Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Column Experiments
2.3. Analytical Methods
3. Results and Discussion
3.1. Dispersivity of Sand and GB Columns
3.2. OTC Removal in Sand and GB Columns with Pulse Injection of OTC
3.3. OTC Removal in Simulated ISCO
3.4. Effects of OgCN and PMS Dose
3.5. Effects of EBCT
3.6. Effects of pH
3.7. Effects of Anions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sørensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Lützhøft, H.C.H.; Jørgensen, S.E. Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. Chemosphere 1998, 36, 357–393. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef]
- Yin, F.; Dong, H.; Ji, C.; Tao, X.; Chen, Y. Effects of Anaerobic Digestion on Chlortetracycline and Oxytetracycline Degradation Efficiency for Swine Manure. Waste Manag. 2016, 56, 540–546. [Google Scholar] [CrossRef]
- Kong, W.; Li, C.; Dolhi, J.M.; Li, S.; He, J.; Qiao, M. Characteristics of Oxytetracycline Sorption and Potential Bioavailability in Soils with Various Physical–Chemical Properties. Chemosphere 2012, 87, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, T. Mass Flows and Removal of Antibiotics in Two Municipal Wastewater Treatment Plants. Chemosphere 2011, 83, 1284–1289. [Google Scholar] [CrossRef]
- Samuelsen, O.B. Degradation of Oxytetracycline in Seawater at Two Different Temperatures and Light Intensities, and the Persistence of Oxytetracycline in the Sediment from a Fish Farm. Aquaculture 1989, 83, 7–16. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of Antibiotics and Antibiotic Resistance Genes in a Sewage Treatment Plant and Its Effluent-Receiving River. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef]
- Zheng, S.; Qiu, X.; Chen, B.; Yu, X.; Liu, Z.; Zhong, G.; Li, H.; Chen, M.; Sun, G.; Huang, H. Antibiotics Pollution in Jiulong River Estuary: Source, Distribution and Bacterial Resistance. Chemosphere 2011, 84, 1677–1685. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Fate of Antibiotics in Soil and Their Uptake by Edible Crops. Sci. Total Environ. 2017, 599, 500–512. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231. [Google Scholar] [CrossRef]
- Botelho, R.G.; Monteiro, S.H.; Tornisielo, V.L. Veterinary Antibiotics in the Environment. Emerg. Pollut. Environ. Curr. Furth. Implic. 2015, 10, 60847. [Google Scholar]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Shan, X.; Nghiem, L.D.; Nguyen, L.N. Removal Process of Antibiotics during Anaerobic Treatment of Swine Wastewater. Bioresour. Technol. 2020, 300, 122707. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.-H.; Ma, J.; Xi, B.-D.; Yu, M.-D.; Cui, J.; Chen, B.-L.; Li, Y.; Gu, Q.-B.; He, X.-S. Recent Progress on In-Situ Chemical Oxidation for the Remediation of Petroleum Contaminated Soil and Groundwater. J. Hazard. Mater. 2022, 432, 128738. [Google Scholar] [CrossRef] [PubMed]
- Calenciuc, C.; Fdez-Sanromán, A.; Lama, G.; Annamalai, S.; Sanromán, A.; Pazos, M. Recent Developments in Advanced Oxidation Processes for Organics-Polluted Soil Reclamation. Catalysts 2022, 12, 64. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Rong, X.; Song, Q.; Wu, B.; Lan, X.; Feng, Y.; Qiu, X.; Zhang, P. Persulfate-Based Controlled Release Beads for in Situ Chemical Oxidation of Common Organic Pollutants. J. Environ. Chem. Eng. 2021, 9, 105627. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. [Google Scholar] [CrossRef]
- Thomas, N.; Dionysiou, D.D.; Pillai, S.C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Moussavi, G.; Giannakis, S. A Review of the Innovations in Metal-and Carbon-Based Catalysts Explored for Heterogeneous Peroxymonosulfate (PMS) Activation, with Focus on Radical vs. Non-Radical Degradation Pathways of Organic Contaminants. Chem. Eng. J. 2021, 411, 127957. [Google Scholar] [CrossRef]
- Devi, P.; Das, U.; Dalai, A.K. In-Situ Chemical Oxidation: Principle and Applications of Peroxide and Persulfate Treatments in Wastewater Systems. Sci. Total Environ. 2016, 571, 643–657. [Google Scholar] [CrossRef]
- Oyekunle, D.T.; Zhou, X.; Shahzad, A.; Chen, Z. Review on Carbonaceous Materials as Persulfate Activators: Structure–Performance Relationship, Mechanism and Future Perspectives on Water Treatment. J. Mater. Chem. A 2021, 9, 8012–8050. [Google Scholar] [CrossRef]
- Kim, D.-G.; Ko, S.-O. Effects of Thermal Modification of a Biochar on Persulfate Activation and Mechanisms of Catalytic Degradation of a Pharmaceutical. Chem. Eng. J. 2020, 399, 125377. [Google Scholar] [CrossRef]
- Zhu, K.; Shen, Y.; Hou, J.; Gao, J.; He, D.; Huang, J.; He, H.; Lei, L.; Chen, W. One-Step Synthesis of Nitrogen and Sulfur Co-Doped Mesoporous Graphite-like Carbon Nanosheets as a Bifunctional Material for Tetracycline Removal via Adsorption and Catalytic Degradation Processes: Performance and Mechanism. Chem. Eng. J. 2021, 412, 128521. [Google Scholar] [CrossRef]
- Septian, A.; Kumar, A.V.N.; Sivasankar, A.; Choi, J.; Hwang, I.; Shin, W.S. Colloidal Activated Carbon as a Highly Efficient Bifunctional Catalyst for Phenol Degradation. J. Hazard. Mater. 2021, 414, 125474. [Google Scholar] [CrossRef] [PubMed]
- Besha, A.T.; Bekele, D.N.; Naidu, R.; Chadalavada, S. Recent Advances in Surfactant-Enhanced In-Situ Chemical Oxidation for the Remediation of Non-Aqueous Phase Liquid Contaminated Soils and Aquifers. Environ. Technol. Innov. 2018, 9, 303–322. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Lyu, L.; Zeng, Q.; Xing, X.; Hu, C. Electronic Structure Modulation of Graphitic Carbon Nitride by Oxygen Doping for Enhanced Catalytic Degradation of Organic Pollutants through Peroxymonosulfate Activation. Environ. Sci. Technol. 2018, 52, 14371–14380. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, D.G.; Ko, S.O. Changes in the Catalytic Activity of Oxygen-Doped Graphitic Carbon Nitride for the Repeated Degradation of Oxytetracycline. Chemosphere 2022, 307, 135870. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, D.G.; Ko, S.O. Transport of Oxygen-Doped Graphitic Carbon Nitride in Saturated Sand: Effects of Concentration, Grain Size, and Ionic Strength. Water 2024, 16, 6. [Google Scholar] [CrossRef]
- Qiu, P.; Xu, C.; Chen, H.; Jiang, F.; Wang, X.; Lu, R.; Zhang, X. One Step Synthesis of Oxygen Doped Porous Graphitic Carbon Nitride with Remarkable Improvement of Photo-Oxidation Activity: Role of Oxygen on Visible Light Photocatalytic Activity. Appl. Catal. B 2017, 206, 319–327. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W.; Klute, A. Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; Volume 5. [Google Scholar]
- Šimůnek, J.; Köhne, J.M.; Kodešová, R.; Šejna, M. Simulating Non Equilibrium Movement of Water, Solutes, and Particles Using HYDRUS: A Review of Recent Applications. Soil Water Res. 2008, 3, S42–S51. [Google Scholar] [CrossRef]
- Castaldelli, G.; Colombani, N.; Tamburini, E.; Vincenzi, F.; Mastrocicco, M. Soil Type and Microclimatic Conditions as Drivers of Urea Transformation Kinetics in Maize Plots. Catena 2018, 166, 200–208. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Wagenet, R.J. Two-site/Two-region Models for Pesticide Transport and Degradation: Theoretical Development and Analytical Solutions. Soil Sci. Soc. Am. J. 1989, 53, 1303–1310. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Verpoort, F.; Dong, C.-D.; Chen, C.-W.; Chen, S.; Kao, C.-M. Remediation of Petroleum-Hydrocarbon Contaminated Groundwater Using Optimized in Situ Chemical Oxidation System: Batch and Column Studies. Process Saf. Environ. Prot. 2020, 138, 18–26. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Fu, Y.; Dionysiou, D.D. Degradation Kinetics and Mechanism of Oxytetracycline by Hydroxyl Radical-Based Advanced Oxidation Processes. Chem. Eng. J. 2016, 284, 1317–1327. [Google Scholar] [CrossRef]
- Wacławek, S.; Grübel, K.; Černík, M. Simple Spectrophotometric Determination of Monopersulfate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 149, 928–933. [Google Scholar] [CrossRef]
- Yang, Y.; Banerjee, G.; Brudvig, G.W.; Kim, J.-H.; Pignatello, J.J. Oxidation of Organic Compounds in Water by Unactivated Peroxymonosulfate. Environ. Sci. Technol. 2018, 52, 5911–5919. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Sharma, V.K.; Xiao, R.; Dionysiou, D.D. Revisit the Alkaline Activation of Peroxydisulfate and Peroxymonosulfate. Curr. Opin. Chem. Eng. 2022, 37, 100854. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Z.; Qiu, G.; Wan, Y.; Song, W.; Zeng, H.; Yang, F.; Zhao, D.; Yuan, W.; Ju, P. Generation of Reactive Oxygen Species through Dissolved Oxygen Activation on Defected Porous Carbon for Efficient Degradation of Antibiotics. Chem. Eng. J. 2023, 455, 140602. [Google Scholar] [CrossRef]
- Tuan Nguyen, T.; Gun Kim, D.; Oh Ko, S. Catalytic Degradation of Acetaminophen by C and O Co-Doped Graphitic Carbon Nitride: Peroxymonosulfate vs. Peroxydisulfate. Chem. Eng. J. 2024, 480, 148348. [Google Scholar] [CrossRef]
- Komeily-Nia, Z.; Chen, J.-Y.; Nasri-Nasrabadi, B.; Lei, W.-W.; Yuan, B.; Zhang, J.; Qu, L.-T.; Gupta, A.; Li, J.-L. The Key Structural Features Governing the Free Radicals and Catalytic Activity of Graphite/Graphene Oxide. Phys. Chem. Chem. Phys. 2020, 22, 3112–3121. [Google Scholar] [CrossRef]
- Mančić, L.; Almeida, L.A.; Machado, T.M.; Gil-Londoño, J.; Dinić, I.; Tomić, M.; Marković, S.; Jardim, P.; Marinkovic, B.A. Tetracycline Removal through the Synergy of Catalysis and Photocatalysis by Novel NaYF4: Yb, Tm@ TiO2-Acetylacetone Hybrid Core-Shell Structures. Int. J. Mol. Sci. 2023, 24, 9441. [Google Scholar] [CrossRef]
- Ren, W.; Nie, G.; Zhou, P.; Zhang, H.; Duan, X.; Wang, S. The Intrinsic Nature of Persulfate Activation and N-Doping in Carbocatalysis. Environ. Sci. Technol. 2020, 54, 6438–6447. [Google Scholar] [CrossRef]
- Scaria, J.; Nidheesh, P.V. Comparison of Hydroxyl-Radical-Based Advanced Oxidation Processes with Sulfate Radical-Based Advanced Oxidation Processes. Curr. Opin. Chem. Eng. 2022, 36, 100830. [Google Scholar] [CrossRef]
- Sharma, J.; Mishra, I.M.; Dionysiou, D.D.; Kumar, V. Oxidative Removal of Bisphenol A by UV-C/Peroxymonosulfate (PMS): Kinetics, Influence of Co-Existing Chemicals and Degradation Pathway. Chem. Eng. J. 2015, 276, 193–204. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Guo, H.; Liu, Y. Heterogeneous Activation of Peroxymonosulfate for Bisphenol AF Degradation with BiOI0.5Cl0.5. RSC Adv. 2019, 9, 14060–14071. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Kim, H.-H.; Joun, W.-T.; Lee, K.-K. Design and and Construction of Groundwater Monitoring Network at Shallow-Depth CO2 Injection and Leak Test Site, Korea. Energy Procedia 2017, 114, 3060–3069. [Google Scholar] [CrossRef]
- Guan, C.; Jiang, J.; Pang, S.; Chen, X.; Webster, R.D.; Lim, T.-T. Facile Synthesis of Pure G-C3N4 Materials for Peroxymonosulfate Activation to Degrade Bisphenol A: Effects of Precursors and Annealing Ambience on Catalytic Oxidation. Chem. Eng. J. 2020, 387, 123726. [Google Scholar] [CrossRef]
- Parrino, F.; Livraghi, S.; Giamello, E.; Ceccato, R.; Palmisano, L. Role of Hydroxyl, Superoxide, and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions. ACS Catal. 2020, 10, 7922–7931. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, T.; Chen, X.; Duan, X.; Xu, G.; Bu, L.; Zhou, S.; Shi, Z. Unveiling the Interaction of Epigallocatechin-3-Gallate with Peroxymonosulfate for Degradation of Bisphenol S: Two-Stage Kinetics and Identification of Reactive Species. Sep. Purif. Technol. 2021, 274, 119040. [Google Scholar] [CrossRef]
- Qi, C.; Liu, X.; Ma, J.; Lin, C.; Li, X.; Zhang, H. Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere 2016, 151, 280–288. [Google Scholar] [CrossRef]
- Choi, B.-Y.; Yun, S.-T.; Kim, K.-H.; Kim, J.-W.; Kim, H.M.; Koh, Y.-K. Hydrogeochemical Interpretation of South Korean Groundwater Monitoring Data Using Self-Organizing Maps. J. Geochem. Explor. 2014, 137, 73–84. [Google Scholar] [CrossRef]
- Li, B.; Li, L.; Lin, K.; Zhang, W.; Lu, S.; Luo, Q. Removal of 1, 1, 1-Trichloroethane from Aqueous Solution by a Sono-Activated Persulfate Process. Ultrason. Sonochem. 2013, 20, 855–863. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, X.; Sun, C.; Wan, J.; He, H.; Wang, F.; Dai, Y.; Yang, S.; Lin, Y.; Zhan, X. Insights into Removal of Tetracycline by Persulfate Activation with Peanut Shell Biochar Coupled with Amorphous Cu-Doped FeOOH Composite in Aqueous Solution. Environ. Sci. Pollut. Res. 2019, 26, 2820–2834. [Google Scholar] [CrossRef] [PubMed]
- Takdastan, A.; Kakavandi, B.; Azizi, M.; Golshan, M. Efficient Activation of Peroxymonosulfate by Using Ferroferric Oxide Supported on Carbon/UV/US System: A New Approach into Catalytic Degradation of Bisphenol A. Chem. Eng. J. 2018, 331, 729–743. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Li, N.; Wang, S.; Yu, J.; Li, X. Efficient Degradation of Ciprofloxacin by Magnetic γ-Fe2O3–MnO2 with Oxygen Vacancy in Visible-Light/Peroxymonosulfate System. Chemosphere 2021, 276, 130257. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Nie, H.; Wang, S.; Chen, Y.; Wan, Y.; Wang, J.; Xiao, H.; Yue, S.; Ma, J.; Xie, P. Transformation of Acetaminophen in Solution Containing Both Peroxymonosulfate and Chlorine: Performance, Mechanism, and Disinfection by-Product Formation. Water Res. 2021, 189, 116605. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, M.; Yuan, S.; Feng, J.; Wang, Q.; Wang, W.; Hu, Z. Transformation of Acetaminophen during Water Chlorination Treatment: Kinetics and Transformation Products Identification. Environ. Sci. Pollut. Res. 2016, 23, 12303–12311. [Google Scholar] [CrossRef]
- McDonough, L.K.; Santos, I.R.; Andersen, M.S.; O’Carroll, D.M.; Rutlidge, H.; Meredith, K.; Oudone, P.; Bridgeman, J.; Gooddy, D.C.; Sorensen, J.P.R. Changes in Global Groundwater Organic Carbon Driven by Climate Change and Urbanization. Nat. Commun. 2020, 11, 1279. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kim, D.G.; Ko, S.O. Acetaminophen Removal by Peroxymonosulfate Catalyzed by C and O Co-Doped Graphitic Carbon Nitride in Synthetic Secondary Treatment Effluent Matrix. J. Water Proc. Eng. 2024, 65, 105781. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, X.; Fu, L.; Peng, X.; Pan, C.; Mao, Q.; Wang, C.; Yan, J. Nonradicals Induced Degradation of Organic Pollutants by Peroxydisulfate (PDS) and Peroxymonosulfate (PMS): Recent Advances and Perspective. Sci. Total Environ. 2021, 765, 142794. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, Y.; Gao, N.; Chu, W.; Shen, X.; Lu, X.; Chen, J.; Zhu, Y. Degradation Kinetics and Mechanism of 2,4-Di-Tert-Butylphenol with UV/Persulfate. Chem. Eng. J. 2016, 304, 201–208. [Google Scholar] [CrossRef]
DL (cm2 min−1) | r2 | |
---|---|---|
GB | 0.1545 | 0.9908 |
Sands | 0.1374 | 0.9897 |
Kd (L kg−1) | ω (min−1) | r2 | ||
---|---|---|---|---|
GB | OTC/DIW | 0.074 | 0.169 | 0.934 |
OTC/PMS | 0.074 | 0.231 | 0.883 | |
OTC/OgCN/PMS | 0.074 | 0.460 | 0.902 | |
Sand | OTC/DIW | 1.767 | 0.219 | 0.946 |
OTC/PMS | 1.767 | 0.484 | 0.934 | |
OTC/OgCN/PMS | 1.767 | 0.744 | 0.841 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.-T.; Kim, D.-G.; Ko, S.-O. Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments. Water 2024, 16, 2355. https://doi.org/10.3390/w16162355
Nguyen T-T, Kim D-G, Ko S-O. Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments. Water. 2024; 16(16):2355. https://doi.org/10.3390/w16162355
Chicago/Turabian StyleNguyen, Thanh-Tuan, Do-Gun Kim, and Seok-Oh Ko. 2024. "Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments" Water 16, no. 16: 2355. https://doi.org/10.3390/w16162355
APA StyleNguyen, T.-T., Kim, D.-G., & Ko, S.-O. (2024). Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments. Water, 16(16), 2355. https://doi.org/10.3390/w16162355