Comprehensive Zoning Strategies for Flood Disasters in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Sources
- (1)
- Flood Impact Data
- (2)
- Disaster Resilience Data
- (3)
- Rainfall data
2.2. Flood Hazard Evaluation Methods
- (1)
- Flood risk index
- (2)
- Flood Intensity Index
2.2.1. Flood Risk Index (R)
2.2.2. Flood Intensity Index (F)
2.2.3. Evaluation Factors of Resilient Cities Affecting the Intensity of Flood Damage
3. Results
3.1. Flood Risk and Flood Intensity Zoning
3.2. Integrated Provincial Flood Risk-Intensity Zoning
3.3. Indicators of Urban Resilience Affecting the Intensity of Flood Damage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Q.; Leng, G.; Huang, M. Impacts of Future Climate Change on Urban Flood Volumes in Hohhot in Northern China: Benefits of Climate Change Mitigation and Adaptations. Hydrol. Earth Syst. Sci. 2018, 22, 305–316. [Google Scholar] [CrossRef]
- Rise of the City. Science 2016, 352, 906–907. [CrossRef] [PubMed]
- National Climate Centre. Available online: http://ncc-cma.net/cn/ (accessed on 27 June 2024).
- Ministry of Water Resources of the People’s Republic of China. Available online: http://www.mwr.gov.cn/xw/slyw/202404/t20240422_1709517.html (accessed on 27 June 2024).
- IPCC. Climate Change 2023: Synthesis Report; Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team; Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future Flood Losses in Major Coastal Cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Zhou, Q.; Leng, G.; Su, J.; Ren, Y. Comparison of Urbanization and Climate Change Impacts on Urban Flood Volumes: Importance of Urban Planning and Drainage Adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, L.; Feyen, L.; Dottori, F.; Bianchi, A. Ensemble Flood Risk Assessment in Europe under High End Climate Scenarios. Glob. Environ. Chang. 2015, 35, 199–212. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Chen, W.; Huang, G. Urbanization and Climate Change Impacts on Future Flood Risk in the Pearl River Delta under Shared Socioeconomic Pathways. Sci. Total Environ. 2021, 762, 143144. [Google Scholar] [CrossRef]
- Hlodversdottir, A.O.; Bjornsson, B.; Andradottir, H.O.; Eliasson, J.; Crochet, P. Assessment of Flood Hazard in a Combined Sewer System in Reykjavik City Centre. Water Sci. Technol. 2015, 71, 1471–1477. [Google Scholar] [CrossRef]
- Yin, J.; Yu, D.; Yin, Z.; Liu, M.; He, Q. Evaluating the Impact and Risk of Pluvial Flash Flood on Intra-Urban Road Network: A Case Study in the City Center of Shanghai, China. J. Hydrol. 2016, 537, 138–145. [Google Scholar] [CrossRef]
- Ying, L.; Shanshan, Z. Floods losses and hazards in China from 2001 to 2022. Clim. Change Res. 2022, 18, 154–165. [Google Scholar] [CrossRef]
- Jinhong, W.; Baowei, Z.; Jiangang, L.; Jun, D.; Yunpeng, L. The Distribution of Flood Disaster Loss during 1950–2013. J. Catastrophol. 2016, 31, 63–68. [Google Scholar] [CrossRef]
- Jian, F.; Mengjie, L.; Jing’ai, W.; Peijun, S. Assessment and mapping of global fluvial flood risk. J. Nat. Disasters 2015, 24. [Google Scholar] [CrossRef]
- Sun, S.; Zhai, J.; Li, Y.; Huang, D.; Wang, G. Urban Waterlogging Risk Assessment in Well-Developed Region of Eastern China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102824. [Google Scholar] [CrossRef]
- Huang, S.; Wang, H.; Xu, Y.; She, J.; Huang, J. Key Disaster-Causing Factors Chains on Urban Flood Risk Based on Bayesian Network. Land 2021, 10, 210. [Google Scholar] [CrossRef]
- Koc, K.; Işık, Z. A Multi-Agent-Based Model for Sustainable Governance of Urban Flood Risk Mitigation Measures. Nat. Hazards 2020, 104, 1079–1110. [Google Scholar] [CrossRef]
- Xing, Y.; Shao, D.; Ma, X.; Zhang, S.; Jiang, G. Investigation of the Importance of Different Factors of Flood Inundation Modeling Applied in Urbanized Area with Variance-Based Global Sensitivity Analysis. Sci. Total Environ. 2021, 772, 145327. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Wang, H.; Zhou, R.; Wu, W.; Wang, Y. Spatial Distribution Patterns and Potential Exposure Risks of Urban Floods in Chinese Megacities. J. Hydrol. 2022, 610, 127838. [Google Scholar] [CrossRef]
- Kron, W.; Eichner, J.; Kundzewicz, Z.W. Reduction of Flood Risk in Europe—Reflections from a Reinsurance Perspective. J. Hydrol. 2019, 576, 197–209. [Google Scholar] [CrossRef]
- Kundzewicz, Z.; Su, B.; Wang, Y.; Xia, J.; Huang, J.; Jiang, T. Flood Risk and Its Reduction in China. Adv. Water Resour. 2019, 130, 37–45. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, Y.; Zheng, X.; Deng, X. Building Green Infrastructure for Mitigating Urban Flood Risk in Beijing, China. Urban For. Urban Green. 2024, 93, 128218. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Liang, S.; Zhu, B.; Yao, Y.; Meng, S.; Lu, C. Quantifying the Response of Potential Flooding Risk to Urban Growth in Beijing. Sci. Total Environ. 2020, 705, 135868. [Google Scholar] [CrossRef]
- Tang, Y.; Chan, F.K.S.; O’Donnell, E.C.; Griffiths, J.; Lau, L.; Higgitt, D.L.; Thorne, C.R. Aligning Ancient and Modern Approaches to Sustainable Urban Water Management in China: Ningbo as a “Blue-Green City” in the “Sponge City” Campaign. J. Flood Risk Manag. 2018, 11, e12451. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Yu, J.; Li, P.; Yang, L. Green Space Optimization Strategy to Prevent Urban Flood Risk in the City Centre of Wuhan. Water 2021, 13, 1517. [Google Scholar] [CrossRef]
- Scionti, F.; Miguez, M.G.; Barbaro, G.; De Sousa, M.M.; Foti, G.; Canale, C. Integrated Methodology for Urban Flood Risk Mitigation in Cittanova, Italy. J. Water Resour. Plann. Manag. 2018, 144, 05018013. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Zhang, H.; Dalla Fontana, G.; Tarolli, P. Identifying Dominant Factors of Waterlogging Events in Metropolitan Coastal Cities: The Case Study of Guangzhou, China. J. Environ. Manag. 2020, 271, 110951. [Google Scholar] [CrossRef] [PubMed]
- Berndtsson, R.; Becker, P.; Persson, A.; Aspegren, H.; Haghighatafshar, S.; Jönsson, K.; Larsson, R.; Mobini, S.; Mottaghi, M.; Nilsson, J.; et al. Drivers of Changing Urban Flood Risk: A Framework for Action. J. Environ. Manag. 2019, 240, 47–56. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Z.; Ge, W.; Wang, H.; Shen, Y.; Jiang, M. Identification of Sensitivity Indicators of Urban Rainstorm Flood Disasters: A Case Study in China. J. Hydrol. 2021, 599, 126393. [Google Scholar] [CrossRef]
- Shao, M.; Gong, Z.; Xu, X. Risk Assessment of Rainstorm and Flood Disasters in China between 2004 and 2009 Based on Gray Fixed Weight Cluster Analysis. Nat. Hazards 2014, 71, 1025–1052. [Google Scholar] [CrossRef]
- Xie, N.; Xin, J.; Liu, S. China’s Regional Meteorological Disaster Loss Analysis and Evaluation Based on Grey Cluster Model. Nat. Hazards 2014, 71, 1067–1089. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, R.; Huo, Z.; Mao, F.; E, Y.; Zheng, W. An Assessment of Multidimensional Flood Vulnerability at the Provincial Scale in China Based on the DEA Method. Nat. Hazards 2012, 64, 1575–1586. [Google Scholar] [CrossRef]
- Nie, C.; Li, H.; Yang, L.; Wu, S.; Liu, Y.; Liao, Y. Spatial and Temporal Changes in Flooding and the Affecting Factors in China. Nat. Hazards 2012, 61, 425–439. [Google Scholar] [CrossRef]
- Chen, Y. Flood Hazard Zone Mapping Incorporating Geographic Information System (GIS) and Multi-Criteria Analysis (MCA) Techniques. J. Hydrol. 2022, 612, 128268. [Google Scholar] [CrossRef]
- Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [Google Scholar] [CrossRef]
- Peng, L.; Xia, J.; Li, Z.; Fang, C.; Deng, X. Spatio-Temporal Dynamics of Water-Related Disaster Risk in the Yangtze River Economic Belt from 2000 to 2015. Resour. Conserv. Recycl. 2020, 161, 104851. [Google Scholar] [CrossRef]
- Yu, J.; Zou, L.; Xia, J.; Zhang, Y.; Zuo, L.; Li, X. Investigating the Spatial–Temporal Changes of Flood Events across the Yangtze River Basin, China: Identification, Spatial Heterogeneity, and Dominant Impact Factors. J. Hydrol. 2023, 621, 129503. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Hu, Z.; Lyu, Y.; Zhang, G.; Liu, J.; Liu, Y.; Gu, Y.; Huang, X.; Zheng, H.; et al. Flood Risk Assessment Based on Fuzzy Synthetic Evaluation Method in the Beijing-Tianjin-Hebei Metropolitan Area, China. Sustainability 2020, 12, 1451. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, B.; Shao, S.; Hao, M.; Zhang, Y.; Xu, Y.; Kuang, Y.; Dong, L.; Wang, Z. Risk Assessment and Zoning of Flood Disaster in Wuchengxiyu Region, China. Urban Clim. 2023, 49, 101562. [Google Scholar] [CrossRef]
- Solaimani, K.; Shokrian, F.; Darvishi, S. An Assessment of the Integrated Multi-Criteria and New Models Efficiency in Watershed Flood Mapping. Water Resour. Manag. 2023, 37, 403–425. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W. Climate Predictions with Multimodel Ensembles. J. Clim. 2002, 15, 793–799. [Google Scholar] [CrossRef]
- Peng, P.; Kumar, A.; van den Dool, H.; Barnston, A.G. An analysis of multimodel ensemble predictions for seasonal climate anomalies. J. Geophys. Res. Solid. Earth 2002, 107, ACL 18-1–ACL 18-12. [Google Scholar] [CrossRef]
- Hagedorn, R.; Doblas-Reyes, F.J.; Palmer, T.N. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2005, 57, 219–233. [Google Scholar] [CrossRef]
- Weigel, A.P.; Knutti, R.; Liniger, M.A.; Appenzeller, C. Risks of Model Weighting in Multimodel Climate Projections. J. Clim. 2010, 23, 4175–4191. [Google Scholar] [CrossRef]
- DelSole, T.; Yang, X.; Tippett, M.K. Is unequal weighting significantly better than equal weighting for multi-model forecasting? Q. J. R. Meteorol. Soc. 2012, 139, 176–183. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining Urban Resilience: A Review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Jiao, L.; Wang, L.; Lu, H.; Fan, Y.; Zhang, Y.; Wu, Y. An Assessment Model for Urban Resilience Based on the Pressure-State-Response Framework and BP-GA Neural Network. Urban Clim. 2023, 49, 101543. [Google Scholar] [CrossRef]
- Lu, S.; Hu, Z.Y.; Wang, B.P.; Qin, P.; Wang, L. Spatio-temporal Patterns of Extreme Precipitation Events over China in Recent 56 Years. Plateau Meteorol. 2020, 39, 683–693. [Google Scholar] [CrossRef]
City Zoning Category | Evaluating Indicator | Proportion of Green Space | Proportion of Rainwater Pipes | Share of Water Bodies |
---|---|---|---|---|
High-risk and high-intensity | Intensity index | −0.03 | −0.11 * | 0.07 * |
p value | 0.28 | 0.00 | 0.03 | |
High-risk and low-intensity | Intensity index | −0.18 * | −0.16 * | −0.05 |
p value | 0.00 | 0.00 | 0.29 |
No. | Literature Cited | Year | Scope of the Study | Discussion | Whether to Discuss Urban Resilience Factors | Whether to Quantify the Factors Influencing the Intensity of Flood Damage | Main Findings |
---|---|---|---|---|---|---|---|
1 | Dapeng Huang et al. (2012) [32] | 2001–2011 | China’s provincial scale | Assessment of flood vulnerability with discussion of economic and demographic factors | NO | NO | The eastern coastal provinces of Jiangsu, Zhejiang and Shandong have high flood vulnerability due to their developed economies and dense populations. |
2 | Chengjing Nie et al. (2012) [33] | 1980–2009 | China’s provincial scale | Spatial and temporal flooding variability and its influencing factors are discussed | NO | NO | Frequent floods and serious impacts in the middle and lower reaches of the Yangtze River (e.g., Hubei, Hunan, and Jiangxi) and the Pearl River Delta (e.g., Guangdong) |
3 | Minlan Shao et al. (2014) [30] | 2004–2009 | China’s provincial scale | The assessment of flood risk focuses on rainfall and economic losses. | NO | NO | The southeastern coastal areas (e.g., Fujian and Guangdong) and the middle and lower reaches of the Yangtze River (e.g., Hubei and Anhui) are high-risk areas. |
4 | Naiming Xie et al. (2014) [31] | 2004–2010 | China’s provincial scale | Analyses of regional meteorological disaster losses in China, focusing on meteorological disasters and economic losses. | NO | NO | East China (e.g., Shanghai, Jiangsu and Zhejiang) and South China (e.g., Guangdong and Guangxi) have suffered greater losses from meteorological disasters. |
5 | Yu Chen (2022) [34] | 1960–2019 | China’s provincial scale | Mapping of flood hazard zones, focusing mainly on geographic information and integrated multi-factor analyses | NO | NO | The middle and lower reaches of the Yangtze River (e.g., Jiangsu and Anhui) and the Pearl River Delta (e.g., Guangdong) are high-risk areas. |
6 | This study | 2011–2022 | 31 provinces and 295 prefecture-level cities in China | Flood hazard zoning based on the whole natural–economic–social chain and incorporating urban resilience factors | YES | YES | Updating high-risk areas. Southeast coastal cities were found not to be high-intensity areas, and the region’s urban resilience capacity, such as the percentage of green space area and the density of the rainwater pipe, was found to be substantially better than before. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, Y.; Ping, L.; Li, N.; Zhao, P. Comprehensive Zoning Strategies for Flood Disasters in China. Water 2024, 16, 2546. https://doi.org/10.3390/w16172546
Li H, Wang Y, Ping L, Li N, Zhao P. Comprehensive Zoning Strategies for Flood Disasters in China. Water. 2024; 16(17):2546. https://doi.org/10.3390/w16172546
Chicago/Turabian StyleLi, Huipan, Yuan Wang, Liying Ping, Na Li, and Peng Zhao. 2024. "Comprehensive Zoning Strategies for Flood Disasters in China" Water 16, no. 17: 2546. https://doi.org/10.3390/w16172546
APA StyleLi, H., Wang, Y., Ping, L., Li, N., & Zhao, P. (2024). Comprehensive Zoning Strategies for Flood Disasters in China. Water, 16(17), 2546. https://doi.org/10.3390/w16172546