushabhadra River, India | ANN | MIKE 11 HD | RMSE, R2, NSE, IOA, DP |
[16] | 164 | Alexandria Engineering Journal | 6.8 | River Nile, Sudan | ANN | R2, RMSE | |
[13] | 7 | Journal of Applied Mathematics | - | River Wyre, UK | SVM | Muskingum model | SSE |
[20] | 19 | Water Resources Management | 4.2 | Chindwin River, Myanmar | ANN | CE, MRE, EQp, ETp | |
[21] | 46 | Natural Hazards | 3.7 | Kheir Abad River, Iran | ANN (FF-SBA) | FF-GA, FF-PSO, Linear regression, Non-linear regression | R2, MSE |
[22] | 18 | Natural Hazards | 3.7 | Maryam Negar River, Iran | ANN, ANFIS | MAE, RMSE, Bias, SI, SSQ | |
[23] | 40 | Water | 3.4 | Tiber River, Italy | ANN | RCM, GA_RCM, PSO_RCM, ACO_RCM, Saint-Venant, PSO_NMM, ACO_NMM, GA_NMM | EQp, ETp, MAE, RMSE |
[24] | 10 | Theoretical and Applied Climatology | 3.4 | Gharesoo River, Iran | GEP, ANN | Muskingum model | R2, RMSE |
[17] | 53 | Journal of Hydrology | 6.4 | South-to-North water Diversion Project channel, China | MWLP, RWLP, LSTM, GRU | SVM, ANN | RMSE, MAE, NSE, PCC, PI |
[25] | 3 | Hydrology | 3.2 | Tanshui River, Taiwan | EEMD and stepwise regression | CC, RMSE | |
[26] | 4 | Environmental Science and Pollution Research | 5.8 | Turnasuyu Stream, Turkey | LSSVM, EMD-LSSVM, PSO-LSSVM, VMD-LSSVM, Wavelet-LSSVM | MAPE, NSE, MBE, R2 | |
[27] | 1 | Stochastic Environmental Research and Risk Assessment | 4.2 | Mera Stream, Sarisu Stream, Kizilirmak River, Turkey | BT, GBM, KNN, RF, SVM, XGBoost | R2, RMSE, MAE | |
[28] | 0 | Water Supply | 1.7 | Mera River, Turkey | EMD-CFBNN, EME-FFBNN | CFBNN, FFBNN | CC |
[18] | 0 | Environmental Sciences Europe | 5.9 | Tisza River, Central Europe | LSTM | DLCM, MLP, Linear model, | MAE, RMSE, R2, WI |
[14] | 2 | Water | 3.4 | Yangtze River, China | SVR, GPR, RFR, MLP, LSTM, GRU | MAPE, RMSE, NSE, TSS, KGE |
Paper | No. of Citations | Journal | Impact Factor | Adopted Method |
---|---|---|---|---|
[37] | 261 | Journal of Hydraulic Engineering | 2.4 | GA |
[60] | 278 | Journal of the American Water Resources Association | 2.4 | HS |
[39] | 95 | Journal of Irrigation and Drainage Engineering | 2.6 | BFGS |
[19] | 73 | Hydrological Processes | 3.2 | GP |
[61] | 87 | Journal of Hydrologic Engineering | 2.4 | PSO |
[62] | 55 | Journal of Hydrologic Engineering | 2.4 | ICSA |
[38] | 218 | Journal of Hydrologic Engineering | 2.4 | NMS algorithm |
[63] | 65 | Journal of Hydrologic Engineering | 2.4 | Parameter-setting-free HS |
[64] | 55 | Journal of Hydrologic Engineering | 2.4 | DE |
[65] | 157 | Journal of Hydrologic Engineering | 2.4 | BFGS-HS |
[66] | 55 | Neural Computing and Application | 6 | HPSO |
[67] | 15 | Journal of Irrigation and Drainage Engineering | 2.6 | SFLA-NMS |
[68] | 65 | Journal of Hydrologic Engineering | 2.4 | MHBMO algorithm |
[69] | 23 | Journal of Irrigation and Drainage Engineering | 2.6 | WOA |
[70] | 42 | Water Resources Management | 4.3 | PSO |
[71] | 37 | Water Resources Management | 4.3 | MHBMO-GRG |
[1] | 33 | Water Resources Management | 4.3 | BSA evolutionary algorithm |
[72] | 39 | Water | 3.4 | HBSA |
[23] | 40 | Water | 3.4 | PSO, ACO, GA |
[73] | 11 | Water Resources Management | 4.3 | SA |
[74] | 13 | Water Resources Management | 4.3 | PSO-GA |
[75] | 9 | Water and Climate Change | 2.8 | PSO |
[76] | 13 | Water and Climate Change | 2.8 | PSO-LM |
[59] | 4 | MethodsX | 1.9 | GWO algorithm |
[77] | 0 | Neural Processing Letters | 3.1 | C-QPSO |
[78] | 0 | Journal of Hydroinformatics | 2.7 | GPR, GMC, RF, XGBoost |
Paper | No. of Citations | Journal | Impact Factor | Studied River | Adopted Method | Compared Model | Modeling Performance Criteria |
---|---|---|---|---|---|---|---|
[80] | 88 | Hydrology and Earth System Science | 6.3 | Neckar River, Germany | ANN and a one-dimensional hydrodynamic numerical model | - | CE, R2, RMSE, DPF |
[79] | 40 | Advances in Geosciences | 1.6 | Freiberger Mulde River, Germany | HEC-RAS and ANN | HEC-RAS | R2 |
[81] | 14 | Water International | 2.6 | Karoon River, Iran | HEC-RAS and adaptive ANNs | HEC-RAS, Muskingum routing method | CE, PWRMSE, volume error of the highest peaks, mean error of time to peak |
[82] | 36 | Water and Environment Journal | 2 | Doogh River, Iran | HEC-RAS and ANN; HEC-RAS and ANFIS | HEC-RAS | NSE, MRE, RMSE |
[83] | 64 | International Journal of Sediment Research | 3.6 | Huai River, China | KN2K and one-dimensional hydraulic model | KF and one-dimensional hydraulic model | NSE, ANSE, SDE |
[84] | 101 | Journal of Hydrology | 6.4 | Eden Catchment, UK | LISFLOOD-FP and CNN | LISFLOOD-FP, SVR | NSE, RMSE |
[10] | 0 | Water | 3.4 | Han River, South Korea | HM-ANN | HM, ANN | RMSE, NSE |
[85] | 2 | Ain Shams Engineering Journal | 6 | HEC-RAS and ANN | HEC-RAS, Muskingum method | Standard error, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jun, K.S. Review of Machine Learning Methods for River Flood Routing. Water 2024, 16, 364. https://doi.org/10.3390/w16020364
Li L, Jun KS. Review of Machine Learning Methods for River Flood Routing. Water. 2024; 16(2):364. https://doi.org/10.3390/w16020364
Chicago/Turabian StyleLi, Li, and Kyung Soo Jun. 2024. "Review of Machine Learning Methods for River Flood Routing" Water 16, no. 2: 364. https://doi.org/10.3390/w16020364
APA StyleLi, L., & Jun, K. S. (2024). Review of Machine Learning Methods for River Flood Routing. Water, 16(2), 364. https://doi.org/10.3390/w16020364