Electromagnetic Water Treatment and Soil Compost Incorporation to Alleviate the Impact of Soil Salinization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Water Treatment and Irrigation Water Quality
2.3. Pre-Processing and Treatment of Soil and Analysis of Soil Parameters
2.4. Analysis of Irrigation Water and Leached Water
2.5. Analysis of Plants
2.6. Statistical Data Analysis
3. Results and Discussion
3.1. Impact of EMF Treatment on Water Quality
3.2. Impact of EMF Water Treatment on Soil Moisture Content and Soil EC
Irrigation Water | Soil Treatment | Plant | Total Mass of Leaching (mg) | SAR in 6 Days | SAR after 56 Days | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NO3− | Cl− | Na+ | K+ | Mg2+ | Ca2+ | DOC | |||||
Brackish water | No compost | No plant | 1012 ± 34 abc | 604 ± 11 ab | 991 ± 37 ab | 37 ± 6 cdef | 248 ± 21 cde | 952 ± 41 cdef | 133 ± 15 c | 1.8 ± 0.1 a | 4.4 ± 0.2 b |
Brackish water, EMF | No compost | No plant | 1174 ± 132 a | 683 ± 19 a | 1085 ± 31 a | 49 ± 4 bc | 274 ± 5 cde | 1062 ± 44 abcd | 133 ± 10 c | 1.8 ± 0.1 a | 4.5 ± 0.2 b |
Brackish water | No compost | Plant | 996 ± 110 abcd | 488 ± 42 bcd | 694 ± 64 cd | 40 ± 5 cde | 392 ± 28 ab | 1206 ± 148 abc | 80 ± 1 fg | 1.9 ± 0.2 a | 3.3 ± 0.2 d |
Brackish water, EMF | No compost | Plant | 1166 ± 123 a | 590 ± 9 abc | 769 ± 11 bc | 45 ± 8 bcd | 419 ± 47 a | 1388 ± 110 a | 84 ± 5 efg | 1.7 ± 0.2 a | 3.3 ± 0.3 d |
Brackish water | Compost | No plant | 570 ± 50 e | 562 ± 39 abcd | 1114 ± 92 a | 65 ± 6 a | 309 ± 28 bc | 1293 ± 92 ab | 248 ± 13 ab | 1.8 ± 0.3 a | 4.2 ± 0.3 bc |
Brackish water, EMF | Compost | No plant | 702 ± 40 de | 606 ± 17 ab | 1045 ± 16 a | 54 ± 5 ab | 293 ± 3 cd | 1251 ± 119 abc | 287 ± 15 a | 1.8 ± 0.2 a | 3.8 ± 0.2 cd |
Brackish water | Compost | Plant | 759 ± 7 cde | 426 ± 80 d | 855 ± 133 bc | 20 ± 3 g | 152 ± 33 f | 999 ± 230 bcde | 72 ± 16 g | 2.0 ± 0.1 a | 5.6 ± 0.2 a |
Brackish water, EMF | Compost | Plant | 728 ± 45 de | 438 ± 56 cd | 444 ± 56 e | 26 ± 3 fg | 268 ± 48 cde | 1205 ± 148 abc | 120 ± 12 cde | 1.7 ± 0.1 a | 2.7 ± 0.1 e |
Agricultural water | No compost | No plant | 1078 ± 155 ab | 525 ± 31 abcd | 524 ± 33 cde | 34 ± 2 def | 219 ± 22 def | 717 ± 39 ef | 121 ± 14 cde | 1.7 ± 0.1 a | 2.6 ± 0.2 e |
Agricultural water, EMF | No compost | Plant | 1093 ± 115 ab | 425 ± 13 d | 312 ± 10 e | 20 ± 0 g | 206 ± 4 def | 634 ± 35 f | 67 ± 4 g | 1.7 ± 0.2 a | 2.6 ± 0.1 e |
Agricultural water | No compost | Plant | 804 ± 124 cde | 494 ± 49 bcd | 345 ± 23 e | 24 ± 4 fg | 222 ± 37 cdef | 696 ± 92 ef | 84 ± 5 efg | 2.0 ± 0.1 a | 2.2 ± 0.1 ef |
Agricultural water | Compost | No plant | 910 ± 78 abcd | 553 ± 20 abcd | 504 ± 15 de | 47 ± 3 bcd | 229 ± 6 cdef | 826 ± 45 def | 245 ± 15 b | 2.0 ± 0.2 a | 2.1 ± 0.1 f |
Agricultural water, EMF | Compost | Plant | 877 ± 51 bcd | 478 ± 42 bcd | 321 ± 37 e | 24 ± 4 fg | 232 ± 25 cdef | 753 ± 62 def | 124 ± 14 cd | 1.8 ± 0.0 a | 2.2 ± 0.1 ef |
Agricultural water | Compost | Plant | 593 ± 33 e | 448 ± 56 bcd | 391 ± 6 e | 27 ± 3 efg | 197 ± 17 ef | 623 ± 50 f | 118 ± 8 cdef | 1.7 ± 0.1 a | 3.3 ± 0.2 d |
p-value | WT | 0.003 | 0.401 | 0.051 | 0.004 | 0.496 | 0.308 | 0.793 | 0.354 | 0 | |
IW | 0.152 | 0.02 | 0 | 0 | 0 | 0 | 0.008 | 0.515 | 0 | ||
C | 0 | 0.429 | 0.208 | 0.014 | 0.001 | 0.388 | 0 | 0.111 | 0 | ||
P | 0 | 0 | 0 | 0 | 0.07 | 0.756 | 0 | 0.644 | 0 | ||
WTxIW | 0.263 | 0.051 | 0.475 | 0 | 0.019 | 0.146 | 0.001 | 0.579 | 0 | ||
WTxC | 0.446 | 0.424 | 0.988 | 0.517 | 0.906 | 0.95 | 0 | 0.192 | 0 | ||
WTxP | 0.796 | 0.886 | 0.105 | 0.18 | 0.01 | 0.087 | 0.976 | 0.082 | 0 | ||
WTxIWxC | 0.004 | 0.061 | 0.001 | 0.025 | 0.389 | 0.525 | 0.244 | 0.139 | 0 | ||
WTxCxP | 0.71 | 0.703 | 0.171 | 0.004 | 0.011 | 0.337 | 0.725 | 0.919 | 0 |
3.3. Impact of EMF Water Treatment, Soil Compost Incorporation, and Plant Growth on Leaching of Ions and Organics from Different Soil Columns
3.4. Impact of EMF Treatment of Irrigation Water and Soil Compost Incorporation on Organic Content of Soil and Leached Water
Irrigation Water Type | Water Treatment | Soil Treatment | Plant | Organic Matter (%) | Increase OM from Raw Soil (%) | Organic Carbon (%) | Increase OC from Raw Soil (%) |
---|---|---|---|---|---|---|---|
Impact on brackish water-irrigated columns | |||||||
Brackish water | No EMF | No compost | No plant | 15.1 ± 0.1 b | −7.9 | 3.9 ± 0.3 b | −15.5 |
Brackish water | EMF | No compost | No plant | 15.1 ± 0.5 b | −7.7 | 4.2 ± 0.3 b | −10.0 |
Brackish water | No EMF | No compost | Plant | 15.5 ± 0.6 b | −5.0 | 4.1 ± 0.2 b | −12.1 |
Brackish water | EMF | No compost | Plant | 15.7 ± 0.6 b | −4.0 | 4.3 ± 0.2 b | −7.9 |
Brackish water | No EMF | Compost | No plant | 22.5 ± 0.6 a | 29.4 | 8.2 ± 0.5 a | 43.3 |
Brackish water | EMF | Compost | No plant | 23.5 ± 1.8 a | 35.4 | 9.7 ± 1.6 a | 69.3 |
Brackish water | No EMF | Compost | Plant | 22.9 ± 1.3 a | 32.1 | 8.4 ± 0.5 a | 47.3 |
Brackish water | EMF | Compost | Plant | 22.1 ± 1.8 a | 27.3 | 9.0 ± 0.9 a | 56.9 |
p-value | WT | 0.827 | 0.074 | ||||
C | 0.000 | 0.000 | |||||
Impact on agricultural water-irrigated columns | |||||||
Agricultural water | No EMF | No compost | No plant | 15.5 ± 0.8 b | −5.0 | 3.9 ± 0.3 c | −15.6 |
Agricultural water | No EMF | No compost | Plant | 15.8 ± 1.2 b | −3.4 | 4.1 ± 0.5 c | −12.1 |
Agricultural water | EMF | No compost | Plant | 15.8 ± 0.3 b | −3.4 | 4.8 ± 1.1 c | 3.7 |
Agricultural water | No EMF | Compost | No plant | 22.3 ± 2.1 a | 28.5 | 7.6 ± 1.0 b | 32.7 |
Agricultural water | No EMF | Compost | Plant | 22.2 ± 1.5 a | 27.7 | 7.4 ± 0.4 b | 30.2 |
Agricultural water | EMF | Compost | Plant | 23.0 ± 1.4 a | 32.5 | 9.6 ± 0.8 a | 68.4 |
p-value | WT | 0.493 | 0.004 | ||||
C | 0.000 | 0.000 |
3.5. Impact of EMF-Treated Irrigation Water and Soil Compost Incorporation on the Soil Nutrients and Ions
3.6. Impact of Soil Compost Incorporation on Reduction of Nutrient Leaching for EMF-Treated Irrigation Water
Irrigation Water | Leaching Reduction by (%) | ||
---|---|---|---|
Compost | EMF Water Treatment | Compost + EMF Water Treatment | |
Brackish water | 23.6 | −18.7 | 24.9 |
Agricultural water | 25.7 | −37.1 | −15.3 |
3.7. Impact of EMF-Treated Irrigation Water and Soil Compost Incorporation on Plant Growth
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malakar, A.; Snow, D.D.; Ray, C. Irrigation water quality—A contemporary perspective. Water 2019, 11, 1482. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Epstein, E.; Norlyn, J.D.; Rush, D.W.; Kingsbury, R.W.; Kelley, D.B.; Cunningham, G.A.; Wrona, A.F. Saline culture of crops: A genetic approach. Science 1980, 210, 399–404. [Google Scholar] [CrossRef]
- Gibson, N.; McNulty, S.; Miller, C.; Gavazzi, M.; Worley, E.; Keesee, D.; Hollinger, D. Identification, Mitigation, and Adaptation to Salinization on Working Lands in the U.S. Southeast; Forest Service, US Department of Agriculture, Southern Research Station: Asheville, NC, USA, 2021.
- Levy, D.; Coleman, W.K.; Veilleux, R.E. Adaptation of potato to water shortage: Irrigation management and enhancement of tolerance to drought and salinity. Am. J. Potato Res. 2013, 90, 186–206. [Google Scholar] [CrossRef]
- Rebhun, M. Desalination of reclaimed wastewater to prevent salinization of soils and groundwater. Desalination 2004, 160, 143–149. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Qadir, M.; Steffens, D.; Yan, F.; Schubert, S. Sodium removal from a calcareous saline–sodic soil through leaching and plant uptake during phytoremediation. Land Degrad. Dev. 2003, 14, 301–307. [Google Scholar] [CrossRef]
- Paz, A.M.; Amezketa, E.; Thompson, R.; Costantini, E.A.; Canfora, L.; Castanheira, N.; Falsone, G.; Gonçalves, M.C.; Gould, I.; Hristov, B. Salt-affected soils: Field-scale strategies for prevention, mitigation, and adaptation to salt accumulation. Ital. J. Agron. 2023, 18, 2166. [Google Scholar] [CrossRef]
- Wichern, F.; Islam, M.R.; Hemkemeyer, M.; Watson, C.; Joergensen, R.G. Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front. Sustain. Food Syst. 2020, 4, 30. [Google Scholar] [CrossRef]
- Gates, T.K.; Cody, B.M.; Donnelly, J.P.; Herting, A.W.; Bailey, R.T.; Mueller Price, J. Assessing selenium contamination in the irrigated stream–aquifer system of the Arkansas River, Colorado. J. Environ. Qual. 2009, 38, 2344–2356. [Google Scholar] [CrossRef]
- Johnson, D.C. The influence of soil microbial community structure on carbon and nitrogen partitioning in plant/soil ecosystems (2167–9843). PeerJ 2017, 5, e2841v1. [Google Scholar] [CrossRef]
- Mohammadshirazi, F.; McLaughlin, R.A.; Heitman, J.L.; Brown, V.K. A multi-year study of tillage and amendment effects on compacted soils. J. Environ. Manag. 2017, 203, 533–541. [Google Scholar] [CrossRef]
- Faucette, L.; Jordan, C.; Risse, L.; Cabrera, M.; Coleman, D.; West, L. Evaluation of stormwater from compost and conventional erosion control practices in construction activities. J. Soil Water Conserv. 2005, 60, 288–297. [Google Scholar]
- Noran, R.; Shani, U.; Lin, I. The effect of irrigation with magnetically treated water on the translocation of minerals in the soil. Magn. Electr. Sep. 1970, 7, 109–122. [Google Scholar] [CrossRef]
- Abdelghany, A.E.; Abdo, A.I.; Alashram, M.G.; Eltohamy, K.M.; Li, J.; Xiang, Y.; Zhang, F. Magnetized Saline Water Irrigation Enhances Soil Chemical and Physical Properties. Water 2022, 14, 4048. [Google Scholar] [CrossRef]
- Gabrielli, C.; Jaouhari, R.; Maurin, G.; Keddam, M. Magnetic water treatment for scale prevention. Water Res. 2001, 35, 3249–3259. [Google Scholar] [CrossRef]
- da Silva, J.T.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Biol. 2014, 12, 137–142. [Google Scholar]
- Khaskhoussy, K.; Bouhlel, M.; Dahmouni, M.; Hachicha, M. Performance of different magnetic and electromagnetic water treatment devices on soil and two tomato cultivars. Sci. Hortic. 2023, 322, 112437. [Google Scholar] [CrossRef]
- Hozayn, M.; Qados, A.A. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agric. Biol. J. N. Am. 2010, 1, 671–676. [Google Scholar]
- Sarraf, M.; Kataria, S.; Taimourya, H.; Santos, L.O.; Menegatti, R.D.; Jain, M.; Ihtisham, M.; Liu, S. Magnetic field (MF) applications in plants: An overview. Plants 2020, 9, 1139. [Google Scholar] [CrossRef] [PubMed]
- Zlotopolski, V. Effect of Magnetic Treatment on Water Permeability Through a Semi-Permeable Membrane. Am. J. Water Sci. Eng. 2017, 3, 28–33. [Google Scholar] [CrossRef]
- Zlotopolski, V. Magnetic treatment reduces water usage in irrigation without negatively impacting yield, photosynthesis and nutrient uptake in lettuce. Int. J. Appl. Agric. Sci. 2017, 3, 117–122. [Google Scholar] [CrossRef]
- Ali, Y.; Samaneh, R.; Kavakebian, F. Applications of magnetic water technology in farming and agriculture development: A review of recent advances. Curr. World Environ. 2014, 9, 695. [Google Scholar] [CrossRef]
- Moussa, M.; Michot, D.; Hachicha, M. Effect of electromagnetic treatment of treated wastewater on soil and drainage water. Desalination Water Treat. 2021, 213, 177–189. [Google Scholar] [CrossRef]
- Hilal, M.; Hilal, M. Application of magnetic technologies in desert agriculture. II-Effect of magnetic treatments of irrigation water on salt distribution in olive and citrus fields and induced changes of ionic balance in soil and plant. Egypt. J. Soil Sci. 2000, 40, 423–435. [Google Scholar]
- Hachicha, M.; Kahlaoui, B.; Khamassi, N.; Misle, E.; Jouzdan, O. Effect of electromagnetic treatment of saline water on soil and crops. J. Saudi Soc. Agric. Sci. 2018, 17, 154–162. [Google Scholar] [CrossRef]
- Surendran, U.; Sandeep, O.; Joseph, E. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agric. Water Manag. 2016, 178, 21–29. [Google Scholar]
- Lorenzoni, M.Z.; Rezende, R.; de Souza, Á.H.C.; de Castro Seron, C.; Gonçalves, A.C.A.; Saath, R. Growth and development of bell pepper crop irrigated with magnetically-treated water. Rev. Agric. Neotrop. 2020, 7, 9–16. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Lin, L.; Wang, H.; Shaw, R.; Lucero, D.; Xu, P. A Pilot Study of an Electromagnetic Field for Control of Reverse Osmosis Membrane Fouling and Scaling During Brackish Groundwater Desalination. Water 2019, 11, 1015. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Xu, X.; Xu, P. A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation. NPJ Clean Water 2020, 3, 25. [Google Scholar] [CrossRef]
- Jiang, W.; Xu, X.; Johnson, D.; Lin, L.; Wang, H.; Xu, P. Effectiveness and Mechanisms of Electromagnetic Field on Reverse Osmosis Membrane Scaling Control During Brackish Groundwater Desalination. Sep. Purif. Technol. 2022, 280, 119823. [Google Scholar] [CrossRef]
- Penteado de Almeida, J.; Stoll, Z.; Xu, P. An Alternating, Current-Induced Electromagnetic Field for Membrane Fouling and Scaling Control during Desalination of Secondary Effluent from Municipal Wastewater. Water 2023, 15, 2234. [Google Scholar] [CrossRef]
- Yadollahpour, A.; Rashidi, S.; Ghotbeddin, Z.; Jalilifar, M.; Rezaee, Z. Electromagnetic fields for the treatments of wastewater: A review of applications and future opportunities. J. Pure Appl. Microbiol. 2014, 8, 3711–3719. [Google Scholar]
- Pawełek, A.; Wyszkowska, J.; Cecchetti, D.; Dinka, M.D.; Przybylski, K.; Szmidt-Jaworska, A. The Physiological and Biochemical Response of Field Bean (Vicia faba L.(partim)) to Electromagnetic Field Exposure Is Influenced by Seed Age, Light Conditions, and Growth Media. Agronomy 2022, 12, 2161. [Google Scholar] [CrossRef]
- Johnson, D. Johnson Su Bioreactor. March 2016. Available online: https://www.youtube.com/watch?v=DxUGk161Ly8 (accessed on 17 November 2022).
- Middelburg, J.J.; Soetaert, K.; Hagens, M. Ocean alkalinity, buffering and biogeochemical processes. Rev. Geophys. 2020, 58, e2019RG000681. [Google Scholar] [CrossRef] [PubMed]
- Suvendran, S.; Johnson, D.; Acevedo, M.; Smithers, B.; Xu, P. Effect of Irrigation Water Quality and Soil Compost Treatment on Salinity Management to Improve Soil Health and Plant Yield. Water 2024, 16, 1391. [Google Scholar] [CrossRef]
- Ignatov, I.; Mosin, O. Basic concepts of magnetic water treatment. Eur. J. Mol. Biotechnol. 2014, 4, 72–85. [Google Scholar]
- Karkush, M.O.; Ahmed, M.D.; Al-Ani, S. Magnetic Field Influence on The Properties of Water Treated by Reverse Osmosis. Eng. Technol. Appl. Sci. Res. 2019, 9, 4433–4439. [Google Scholar] [CrossRef]
- American Agricultural Laboratory, Inc. Salinity and Sodium Hazard of Irrigation Water. 2023. Available online: https://www.amaglab.com/guidelines (accessed on 9 March 2023).
- Khoshravesh, M.; Mostafazadeh-Fard, B.; Mousavi, S.; Kiani, A. Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522. [Google Scholar] [CrossRef]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils–A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.I. Effects of magnetized low quality water on some soil properties and plant growth. Int. J. Res. Chem. Environ. 2013, 3, 140–147. [Google Scholar]
- Sullivan, D.; Fransen, S.; Bary, A.; Cogger, C. Fertilizer nitrogen replacement value of food residuals composted with yard trimmings, paper or wood wastes. Compost. Sci. Util. 1998, 6, 6–18. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef] [PubMed]
- Lenntech. SAR Hazard of Irrigation. Lenntech B.V., 2023. Available online: https://www.lenntech.com/applications/irrigation/sar/sar-hazard-of-irrigation-water.htm (accessed on 9 March 2023).
- Shaul, O. Magnesium transport and function in plants: The tip of the iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef]
- Pagliari, P.; Kaiser, D.; Rosen, C.; Lamb, J. The Nature of Phosphorus in Soils; Nutrient Management, University of Minnesota Extension: St Paul, MN, USA, 2017. [Google Scholar]
- Duong, T.T.T. Compost Effects on Soil Properties and Plant Growth. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2013. [Google Scholar]
- Staff, A. Operational Control of Coagulation and Filtration Processes (M37); American Water Works Association: Denver, CO, USA, 2011. [Google Scholar]
- Layman, R.M.; Day, S.; Harris, J.; Daniels, W.; Wiseman, P. Rehabilitation of severely compacted urban soil to optimize tree establishment and growth. In Proceedings of the II International Conference on Landscape and Urban Horticulture 881, Bologna, Italy, 9–13 June 2009. [Google Scholar]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef] [PubMed]
- El Hasini, S.; De Nobili, M.; Azim, K.; Douaik, A.; Laghrour, M.; El Idrissi, Y.; El Alaoui El Belghiti, M.; Zouahri, A. The influence of compost humic acid quality and its ability to alleviate soil salinity stress. Int. J. Recycl. Org. Waste Agric. 2020, 9, 21–31. [Google Scholar]
- Power, J.; Schepers, J. Nitrate contamination of groundwater in North America. Agric. Ecosyst. Environ. 1989, 26, 165–187. [Google Scholar] [CrossRef]
- Yang, L.; Zheng, C.; Andrews, C.B.; Wang, C. Applying a regional transport modeling framework to manage nitrate contamination of groundwater. Groundwater 2021, 59, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Hanay, A.; Büyüksönmez, F.; Kiziloglu, F.M.; Canbolat, M.Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost. Sci. Util. 2004, 12, 175–179. [Google Scholar] [CrossRef]
Water Type | pH | EC (µS/cm) | ||
---|---|---|---|---|
Before EMF | After EMF | Before EMF | After EMF | |
EMF treatment of 5 min | ||||
Brackish water | 8.05 ± 0.2 | 8.36 ± 0.15 | 2010 ± 43 | 1995 ± 48 |
Agricultural water | 7.08 ± 0.2 | 7.20 ± 0.1 | 792 ± 12.4 | 776 ± 13.6 |
EMF treatment of 20 min | ||||
Brackish water | 7.03 ± 0.4 | 7.20 ± 0.5 | 1747 ± 15 | 1694 ± 27 |
RO permeate | 6.86 ± 0.3 | 6.45 ± 0.7 | 333 ± 5 | 322 ± 9 |
Irrigation Water Type | Water Treatment | Soil Treatment | Plant | Soil Electrical Conductivity (mS/cm) | Soil Moisture Content (m3/m3) | ||||
---|---|---|---|---|---|---|---|---|---|
0–15 cm | 15–30 cm | 30–45 cm | 0–15 cm | 15–30 cm | 30–45 cm | ||||
Brackish water | No EMF | No compost | No plant | 3.000 ± 0.554 abc | 2.401 ± 0.235 g | 2.557 ± 0.280 e | 0.252 ± 0.037 a | 0.237 ± 0.012 c | 0.245 ± 0.012 h |
Brackish water | EMF | No compost | No plant | 2.654 ± 0.729 cde | 2.642 ± 0.179 ef | 2.485 ± 0.217 ef | 0.248 ± 0.042 ab | 0.248 ± 0.011 a | 0.247 ± 0.021 gh |
Brackish water | No EMF | No compost | Plant | 2.930 ± 0.597 bc | 2.756 ± 0.296 de | 3.063 ± 0.336 cd | 0.231 ± 0.015 bcd | 0.222 ± 0.014 ef | 0.275 ± 0.021 de |
Brackish water | EMF | No compost | Plant | 2.748 ± 0.757 bc | 3.179 ± 0.312 b | 3.091 ± 0.337 cd | 0.238 ± 0.028 abc | 0.239 ± 0.013 bc | 0.269 ± 0.013 def |
Brackish water | No EMF | Compost | No plant | 2.752 ± 0.505 bc | 2.942 ± 0.287 cd | 3.541 ± 0.399 ab | 0.242 ± 0.019 abc | 0.246 ± 0.014 ab | 0.300 ± 0.014 a |
Brackish water | EMF | Compost | No plant | 2.684 ± 0.602 bcd | 3.155 ± 0.349 bc | 3.546 ± 0.372 ab | 0.232 ± 0.020 bcd | 0.221 ± 0.011 ef | 0.275 ± 0.013 de |
Brackish water | No EMF | Compost | Plant | 3.058 ± 0.350 ab | 3.666 ± 0.364 a | 3.663 ± 0.498 a | 0.230 ± 0.013 bcd | 0.224 ± 0.009 ef | 0.280 ± 0.016 cd |
Brackish water | EMF | Compost | Plant | 3.383 ± 0.739 a | 3.378 ± 0.445 b | 3.770 ± 0.337 a | 0.227 ± 0.013 cd | 0.222 ± 0.009 ef | 0.295 ± 0.014 ab |
Agricultural water | No EMF | No compost | No plant | 2.249 ± 0.243 f | 2.090 ± 0.388 h | 2.245 ± 0.376 fg | 0.252 ± 0.023 a | 0.248 ± 0.011 a | 0.257 ± 0.023 fgh |
Agricultural water | No EMF | No compost | Plant | 2.112 ± 0.384 f | 1.852 ± 0.123 i | 2.167 ± 0.203 g | 0.246 ± 0.027 ab | 0.234 ± 0.015 cd | 0.271 ± 0.024 def |
Agricultural water | EMF | No compost | Plant | 2.286 ± 0.559 def | 1.740 ± 0.195 i | 2.352 ± 0.291 efg | 0.235 ± 0.023 abcd | 0.221 ± 0.007 ef | 0.260 ± 0.018 efg |
Agricultural water | No EMF | Compost | No plant | 2.076 ± 0.267 f | 2.430 ± 0.414 fg | 3.209 ± 0.650 cd | 0.244 ± 0.024 abc | 0.253 ± 0.008 a | 0.300 ± 0.016 a |
Agricultural water | No EMF | Compost | Plant | 2.277 ± 0.301 ef | 2.670 ± 0.298 e | 3.320 ± 0.497 bc | 0.230 ± 0.015 bcd | 0.228 ± 0.008 de | 0.283 ± 0.028 bcd |
Agricultural water | EMF | Compost | Plant | 1.918 ± 0.462 f | 2.265 ± 0.213 gh | 3.014 ± 0.545 d | 0.217 ± 0.013 d | 0.218 ± 0.008 f | 0.295 ± 0.026 ab |
p-value | WT | 0.013 | 0.647 | 0.3 | 0 | 0 | 0.011 | ||
IW | 0 | 0 | 0 | 0.324 | 0.355 | 0.744 | |||
C | 0.111 | 0 | 0 | 0 | 0 | 0 | |||
P | 0 | 0 | 0 | 0.001 | 0 | 0 | |||
WTxIW | 0.174 | 0 | 0.158 | 0.008 | 0 | 0.314 | |||
WTxC | 0.289 | 0.021 | 0.023 | 0.491 | 0 | 0.611 | |||
WTxP | 0.021 | 0.022 | 0.268 | 0.099 | 0 | 0 | |||
WTxIWxC | 0 | 0.003 | 0.002 | 0.421 | 0 | 0.772 |
Irrigation Water Type | Water Treatment | Soil Treatment | Wet Weight of Biomass (g) | Dry Biomass (g) | Plant Height (cm) | Root Length (cm) |
---|---|---|---|---|---|---|
Impact of EMF water treatment on no-compost soil treatment and increase in plant growth (%) | ||||||
Brackish water | No EMF | No compost | 11 ± 2.3 a | 2.1 ± 0.25 a | 114 ± 12 a | 19 ± 0.4 a |
Brackish water | EMF | No compost | 9 ± 1.2 a | 2.0 ± 0.2 a | 110 ± 9 a | 12 ± 3 a |
p-value | 0.312 | 0.871 | 0.629 | 0.050 | ||
EMF/No EMF | −18.2% | −1.9% | −3.5% | −36.8% | ||
Impact of EMF water treatment on compost soil treatment and increase in plant growth (%) | ||||||
Brackish water | No EMF | Compost | 18 ± 2.0 a | 3.1 ± 0.8 a | 132 ± 3 a | 42 ± 2 a |
Brackish water | EMF | Compost | 18 ± 1.5 a | 3.6 ± 0.4 a | 140 ± 15 a | 41 ± 2 a |
p-value | 0.833 | 0.379 | 0.448 | 0.548 | ||
EMF/No EMF | 0 % | 17.1% | 6.1% | −2.4% | ||
Impact of compost soil treatment on EMF treatment and increase in plant growth (%) | ||||||
Brackish water | EMF | No compost | 9 ± 1.2 b | 2.0 ± 0.2 b | 110 ± 9 a | 12 ± 3 b |
Brackish water | EMF | Compost | 18 ± 1.5 a | 3.6 ± 0.4 a | 140 ± 15 a | 41 ± 2 a |
p-value | 0.004 | 0.027 | 0.059 | 0.001 | ||
Compost/No compost | 100% | 78.8% | 27.3% | 241.6% | ||
Impact of EMF water treatment on no-compost soil treatment and increase in plant growth (%) | ||||||
Agricultural water | No EMF | No compost | 10 ± 2.0 a | 1.9 ± 0.2 b | 118 ± 9 a | 33 ± 5 a |
Agricultural water | EMF | No compost | 12 ± 0 a | 2.8 ± 0.2 a | 113 ± 12 a | 24 ± 3 b |
p-value | 0.235 | 0.002 | 0.544 | 0.082 | ||
EMF/No EMF | 20% | 48.1% | −4.2% | −27.3% | ||
Impact of EMF water treatment on compost soil treatment and increase in plant growth (%) | ||||||
Agricultural water | No EMF | Compost | 15 ± 4.2 a | 3.2 ± 0.9 a | 128 ± 15 a | 37 ± 1 a |
Agricultural water | EMF | Compost | 16 ± 2.0 a | 3.0 ± 0.8 a | 132 ± 12 a | 39 ± 1 a |
p-value | 0.826 | 0.749 | 0.714 | 0.187 | ||
EMF/No EMF | 6.6% | −6.25% | 3.1% | 5.4% | ||
Impact of compost soil treatment on EMF treatment and increase in plant growth (%) | ||||||
Agricultural water | EMF | No compost | 12 ± 0 a | 2.8 ± 0.2 a | 113 ± 12 a | 24 ± 3 b |
Agricultural water | EMF | Compost | 16 ± 2.0 a | 3.0 ± 0.8 a | 132 ± 12 a | 39 ± 1 a |
p-value | 0.078 | 0.410 | 0.132 | 0.017 | ||
Compost/No compost | 33.3% | 8.3% | 16.8% | 62.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suvendran, S.; Johnson, D.; Acevedo, M.; Smithers, B.; Xu, P. Electromagnetic Water Treatment and Soil Compost Incorporation to Alleviate the Impact of Soil Salinization. Water 2024, 16, 1577. https://doi.org/10.3390/w16111577
Suvendran S, Johnson D, Acevedo M, Smithers B, Xu P. Electromagnetic Water Treatment and Soil Compost Incorporation to Alleviate the Impact of Soil Salinization. Water. 2024; 16(11):1577. https://doi.org/10.3390/w16111577
Chicago/Turabian StyleSuvendran, Subanky, David Johnson, Miguel Acevedo, Breana Smithers, and Pei Xu. 2024. "Electromagnetic Water Treatment and Soil Compost Incorporation to Alleviate the Impact of Soil Salinization" Water 16, no. 11: 1577. https://doi.org/10.3390/w16111577
APA StyleSuvendran, S., Johnson, D., Acevedo, M., Smithers, B., & Xu, P. (2024). Electromagnetic Water Treatment and Soil Compost Incorporation to Alleviate the Impact of Soil Salinization. Water, 16(11), 1577. https://doi.org/10.3390/w16111577