Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Sampling and Water Quality Analysis
2.3. Data Analysis
2.3.1. Calculation of Water Quality Index (WQI)
2.3.2. Calculation of Heavy Metal Pollution Index (HPI) and Heavy Metal Evaluation Index (HEI)
2.3.3. Statistical Analysis
2.3.4. Mapping of Spatial Variation of Water Quality Parameters
2.3.5. Efficiency of Water Treatment Plants
3. Results and Discussion
3.1. Analysis of Physicochemical Water Quality Parameters and WQI of Raw and Treated Water
3.2. Cluster Analysis and Spatial Variation of Water Quality Parameters
3.3. Principal Component Analysis and Identification of Contamination Sources
3.4. Contamination of Pesticides and Antibiotics
4. Conclusions
- Kotagala, the uppermost WTP, had intake water ‘Excellent’ for drinking, and the lower-most Balagolla WTP intake water was ‘not suitable for consumption’. ‘Very poor’ upstream Thalawakale-Nanuoya intake water was due to the effluent water from Lake Gregory of Nuwara Eliya;
- Treated water from all 15 WTPs had ‘Excellent’ drinking water quality except for Balagolla, which had ‘Very good’;
- The present study represents the first attempt at clustering the upper Mahaweli River segment based on physicochemical water quality. Cluster analysis categorized the selected river segment into three clusters based on contamination: low (Kotagala, Thalawakelle-Galkanda, Nawalapitiya, Ulapane, and Pundaluoya); moderate (Thalawakelle-Nanuoya, Elpitiya, Paradeka, Nillambe, University Plant, and Kandy South); and high (Greater Kandy, Polgolla, Haragama, and Balagolla);
- Mahaweli River surface water was contaminated with MCPA, diuron, and captan in the areas with predominant agricultural activities.
5. Limitations and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liyanage, C.; Yamada, K. Impact of Population Growth on the Water Quality of Natural Water Bodies. Sustainability 2017, 9, 1405. [Google Scholar] [CrossRef]
- Heidari, H.; Arabi, M.; Warziniack, T.; Sharvelle, S. Effects of Urban Development Patterns on Municipal Water Shortage. Front. Water 2021, 3, 694817. [Google Scholar] [CrossRef]
- Khan, M.; Omer, T.; Ellahi, A.; Rahman, Z.U.; Niaz, R.; Lone, S.A. Monitoring and Assessment of Heavy Metal Contamination in Surface Water of Selected Rivers. Geocarto Int. 2023, 38, 2256313. [Google Scholar] [CrossRef]
- Yapabandara, I.; Wei, Y.; Ranathunga, B.; Indika, S.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Weerasooriya, R.; Makehelwala, M. Impact of Lockdown on the Surface Water Quality in Kelani River, Sri Lanka. Water 2023, 15, 3785. [Google Scholar] [CrossRef]
- Uddin, M.G.; Jackson, A.Y.; Nash, S.; Rahman, A.; Olbert, A.I. Comparison between the WFD Approaches and Newly Developed Water Quality Model for Monitoring Transitional and Coastal Water Quality in Northern Ireland. Sci. Total Environ. 2023, 901, 165960. [Google Scholar] [CrossRef]
- Kumar, L.; Kumari, R.; Kumar, A.; Tunio, I.A.; Sassanelli, C. Water Quality Assessment and Monitoring in Pakistan: A Comprehensive Review. Sustainability 2023, 15, 6246. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Zhang, F.; Du, J.-L.; Chen, D.-C. Surface Water Quality Assessment and Contamination Source Identification Using Multivariate Statistical Techniques: A Case Study of the Nanxi River in the Taihu Watershed, China. Water 2022, 14, 778. [Google Scholar] [CrossRef]
- Sur, I.M.; Moldovan, A.; Micle, V.; Polyak, E.T. Assessment of Surface Water Quality in the Baia Mare Area, Romania. Water 2022, 14, 3118. [Google Scholar] [CrossRef]
- Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; Joaquim, C.G.; Salmoun, F.; da Silva, E. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2022, 15, 130. [Google Scholar] [CrossRef]
- Wu, H.; Yang, W.; Yao, R.; Zhao, Y.; Zhao, Y.; Zhang, Y.; Yuan, Q.; Lin, A. Evaluating Surface Water Quality Using Water Quality Index in Beiyun River, China. Environ. Sci. Pollut. Res. 2020, 27, 35449–35458. [Google Scholar] [CrossRef] [PubMed]
- Appiah-Opong, R.; Ofori, A.; Ofosuhene, M.; Ofori-Attah, E.; Nunoo, F.K.E.; Tuffour, I.; Gordon, C.; Arhinful, D.K.; Nyarko, A.K.; Fosu-Mensah, B.Y. Heavy Metals Concentration and Pollution Index (HPI) in Drinking Water along the Southwest Coast of Ghana. Appl. Water Sci. 2021, 11, 57. [Google Scholar] [CrossRef]
- Chen, S.S.; Kimirei, I.A.; Yu, C.; Shen, Q.; Gao, Q. Assessment of Urban River Water Pollution with Urbanization in East Africa. Environ. Sci. Pollut. Res. 2022, 29, 40812–40825. [Google Scholar] [CrossRef] [PubMed]
- Hemachandra, S.C.S.M.; Sewwandi, B.G.N. Application of Water Pollution and Heavy Metal Pollution Indices to Evaluate the Water Quality in St. Sebastian Canal, Colombo, Sri Lanka. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100790. [Google Scholar] [CrossRef]
- Chandrasekara, S.S.K.; Chandrasekara, S.K.; Gamini, P.H.S.; Obeysekera, J.; Manthrithilake, H.; Kwon, H.-H.; Vithanage, M. A Review on Water Governance in Sri Lanka: The Lessons Learnt for Future Water Policy Formulation. Water Policy 2021, 23, 255–273. [Google Scholar] [CrossRef]
- Preethika, D.; Arachchige, U. Drinking Water Treatment Plant Process Optimization: A Case Study of Kalu River Basin, Sri Lanka. J. Res. Technol. Eng. 2021, 2, 47–59. [Google Scholar]
- Siriwardhana, K.D.; Jayaneththi, D.I.; Herath, R.D.; Makumbura, R.K.; Jayasinghe, H.; Gunathilake, M.B.; Azamathulla, H.M.; Tota-Maharaj, K.; Rathnayake, U. A Simplified Equation for Calculating the Water Quality Index (WQI), Kalu River, Sri Lanka. Sustainability 2023, 15, 12012. [Google Scholar] [CrossRef]
- Makubura, R.; Meddage, D.P.P.; Azamathulla, H.M.; Pandey, M.; Rathnayake, U. A Simplified Mathematical Formulation for Water Quality Index (WQI): A Case Study in the Kelani River Basin, Sri Lanka. Fluids 2022, 7, 147. [Google Scholar] [CrossRef]
- Abeysinghe, N.M.D.E.A.; Samarakoon, M.B. Analysis of Variation of Water Quality in Kelani River, Sri Lanka. Int. J. Environ. Agric. Biotechnol. 2017, 2, 2770–2775. [Google Scholar] [CrossRef]
- Jayasiri, M.M.J.G.C.N.; Yadav, S.; Dayawansa, N.D.K.; Propper, C.R.; Kumar, V.; Singleton, G.R. Spatio-Temporal Analysis of Water Quality for Pesticides and Other Agricultural Pollutants in Deduru Oya River Basin of Sri Lanka. J. Clean. Prod. 2022, 330, 129897. [Google Scholar] [CrossRef]
- Gunawardhana, W.D.T.M.; Jayawardhana, J.M.C.K.; Udayakumara, E.P.N.; Malavipathirana, S. Spatio-Temporal Variation of Water Quality and Bio Indicators of the Badulu Oya in Sri Lanka due to Catchment Disturbances. J. Natl. Sci. Found. Sri Lanka 2018, 46, 51–67. [Google Scholar] [CrossRef]
- Diyabalanage, S.; Abekoon, S.; Watanabe, I.; Watai, C.; Ono, Y.; Wijesekara, S.; Guruge, K.S.; Chandrajith, R. Has Irrigated Water from Mahaweli River Contributed to the Kidney Disease of Uncertain Etiology in the Dry Zone of Sri Lanka? Environ. Geochem. Health 2015, 38, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Thilakarathna, P.T.A.; Fareed, F.; Athukorala, S.; Premachandra, T.N.; Noordeen, F.; Makehelwela, M.; Fernando, R.; Gamage, C.; Rajapakse, M.; Weragoda, S.K.; et al. Monitoring Coliform Contamination at Mahaweli River Water Intakes to Ensure Safe Drinking Water Supply. Sri Lankan J. Infect. Dis. 2023, 13, 15. [Google Scholar] [CrossRef]
- Bandara, H.R.L.C.; Weerasekara, W.B.M.L.I.; Weragoda, S.K. Potential for Formation of Trihalomethane in Diverted and Non-Diverted Areas of Mahaweli River in Sri Lanka. In International Conference on Sustainable Built Environment-2018; Dissanayake, R., Mendis, P., Eds.; Lecture Notes in Civil Engineering; Springer: Singapore, 2019; pp. 131–136. [Google Scholar]
- Kodikara, K.A.S.; Lewandowski, S.; De Silva, P.M.C.S.; Gunarathna, S.D.; Madarasinghe, S.K.; Ranasinghe, P.; Jayatissa, L.P.; Dahdouh-Guebas, F. Heavy Metal Pollution in Selected Upland Tributaries of Sri Lanka: Comprehension towards the Localization of Sources of Pollution. J. Water Health 2022, 20, 505–517. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- SLS 614:2013; Sri Lanka Standard Specification for Potable Water. Sri Lanka Standards Institution: Colombo, Sri Lanka, 2013.
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/publications/i/item/9789241549950 (accessed on 10 August 2024).
- IS 10500:2012; Indian Standard Drinking Water—Specification (Second Revision). Bureau of Indian Standards: New Delhi, India, 2012.
- Sri Ranganathan, S.; Wanigatunge, C.; Senadheera, G.P.S.G.; Beneragama, B.V.S.H. A National Survey of Antibacterial Consumption in Sri Lanka. PLoS ONE 2021, 16, e0257424. [Google Scholar] [CrossRef] [PubMed]
- Samaraweera, D.N.D.; Liu, X.; Zhong, G.; Priyadarshana, T.; Naseem Malik, R.; Zhang, G.; Khorram, M.S.; Zhu, Z.; Peng, X. Antibiotics in Two Municipal Sewage Treatment Plants in Sri Lanka: Occurrence, Consumption and Removal Efficiency. Emerg. Contam. 2019, 5, 272–278. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, D. A Comprehensive Review of Water Quality Indices (WQIs): History, Models, Attempts and Perspectives. Rev. Environ. Sci. Bio/Technol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Addisie, M.B. Evaluating Drinking Water Quality Using Water Quality Parameters and Esthetic Attributes. Air Soil Water Res. 2022, 15. [Google Scholar] [CrossRef]
- Nizar, F.S.R. Assessment of River Water Quality Using Water Quality Index (Wqi) and Residential Areas in Kelantan River. [Undergraduate Final Project Report]. 2021. Available online: http://discol.umk.edu.my/id/eprint/11638 (accessed on 14 June 2024).
- Yan, C.A.; Zhang, W.; Zhang, Z.; Liu, Y.; Deng, C.; Nie, N. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China. PLoS ONE 2015, 10, e0119130. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index—Do We Dare? Water Sew. Works 1970, 117, 339–343. [Google Scholar]
- Badeenezhad, A.; Soleimani, H.; Shahsavani, S.; Parseh, I.; Mohammadpour, A.; Azadbakht, O.; Javanmardi, P.; Faraji, H.; Babakrpur Nalosi, K. Comprehensive Health Risk Analysis of Heavy Metal Pollution Using Water Quality Indices and Monte Carlo Simulation in R Software. Sci. Rep. 2023, 13, 15817. [Google Scholar] [CrossRef]
- Moldovan, A.; Török, A.I.; Kovacs, E.; Cadar, O.; Mirea, I.C.; Micle, V. Metal Contents and Pollution Indices Assessment of Surface Water, Soil, and Sediment from the Arieș River Basin Mining Area, Romania. Sustainability 2022, 14, 8024. [Google Scholar] [CrossRef]
- Afonne, O.J.; Chukwuka, J.U.; Ifediba, E.C. Evaluation of Drinking Water Quality Using Heavy Metal Pollution Indexing Models in an Agrarian, Non-Industrialised Area of South-East Nigeria. J. Environ. Sci. Health Part A 2020, 55, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Dippong, T.; Resz, M.-A. Chemical Assessment of Drinking Water Quality and Associated Human Health Risk of Heavy Metals in Gutai Mountains, Romania. Toxics 2024, 12, 168. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Tahraoui, H.; Toumi, S.; Boudoukhani, M.; Touzout, N.; Sid, A.N.E.H.; Amrane, A.; Belhadj, A.-E.; Hadjadj, M.; Laichi, Y.; Aboumustapha, M.; et al. Evaluating the Effectiveness of Coagulation–Flocculation Treatment Using Aluminum Sulfate on a Polluted Surface Water Source: A Year-Long Study. Water 2024, 16, 400. [Google Scholar] [CrossRef]
- Syvitski, J.; Cohen, S.; Miara, A.; Best, J. River Temperature and the Thermal-Dynamic Transport of Sediment. Glob. Planet. Chang. 2019, 178, 168–183. [Google Scholar] [CrossRef]
- Agudelo-Vera, C.; Avvedimento, S.; Boxall, J.; Creaco, E.; de Kater, H.; Di Nardo, A.; Djukic, A.; Douterelo, I.; Fish, K.E.; Iglesias Rey, P.L.; et al. Drinking Water Temperature around the Globe: Understanding, Policies, Challenges and Opportunities. Water 2020, 12, 1049. [Google Scholar] [CrossRef]
- Ling, T.-Y.; Soo, C.-L.; Heng, T.L.-E.; Nyanti, L.; Sim, S.-F.; Grinang, J. Physicochemical Characteristics of River Water Downstream of a Large Tropical Hydroelectric Dam. J. Chem. 2016, 2016, e7895234. [Google Scholar] [CrossRef]
- Wulff, L.M. Management of Disinfection Byproduct Production in Small Drinking Water Systems. Ph.D. Thesis, University of Missouri, Columbia, CO, USA, 2018. [Google Scholar]
- Ekström, S.M.; Regnell, O.; Reader, H.E.; Nilsson, P.A.; Löfgren, S.; Kritzberg, E.S. Increasing Concentrations of Iron in Surface Waters as a Consequence of Reducing Conditions in the Catchment Area. J. Geophys. Res. Biogeosci. 2016, 121, 479–493. [Google Scholar] [CrossRef]
- Krupińska, I. Aluminium Drinking Water Treatment Residuals and Their Toxic Impact on Human Health. Molecules 2020, 25, 641. [Google Scholar] [CrossRef]
- Dippong, T.; Hoaghia, M.-A.; Senila, M. Appraisal of Heavy Metal Pollution in Alluvial Aquifers. Study Case on the Protected Area of Ronișoara Forest, Romania. Ecol. Indic. 2022, 143, 109347. [Google Scholar] [CrossRef]
- Moyo, A.; Parbhakar-Fox, A.; Meffre, S.; Cooke, D.R. Alkaline Industrial Wastes—Characteristics, Environmental Risks, and Potential for Mine Waste Management. Environ. Pollut. 2023, 323, 121292. [Google Scholar] [CrossRef] [PubMed]
- Morales-Arredondo, J.I.; Hernández, M.A.A.; Cuellar-Ramírez, E.; Morton-Bermea, O.; Ortega-Gutiérrez, J.E. Hydrogeochemical Behavior of Ba, B, Rb, and Sr in an Urban Aquifer Located in Central Mexico and Its Environmental Implications. J. S. Am. Earth Sci. 2022, 116, 103870. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Y.; Zhang, Z.; Zhou, R.; Zhu, Y. Distinguishing Anthropogenic and Natural Sources of Trace Elements in Soils Undergoing Recent 10-Year Rapid Urbanization: A Case of Donggang, Eastern China. Environ. Sci. Pollut. Res. 2015, 22, 10539–10550. [Google Scholar] [CrossRef] [PubMed]
- Spahić, M.P.; Sakan, S.; Cvetković, Ž.; Tančić, P.; Trifković, J.; Nikić, Z.; Manojlović, D. Assessment of Contamination, Environmental Risk, and Origin of Heavy Metals in Soils Surrounding Industrial Facilities in Vojvodina, Serbia. Environ. Monit. Assess. 2018, 190, 208. [Google Scholar] [CrossRef]
- Han, Y.; Du, P.; Cao, J.; Posmentier, E.S. Multivariate Analysis of Heavy Metal Contamination in Urban Dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar] [CrossRef]
- Morton, P.A.; Fennell, C.; Cassidy, R.; Doody, D.; Fenton, O.; Mellander, P.; Jordan, P. A Review of the Pesticide MCPA in the Land-Water Environment and Emerging Research Needs. WIREs Water 2019, 7, e1402. [Google Scholar] [CrossRef]
- Phopin, K.; Ruankham, W.; Prachayasittikul, S.; Prachayasittikul, V.; Tantimongcolwat, T. Revealing the Mechanistic Interactions of Profenofos and Captan Pesticides with Serum Protein via Biophysical and Computational Investigations. Sci. Rep. 2024, 14, 1788. [Google Scholar] [CrossRef]
- Marambe, B.; Herath, S. Banning of Herbicides and the Impact on Agriculture: The Case of Glyphosate in Sri Lanka. Weed Sci. 2019, 68, 246–252. [Google Scholar] [CrossRef]
- De Silva, M.; Liyanage, M.; Wijesekera, S.; Prematunga, E.; Pushpakumari, W. An Update on Herbicide Screening and Potential Alternatives. In Proceedings of the 235th Experiments and Extension Forum for Corporate Sector ‘New Pesticides for Integrated Pest Management in Tea; Tea Research Institute of Sri Lanka: Talawakelle, Sri Lanka, 2018; Available online: https://www.tri.lk/userfiles/file/235%20E&E%20Jan%202018/03_235_E&E_26Jan2018_Paper_II_Dr(Mrs)MSDLDeSilva.pdf (accessed on 5 April 2019).
Parameters | Abbreviations | Units | As per Sri Lanka Standard | As per WHO Guidelines | As per BIS |
---|---|---|---|---|---|
Physical parameters: | |||||
pH | pH | - | 6.5–8.5 | 6.5–8.5 | 6.5–8.5 |
electrical conductivity | EC | µs/cm | - | - | 400 |
turbidity | TUR | NTU | 2.0 | 0.2 | 1.0 |
water temperature | TEMP | °C | - | - | - |
chemical oxygen demand | CODMn | mg/L | 10 | - | - |
Anions: | |||||
chloride | Cl− | mg/L | 250 | 250 | 250 |
bromide | Br− | mg/L | - | - | - |
phosphate | PO43− | mg/L | 2 | - | - |
nitrate | NO3− | mg/L | 50 | 50 | 45 |
sulphate | SO42− | mg/L | 250 | 250 | 200 |
fluoride | F− | mg/L | 1.0 | 1.5 | 1.0 |
Heavy metals: | |||||
Iron | Fe | µg/L | 300 | 300 | 300 |
Manganese | Mn | µg/L | 100 | 100 | 100 |
Copper | Cu | µg/L | 1000 | 2000 | 50 |
Aluminium | Al | µg/L | 200 | 200 | 30 |
Nickel | Ni | µg/L | 20 | 70 | 20 |
Zinc | Zn | µg/L | 3000 | 3000 | 500 |
Arsenic | As | µg/L | 10 | 10 | 10 |
Cadmium | Cd | µg/L | 3 | 3 | 3 |
Chromium | Cr | µg/L | 50 | 50 | 50 |
Barium | Ba | µg/L | - | 1300 | 700 |
Silver | Ag | µg/L | - | 100 | 100 |
Strontium | Sr | µg/L | - | - | - |
Vanadium | V | µg/L | - | - | - |
Rubidium | Rb | µg/L | - | - | - |
Cobalt | Co | µg/L | - | - | - |
Lithium | Li | µg/L | - | - | - |
Caesium | Cs | µg/L | - | - | - |
Thallium | Tl | µg/L | - | - | - |
Bismuth | Bi | µg/L | - | - | - |
Beryllium | Be | µg/L | - | - | - |
Indium | In | µg/L | - | - | - |
Pesticides: | |||||
2-methyl-4-chlorophenoxyacetic acid | MCPA | µg/L | - | - | - |
3-(3,4-Dichlorophenul) 1,1-dimethylurea | Diuron | µg/L | - | - | - |
N-trichloromethylthio-4-cyclohexane-1,2-dicarboximide | Captan | µg/L | - | - | - |
WQI Value | Status of the Water Quality | Suitability for Drinking |
---|---|---|
0–25 | excellent | suitable |
26–50 | good | suitable |
51–75 | poor | not suitable |
76–100 | very poor | not suitable |
>100 | not suitable for consumption | not suitable |
Water Quality Parameter | Units | Raw Water | Treated Water | ||||
---|---|---|---|---|---|---|---|
Average (n = 60) | Minimum | Maximum | Average (n = 56) | Minimum | Maximum | ||
pH | - | 6.8 | 6.6 | 7.3 | 6.8 | 6.5 | 6.9 |
EC | µs/cm | 103.4 | 19.5 | 175.8 | 87.6 | 24.7 | 152.6 |
TUR | NTU | 6.31 | 1.09 | 13.43 | 0.84 | 0.30 | 1.49 |
TEMP | °C | 23.0 | 20.2 | 24.5 | 23.0 | 19.3 | 24.4 |
CODMn | mg/L | 3.1 | 2.4 | 9.1 | 2.2 | 1.5 | 3.6 |
Cl− | mg/L | 5.72 | 1.10 | 11.61 | 7.99 | 2.50 | 14.79 |
NO3− | mg/L | 3.75 | 0.11 | 17.50 | 3.75 | 0.21 | 15.45 |
SO42− | mg/L | 2.28 | 0.26 | 6.32 | 3.98 | 0.27 | 16.87 |
F− | mg/L | 0.05 | 0.01 | 0.15 | 0.05 | 0.01 | 0.12 |
Fe | µg/L | 373.70 | 27.00 | 1117.40 | 50.30 | ND | 123.80 |
Mn | µg/L | 13.73 | 5.32 | 99.88 | 10.96 | 4.50 | 41.16 |
Cu | µg/L | 1.53 | 0.55 | 3.03 | 1.53 | 0.46 | 4.14 |
Al | µg/L | 15.67 | 5.87 | 26.75 | 51.42 | 8.47 | 126.18 |
Ni | µg/L | 15.40 | 11.94 | 20.90 | 16.08 | 11.70 | 21.64 |
Zn | µg/L | 17.53 | 5.16 | 79.31 | 24.12 | 13.25 | 45.92 |
As | µg/L | 0.30 | 0.09 | 0.66 | 0.30 | 0.12 | 0.55 |
Cd | µg/L | 0.08 | 0.01 | 0.17 | 0.22 | 0.09 | 0.41 |
Cr | µg/L | 14.05 | 12.49 | 17.77 | 13.97 | 12.83 | 15.20 |
Ba | µg/L | 61.39 | 16.56 | 93.47 | 63.01 | 17.21 | 99.53 |
Ag | µg/L | 0.08 | 0.03 | 0.17 | 0.30 | 0.08 | 0.77 |
Sr | µg/L | 65.87 | 15.60 | 124.59 | 67.97 | 23.93 | 136.80 |
V | µg/L | 19.54 | 8.05 | 31.21 | 22.90 | 11.23 | 30.5 |
Rb | µg/L | 10.04 | 2.81 | 14.23 | 10.77 | 2.88 | 15.19 |
Co | µg/L | 1.37 | 0.38 | 2.71 | 1.49 | 0.36 | 2.94 |
Li | µg/L | 0.69 | 0.36 | 1.21 | 0.64 | 0.36 | 1.27 |
Cs | µg/L | 0.05 | 0.02 | 0.08 | 0.05 | 0.02 | 0.07 |
Tl | µg/L | 0.02 | 0.01 | 0.03 | 0.02 | ND * | 0.03 |
Bi | µg/L | 0.04 | ND * | 0.09 | ND * | ND * | ND * |
Be | µg/L | 0.02 | ND * | 0.02 | ND * | ND * | ND * |
In | µg/L | 0.01 | ND * | 0.01 | 0.01 | ND * | 0.01 |
Parameter | PC1 | PC2 | PC3 | PC4 | PC5 | PC6 |
---|---|---|---|---|---|---|
pH | −0.80854 | −0.19515 | −0.01224 | −0.00861 | −0.24041 | −0.16839 |
Turbidity | 0.06557 | 0.10885 | 0.77710 | 0.08223 | −0.21903 | 0.00669 |
EC | −0.05617 | −0.00799 | 0.56877 | 0.13864 | 0.58547 | 0.92427 |
Temperature | 0.03491 | 0.17879 | 0.81550 | −0.07737 | 0.06540 | 0.47621 |
COD | 0.58366 | −0.00649 | 0.13375 | −0.19822 | −0.48527 | −0.06788 |
Cl− | 0.28071 | 0.79619 | 0.26800 | −0.07703 | 0.14266 | 0.06071 |
SO42− | 0.34806 | 0.46447 | 0.63294 | 0.20546 | −0.08204 | 0.07219 |
NO3− | 0.29390 | 0.68281 | −0.18841 | 0.20549 | 0.43491 | 0.02388 |
F− | 0.13410 | 0.65484 | 0.04849 | −0.22562 | −0.27499 | −0.01833 |
Fe | 0.05176 | −0.59976 | −0.26017 | −0.16143 | 0.14460 | −0.19862 |
Sr | 0.77855 | 0.49025 | 0.22836 | 0.12515 | −0.20549 | −0.12181 |
Ba | 0.58672 | 0.73424 | 0.18687 | 0.08491 | −0.00192 | −0.05039 |
Mn | 0.14499 | −0.00293 | 0.00720 | 0.91108 | 0.06693 | 0.11773 |
Zn | 0.26674 | 0.04261 | −0.08086 | 0.89223 | 0.16475 | 0.10807 |
Al | 0.30058 | −0.13039 | −0.67222 | 0.54463 | 0.02124 | −0.36035 |
V | 0.91202 | 0.19480 | −0.09536 | 0.19242 | 0.09634 | −0.12519 |
Cr | 0.89041 | −0.00615 | −0.29973 | 0.24969 | 0.10963 | −0.09784 |
Ni | 0.91731 | 0.09590 | −0.19690 | 0.27513 | 0.09536 | −0.07943 |
Rb | 0.84260 | 0.35214 | 0.19350 | 0.19635 | 0.15121 | 0.14016 |
Co | 0.86334 | 0.34368 | 0.15334 | 0.25709 | −0.08742 | −0.07578 |
Cu | 0.43453 | 0.13595 | 0.32684 | 0.70498 | −0.22774 | −0.09698 |
Li | 0.48790 | −0.20844 | −0.25224 | −0.05936 | 0.74187 | 0.39872 |
As | 0.88125 | 0.02479 | 0.24907 | 0.23634 | −0.11751 | 0.12222 |
Ag | −0.01618 | −0.10566 | 0.15624 | −0.30138 | 0.15327 | 0.14700 |
Cd | −0.02136 | 0.10429 | 0.18061 | −0.03811 | 0.25463 | −0.24782 |
Cs | 0.08348 | 0.38588 | 0.11274 | −0.22997 | −0.09801 | −0.17852 |
Tl | 0.22480 | 0.12095 | −0.07666 | −0.11884 | 0.15602 | 0.07458 |
Bi | 0.19650 | −0.29358 | 0.19884 | −0.01034 | −0.06598 | 0.05236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thilakarathna, P.A.; Fareed, F.; Makehelwala, M.; Weragoda, S.K.; Fernando, R.; Premachandra, T.; Rajapakse, M.; Wei, Y.; Yang, M.; Karunaratne, S.H.P.P. Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka. Water 2024, 16, 2644. https://doi.org/10.3390/w16182644
Thilakarathna PA, Fareed F, Makehelwala M, Weragoda SK, Fernando R, Premachandra T, Rajapakse M, Wei Y, Yang M, Karunaratne SHPP. Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka. Water. 2024; 16(18):2644. https://doi.org/10.3390/w16182644
Chicago/Turabian StyleThilakarathna, Pulwansha Amandi, Fazla Fareed, Madhubhashini Makehelwala, Sujithra K. Weragoda, Ruchika Fernando, Thejani Premachandra, Mangala Rajapakse, Yuansong Wei, Min Yang, and S. H. P. Parakrama Karunaratne. 2024. "Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka" Water 16, no. 18: 2644. https://doi.org/10.3390/w16182644
APA StyleThilakarathna, P. A., Fareed, F., Makehelwala, M., Weragoda, S. K., Fernando, R., Premachandra, T., Rajapakse, M., Wei, Y., Yang, M., & Karunaratne, S. H. P. P. (2024). Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka. Water, 16(18), 2644. https://doi.org/10.3390/w16182644