Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Pedotransfer Functions (PTFs)
2.2. Analytical-Based Models
3. Results and Discussion
3.1. Semi-Physical-Based Models
3.1.1. Arya and Paris (AP) Model
3.1.2. Haverkamp and Parlange (HP) Model
3.1.3. Modified Kovács (MK) Model
3.1.4. Chang and Cheng (CC) Model
3.1.5. Meskini Vishkaee (MV) Model
3.1.6. Vidler et al. (VD) Model
3.1.7. Zhai et al. (ZH) Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations/Nomenclature
Symbols and Notation | |
Symbols | Description |
θ | Volumetric water content |
ωi | Soil mass friction |
Bulk density | |
e | Void ratio |
ψ | Pressure head |
Water density | |
ri | Pore radius |
θr | Residual water |
Ai | Total pore area |
Cumulative pore volume | |
Di | Mean diameter |
Ri | Particle radius |
Aik | Area kth sub-pore |
γ | Surface tension |
rik | Circular radius |
αi | Receding angle |
θS | Saturated water |
S | Degree of saturation |
Pore volume | |
particle density | |
Length of the pore | |
Surface tension | |
g | Gravity |
Porosity | |
di | Pore diameter |
Abbreviations and their full name | |
Abbreviation | Elaboration |
SWRC | Soil-Water Retention Curve |
PTFs | Pedotransfer Functions |
BC | Brooks and Corey |
VG | Van Genuchten |
SSA | Specific Surface Area |
AEV | Air-Entry Value |
PoSD | Pore Size Distribution |
AP | Arya and Paris |
HP | Haverkamp and Parlange |
MK | Modified Kovács |
CC | Chang and Cheng |
MV | Meskini-Vishkaee |
VD | Vidler |
ZH | Zhai |
References
- Ghavidelfar, S.; Shamseldin, A.Y.; Melville, B.W. Estimation of Soil Hydraulic Properties and Their Uncertainty through the Beerkan Infiltration Experiment. Hydrol. Process. 2015, 29, 3699–3713. [Google Scholar] [CrossRef]
- Shein, E.V. Physically Based Mathematical Models in Soil Science: History, Current State, Problems, and Outlook (Analytical Review). Eurasian Soil Sci. 2015, 48, 712–718. [Google Scholar] [CrossRef]
- Botula, Y.D.; Cornelis, W.M.; Baert, G.; Van Ranst, E. Evaluation of Pedotransfer Functions for Predicting Water Retention of Soils in Lower Congo (D.R. Congo). Agric. Water Manag. 2012, 111, 1–10. [Google Scholar] [CrossRef]
- Farooq, U.; Taha Bakheit Taha, A.; Tian, F.; Yuan, X.; Ajmal, M.; Ullah, I.; Ahmad, M. Flood Modelling and Risk Analysis of Cinan Feizuo Flood Protection Area, Huaihe River Basin. Atmosphere 2023, 14, 678. [Google Scholar] [CrossRef]
- Alves, R.; Gitirana, G. de F.N.; Vanapalli, S.K. Effect of the Particle-Size Distribution Variability on the SWCC Predictions of Coarse-Grained Materials. MATEC Web Conf. 2021, 337, 02010. [Google Scholar] [CrossRef]
- Too, V.K.; Omuto, C.T.; Biamah, E.K.; Obiero, J.P.; Too, V.K.; Omuto, C.T.; Biamah, E.K.; Obiero, J.P. Review of Soil Water Retention Characteristic (SWRC) Models between Saturation and Oven Dryness. Open J. Mod. Hydrol. 2014, 4, 173–182. [Google Scholar] [CrossRef]
- Pham, T.A.; Hashemi, A.; Sutman, M.; Medero, G.M. Effect of Temperature on the Soil-Water Retention Phenomena in Unsaturated Soils: Analytical and Experimental Models. SSRN Electron. J. 2022, 63, 101301. [Google Scholar] [CrossRef]
- Latorre, B.; Moret-Fernández, D.; Lassabatere, L.; Rahmati, M.; López, M.V.; Angulo-Jaramillo, R.; Sorando, R.; Comín, F.; Jiménez, J.J. Influence of the β Parameter of the Haverkamp Model on the Transient Soil Water Infiltration Curve. J. Hydrol. 2018, 564, 222–229. [Google Scholar] [CrossRef]
- Perreault, S.; El Alem, A.; Chokmani, K.; Cambouris, A.N. Development of Pedotransfer Functions to Predict Soil Physical Properties in Southern Quebec (Canada). Agronomy 2022, 12, 526. [Google Scholar] [CrossRef]
- Aubertin, M.; Mbonimpa, M.; Buissière, B.; Chapuis, R.P.; Development of a Model to Predict the Water Retention Curve Using Basic Geotechnical Properties. Document En Libre Accès Dans PolyPublie DEVELO. 2003. Available online: https://publications.polymtl.ca/2604/ (accessed on 28 August 2024).
- Aubertin, M.; Mbonimpa, M.; Bussière, B.; Chapuis, R.P. A Model to Predict the Water Retention Curve from Basic Geotechnical Properties. Can. Geotech. J. 2003, 40, 1104–1122. [Google Scholar] [CrossRef]
- Fredlund, D.G. Relationship between the Laboratory SWCCs and Field Stress State. In Unsaturated Soil Mechanics—From Theory to Practice, Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015; CRC Press: Boca Raton, FL, USA, 2015; pp. 3–14. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Lin, Y.; Jiang, T. A Simple and Practical Method for Predicting Soil Water Characteristic Curve Based on Grading Parameters. Jpn. Geotech. Soc. Spec. Publ. 2019, 7, 293–296. [Google Scholar] [CrossRef]
- Su, M.; Liu, C.; Wang, L.P.; Zheng, W. Prediction of Saturated Hydraulic Conductivity of Sandy Soil Using Sauter Mean Diameter of Soil Particles. Eur. J. Soil Sci. 2022, 73, 1–10. [Google Scholar] [CrossRef]
- He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A Review of Time Domain Reflectometry (TDR) Applications in Porous Media. Adv. Agron. 2021, 168, 83–155. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; John Wiley & Sons: New York, NY, USA, 1993; p. 517. [Google Scholar]
- Assouline, S. What Can We Learn From the Water Retention Characteristic of a Soil Regarding Its Hydrological and Agricultural Functions? Review and Analysis of Actual Knowledge. Water Resour. Res. 2021, 57, 1–16. [Google Scholar] [CrossRef]
- Ghanbarian, B.; Taslimitehrani, V.; Dong, G.; Pachepsky, Y.A. Sample Dimensions Effect on Prediction of Soil Water Retention Curve and Saturated Hydraulic Conductivity. J. Hydrol. 2015, 528, 127–137. [Google Scholar] [CrossRef]
- Haghverdi, A.; Öztürk, H.S.; Durner, W. Measurement and Estimation of the Soil Water Retention Curve Using the Evaporation Method and the Pseudo Continuous Pedotransfer Function. J. Hydrol. 2018, 563, 251–259. [Google Scholar] [CrossRef]
- Choudhury, C.; Tadikonda, B.V. Soil-Water Characteristic Curve Models for Clays. In Proceedings of the Indian Geotechnical Conference IGC 2014, Kakinada, India, 18–20 December 2014; p. 10. [Google Scholar]
- Fallah, M.; Shabanpor, M.; Zakerinia, M.; Ebrahimi, S. Risk Assessment of Gas Oil and Kerosene Contamination on Some Properties of Silty Clay Soil. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef]
- Noreen, A.; Hussain, S.; Farooq, U.; Younas, T.; Khan, R.; Elsehrawy, M.G. Determination of Heavy Metals Concentration in Water and Soil at Various Locations in Lahore and Their Harmful Impacts on Human and Plants Life. Pak. J. Med. Health Sci. 2022, 16, 1578–1581. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Mojtahedi, F.F.; Azizi, S.; Mahdi, H.A.; Sujatha, E.R.; Ebid, A.M.; Darzi, A.G.; Aneke, F.I. Innovative Overview of SWRC Application in Modeling Geotechnical Engineering Problems. Designs 2022, 6, 69. [Google Scholar] [CrossRef]
- Arairo, W.; Prunier, F.; Djeran-Maigre, I. Water Retention in Unsaturated Soils Subjected to Wetting and Drying Cycles. In Proceedings of the IV International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED 2011), Kos, Greece, 20–22 June 2011; pp. 767–778. [Google Scholar]
- Wijaya, M.; Leong, E.C.; Rahardjo, H. Effect of Shrinkage on Air-Entry Value of Soils. Soils Found. 2015, 55, 166–180. [Google Scholar] [CrossRef]
- Es-haghi, M.S.; Rezania, M.; Bagheri, M. Machine Learning-Based Estimation of Soil’s True Air-Entry Value from GSD Curves. Gondwana Res. 2023, 123, 280–292. [Google Scholar] [CrossRef]
- Kargas, G.; Koka, D.; Londra, P.A. Evaluation of Soil Hydraulic Parameters Calculation Methods Using a Tension Infiltrometer. Soil Syst. 2022, 6, 63. [Google Scholar] [CrossRef]
- Farooq, U.; Gorczewska-Langner, W.; Szymkiewicz, A. Water Retention Curves of Sandy Soils Obtained from Direct Measurements, Particle Size Distribution, and Infiltration Experiments. Vadose Zone J. 2024, 23, e20364. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, D.S.; Jung, H.G.; Lee, S.P.; Ryu, J.H.; Choi, W.J.; Yang, J.E.; Chung, D.Y. Evaluation of Pedotransfer Functions for Estimating Soil Water Retention Curve of Ap Horizon Soils for Various Soil Series of Reclaimed Tidal Flat Soil. Agronomy 2022, 12, 1507. [Google Scholar] [CrossRef]
- Mbayaki, C.W.; Karuku, G.N. Soil Hydraulic Properties of a Chromic Luvisol in Katumani, Kenya. Trop. Subtrop. Agroecosystems 2022, 25. [Google Scholar] [CrossRef]
- Botula, Y.-D.; Van Ranst, E.; Cornelis, W.M. Pedotransfer Functions to Predict Water Retention for Soils of the Humid Tropics: A Review. Rev. Bras. Ciência do Solo 2014, 38, 679–698. [Google Scholar] [CrossRef]
- Hwang, S., II; Choi, S., II. Use of a Lognormal Distribution Model for Estimating Soil Water Retention Curves from Particle-Size Distribution Data. J. Hydrol. 2006, 323, 325–334. [Google Scholar] [CrossRef]
- Mcbratney, A.B.; Minasny, B.; Cattle, S.R.; Vervoort, R.W. From Pedotransfer Functions to Soil Inference Systems. Geoderma 2001, 109, 41–73. [Google Scholar] [CrossRef]
- Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys. 2017, 55, 1199–1256. [Google Scholar] [CrossRef]
- Rahmati, M.; Vanderborght, J.; Šimůnek, J.; Vrugt, J.A.; Moret-Fernández, D.; Latorre, B.; Lassabatere, L.; Vereecken, H. Soil Hydraulic Properties Estimation from One-Dimensional Infiltration Experiments Using Characteristic Time Concept. Vadose Zone J. 2020, 19, e20068. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Meskini-Vishkaee, F. Predicting the Film and Lens Water Volume between Soil Particles Using Particle Size Distribution Data. J. Hydrol. 2012, 475, 403–414. [Google Scholar] [CrossRef]
- Tóth, B.; Weynants, M.; Nemes, A.; Makó, A.; Bilas, G.; Tóth, G. New Generation of Hydraulic Pedotransfer Functions for Europe. Eur. J. Soil Sci. 2015, 66, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Romano, N.; Palladino, M. Prediction of Soil Water Retention Using Soil Physical Data and Terrain Attributes. J. Hydrol. 2002, 265, 56–75. [Google Scholar] [CrossRef]
- Rastgou, M.; Bayat, H.; Mansoorizadeh, M.; Gregory, A.S. Estimating Soil Water Retention Curve by Extreme Learning Machine, Radial Basis Function, M5 Tree and Modified Group Method of Data Handling Approaches. Water Resour. Res. 2022, 58, 1–26. [Google Scholar] [CrossRef]
- Patil, N.G.; Singh, S.K. Pedotransfer Functions for Estimating Soil Hydraulic Properties: A Review. Pedosphere 2016, 26, 417–430. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Haverkamp, R.; Parlange, J.-Y. Predicting the Water-Retention Curve from Particle-Size Distribution 1. Sandy Soils without Organic Matter. Soil Sci. 1986, 142, 325–339. [Google Scholar] [CrossRef]
- Chang, C.C.; Cheng, D.H. Predicting the Soil Water Retention Curve from the Particle Size Distribution Based on a Pore Space Geometry Containing Slit-Shaped Spaces. Hydrol. Earth Syst. Sci. 2018, 22, 4621–4632. [Google Scholar] [CrossRef]
- Meskini-Vishkaee, F.; Mohammadi, M.H.; Vanclooster, M. A Scaling Approach, Predicting the Continuous Form of Soil Moisture Characteristics Curve, from Soil Particle Size Distribution and Bulk Density Data. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 14305–14329. [Google Scholar] [CrossRef]
- Vidler, A.; Buzzi, O.; Fityus, S. A Simple Water Retention Model Based on Grain Size Distribution. Appl. Sci. 2021, 11, 9452. [Google Scholar] [CrossRef]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A.; Dai, G. Estimation of the Soil-Water Characteristic Curve from the Grain Size Distribution of Coarse-Grained Soils. Eng. Geol. 2020, 267, 105502. [Google Scholar] [CrossRef]
- Matula, S.; Mojrová, M.; Špongrová, K. Estimation of the Soil Water Retention Curve (SWRC) Using Pedotransfer Functions (PTFs). Soil Water Res. 2007, 2, 113–122. [Google Scholar] [CrossRef]
- Nguyen, P.M.; Haghverdi, A.; de Pue, J.; Botula, Y.D.; Le, K.V.; Waegeman, W.; Cornelis, W.M. Comparison of Statistical Regression and Data-Mining Techniques in Estimating Soil Water Retention of Tropical Delta Soils. Biosyst. Eng. 2017, 153, 12–27. [Google Scholar] [CrossRef]
- Chapuis, R.P. Analyzing Grain Size Distributions with the Modal Decomposition Method: Literature Review and Procedures. Bull. Eng. Geol. Environ. 2021, 80, 6649–6666. [Google Scholar] [CrossRef]
- Ghanbarian-Alavijeh, B.; Millán, H.; Huang, G. A Review of Fractal, Prefractal and Pore-Solid-Fractal Models for Parameterizing the Soil Water Retention Curve. Can. J. Soil Sci. 2011, 91, 1–14. [Google Scholar] [CrossRef]
- Khlosi, M.; Alhamdoosh, M.; Douaik, A.; Gabriels, D.; Cornelis, W.M. Enhanced Pedotransfer Functions with Support Vector Machines to Predict Water Retention of Calcareous Soil. Eur. J. Soil Sci. 2016, 67, 276–284. [Google Scholar] [CrossRef]
- Román Dobarco, M.; Cousin, I.; Le Bas, C.; Martin, M.P. Pedotransfer Functions for Predicting Available Water Capacity in French Soils, Their Applicability Domain and Associated Uncertainty. Geoderma 2019, 336, 81–95. [Google Scholar] [CrossRef]
- Arya, L.M.; Leij, F.J.; Shouse, P.J. Scaling Parameter to Predict the Soil Water Characteristic from Particle-Size Distribution Data. Soil Sci. Soc. Am. J. 1999, 63, 510–519. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, A.T. Hydraulic Properties of Porous Media and Their Relation to Drainage Design. Trans. ASAE 1964, 7, 26–28. [Google Scholar] [CrossRef]
- Van Genuchten, M.A. Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Baker, L. Development of Class Pedotransfer Functions of Soil Water Retention-A Refinement. Geoderma 2007, 144, 225–230. [Google Scholar] [CrossRef]
- Campbell, G.S. A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data. Soil Sci. 1974, 117, 311–314. [Google Scholar] [CrossRef]
- Wang, J.-P.; Hu, N.; Françoise, B.; Lambert, P. Unsaturated Sandy Soils From Basic Soil Gradation Parameters. Water Resour. Res. 2017, 53, 6069–6088. [Google Scholar] [CrossRef]
- Ghanbarian-Alavijeh, B.; Liaghat, A.; Huang, G.H.; Van Genuchten, M.T. Estimation of the van Genuchten Soil Water Retention Properties from Soil Textural Data. Pedosphere 2010, 20, 456–465. [Google Scholar] [CrossRef]
- Kargas, G.; Koka, D.; Londra, P.A. Determination of Soil Hydraulic Properties from Infiltration Data Using Various Methods. Land 2022, 11, 779. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Xing, A. Equations for the Soil-Water Characteristic Curve. Can. Geotech. J. 1994, 31, 521–532. [Google Scholar] [CrossRef]
- Merdun, H. Pedotransfer Functions for Point and Parametric Estimations of Soil Water Retention Curve. Plant, Soil Environ. 2006, 52, 321–327. [Google Scholar] [CrossRef]
- Rahimi, A.; Rahardjo, H.; Leong, E.C. Effect of Range of Soil-Water Characteristic Curve Measurements on Estimation of Permeability Function. Eng. Geol. 2015, 185, 96–104. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Luo, X. Parameter Estimation for Soil Water Retention Curve Using the Salp Swarm Algorithm. Water 2018, 10, 815. [Google Scholar] [CrossRef]
- Kosugi, K. Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties. Water Resour. Res. 1996, 32, 2697–2703. [Google Scholar] [CrossRef]
- Van Genuchten, M.; Leij, F.; Yates, S. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils. 1991. Available online: https://www.pc-progress.com/Documents/programs/retc.pdf (accessed on 28 August 2024).
- Andrabi, S.G.; Ghazanfari, E.; Vahedifard, F. An Empirical Relationship between Brooks–Corey and Fredlund–Xing Soil Water Retention Models. J. Porous Media 2019, 22, 1423–1437. [Google Scholar] [CrossRef]
- Wang, Q.; Horton, R.; Shao, M. Horizontal Infiltration Method for Determining Brooks-Corey Model Parameters. Soil Sci. Soc. Am. J. 2002, 66, 1733–1739. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Wang, W.K.; Wang, Z.F.; Li, L.C. Physico-Empirical Methods for Estimating Soil Water Characteristic Curve under Different Particle Size. IOP Conf. Ser. Earth Environ. Sci. 2018, 191, 012018. [Google Scholar] [CrossRef]
- Rezaee, L.; Shabanpour, M.; Davatgar, N. Estimating the Soil Water Retention Curve from Soil Particle Size Distribution Using the Arya and Paris Model for Iranian Soils. Turkish J. Agric. For. 2011, 35, 649–657. [Google Scholar] [CrossRef]
- Qiao, X.; Ma, S.; Pan, G.; Liu, G. Effects of Temperature Change on the Soil Water Characteristic Curve and a Prediction Model for the Mu Us Bottomland, Northern China. Water 2019, 11, 1235. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, W.; Chen, F. Bayesian Approach for Predicting Soil-Water Characteristic Curve from Particle-Size Distribution Data. Energies 2019, 14, 2992. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Chen, C.; Chen, H. Calculation of Capillary Rise Height of Soils by SWCC Model. Adv. Civ. Eng. 2018, 2018, 5190354. [Google Scholar] [CrossRef]
- Toyohara, T.; Akiyama, Y.; Suzuki, T.; Takeuchi, Y.; Mishima, E.; Tanemoto, M.; Momose, A.; Toki, N.; Sato, H.; Nakayama, M.; et al. A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data 1 LALIT M. ARYA AND JACK F. PARIS. Sangre Saragossa 2010, 45, 944–952. [Google Scholar]
- Braddock, R.D.; Parlange, J.Y.; Lee, H. Application of a Soil Water Hysteresis Model to Simple Water Retention Curves. Transp. Porous Media 2001, 44, 407–420. [Google Scholar] [CrossRef]
- Kovács, B.G. Seepage Hydraulics; Elsevier Science Publishers: Amsterdam, The Netherlands, 1981. [Google Scholar]
- Chang, C.-C.; Cheng, D.-H.; Qiao, X.-Y.-C.; Cheng, D.-H.; Qiao, X.-Y. Improving Estimation of Pore Size Distribution to Predict the Soil Water Retention Curve from Its Particle Size Distribution. Geoderma 2019, 340, 206–212. [Google Scholar] [CrossRef]
- Meskini-Vishkaee, F.; Mohammadi, M.H.; Vanclooster, M. Predicting the Soil Moisture Retention Curve, from Soil Particle Size Distribution and Bulk Density Data Using a Packing Density Scaling Factor. Hydrol. Earth Syst. Sci. 2014, 18, 4053–4063. [Google Scholar] [CrossRef]
- Mohammadi, M.H.; Meskini-Vishkaee, F. Predicting Soil Moisture Characteristic Curves from Continuous Particle-Size Distribution Data. Pedosphere 2013, 23, 70–80. [Google Scholar] [CrossRef]
- Tomasella, J.; Pachepsky, Y.; Crestana, S.; Rawls, W.J. Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention. Soil Sci. Soc. Am. J. 2003, 67, 1085–1092. [Google Scholar] [CrossRef]
- Vidler, A.; Buzzi, O.; Fityus, S. The Significance of Hydrophobicity for the Water Retention Properties of Sand and Coal. Appl. Sci. 2021, 11, 5966. [Google Scholar] [CrossRef]
- Yerro, A.; Ceccato, F. Soil–Water–Structure Interactions. Geotechnics 2023, 3, 301–305. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, R. Modelling the Water Retention Behaviour of Anisotropic Soils. J. Hydrol. 2021, 599, 126361. [Google Scholar] [CrossRef]
Sand Content | Silt Content (%) | ||||
---|---|---|---|---|---|
Clay | Silt | Fine Sand | Coarse Sand | ||
0–10 | 0.0005 | 0.0005 | 0.001 | 0.0004 | |
10–40 | 0–50 | 0.001 | 0.001 | 0.001 | 0.0004 |
50–100 | 0.0005 | 0.0005 | 0.001 | 0.0004 | |
40–90 | 0.005 | 0.0015 | 0.001 | 0.0004 | |
90–95 | 0.005 | 0.0015 | 0.0005 | 0.0004 | |
95–100 | 0.005 | 0.0015 | 0.0001 | 0.0004 |
Model | OC | BD | PD | PSD | PoSD | CA | HS | VC | Clay | Loam | Sand | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
AP | x | ✓ | ✓ | ✓ | x | x | x | x | - | + | ++ | [42] |
HP | x | ✓ | ✓ | ✓ | x | x | ✓ | x | - | - | ++ | [43] |
MK | x | x | ✓ | ✓ | x | x | x | x | - | + | ++ | [11] |
CC | x | ✓ | ✓ | ✓ | ✓ | x | x | x | + | + | ++ | [44] |
MV | ✓ | ✓ | ✓ | ✓ | x | x | x | x | + | + | ++ | [79] |
VD | ✓ | x | ✓ | ✓ | ✓ | ✓ | x | x | - | + | ++ | [46] |
ZH | x | x | x | ✓ | ✓ | ✓ | x | x | - | - | ++ | [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farooq, U.; Ajmal, M.; Li, S.; Yang, J.; Ullah, S. Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review. Water 2024, 16, 2547. https://doi.org/10.3390/w16172547
Farooq U, Ajmal M, Li S, Yang J, Ullah S. Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review. Water. 2024; 16(17):2547. https://doi.org/10.3390/w16172547
Chicago/Turabian StyleFarooq, Umar, Muhammad Ajmal, Shicheng Li, James Yang, and Sana Ullah. 2024. "Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review" Water 16, no. 17: 2547. https://doi.org/10.3390/w16172547
APA StyleFarooq, U., Ajmal, M., Li, S., Yang, J., & Ullah, S. (2024). Evaluation of Pedotransfer Functions to Estimate Soil Water Retention Curve: A Conceptual Review. Water, 16(17), 2547. https://doi.org/10.3390/w16172547