Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Surveys
2.3. Analysis
2.4. Biodiversity Index
2.5. Data Analysis
3. Results
3.1. Vegetation Community Characteristics
3.2. Sediment Aggregate Compositions
3.3. Sediment Nutrient Contents
3.4. Sediment TOC Contents
3.5. Sediment MBC, MBN, and MBP Contents
3.6. Correlation Analysis
4. Discussion
4.1. Sediment Deposition Characteristics in Ecological Riverbanks
4.2. Vegetation Restoration and Sediment Deposition Characteristics in Ecological Riverbanks
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nilsson, C.; Berggren, K. Alteration of riparian ecosystems caused by river regulation. BioScience 2000, 50, 783–792. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Pei, Y.S. Ecological risk resulting from invasive species: A lesson from riparian wetland rehabilitation. Procedia Environ. Sci. 2012, 13, 1798–1808. [Google Scholar] [CrossRef]
- Luo, Z.L.; Zuo, Q.T.; Shao, Q.X. A new framework for assessing river ecosystem health with consideration of human service demand. Sci. Total Environ. 2018, 640–641, 442–453. [Google Scholar] [CrossRef] [PubMed]
- Paetzold, A.; Yoshimura, C.; Tockner, K. Riparian arthropod responses to flow regulation and river channelization. J. Appl. Ecol. 2008, 45, 894–903. [Google Scholar] [CrossRef]
- Hartig, J.H.; Zarull, M.A.; Cook, A. Soft shoreline engineering survey of ecological effectiveness. Ecol. Eng. 2011, 37, 1231–1238. [Google Scholar] [CrossRef]
- Addy, S.; Wilkinson, M.E. Geomorphic and retention responses following the restoration of a sand-gravel bed stream. Ecol. Eng. 2019, 130, 131–146. [Google Scholar] [CrossRef]
- Schwindt, S.; Pasternack, G.B.; Bratovich, P.M.; Rabone, G.; Simodynes, D. Hydro-morphological parameters generate lifespan maps for stream restoration management. J. Environ. Manag. 2019, 232, 475–489. [Google Scholar] [CrossRef]
- He, Y.; Wang, P.C.; Sheng, H.; Wang, D.F.; Huang, M.S.; Cao, C.J. Sustainability of riparian zones for non-point source pollution control in Chongming Island: Status, challenges, and perspectives. J. Clean. Prod. 2020, 244, 118804. [Google Scholar] [CrossRef]
- Die Moran, A.; El Kadi Abderrezzak, K.; Mosselman, E.; Habersack, H.; Lebert, F.; Aelbrecht, D.; Laperrousaz, E. Physical model experiments for sediment supply to the old Rhine through induced bank erosion. Int. J. Sediment Res. 2013, 28, 431–447. [Google Scholar] [CrossRef]
- Taylor, D.L.; Bolgrien, D.W.; Angradi, T.R.; Pearson, M.S.; Hill, B.H. Habitat and hydrology condition indices for the upper Mississippi, Missouri, and Ohio rivers. Ecol. Indic. 2013, 29, 111–124. [Google Scholar] [CrossRef]
- Chen, Q.F.; Guo, B.B.; Zhao, C.S.; Zhang, J. A comprehensive ecological management approach for northern mountain rivers in China. Chemosphere 2019, 234, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.M.; Zhang, J.E.; Zhao, B.L.; Ye, Y.Q.; Kong, X.H. Review on the application and research of ecological riverbanks for water systems. Trop. Geogr. 2014, 34, 116–122. (In Chinese) [Google Scholar]
- Cai, W.W.; Zhou, Z.Y.; Xia, J.H.; Wang, W.M.; Dou, C.B.; Zeng, Z. An advanced index of ecological Integrity (IEI) for assessing ecological efficiency of restauration revetments in river plain. Ecol. Indic. 2020, 108, 105762. [Google Scholar] [CrossRef]
- Chen, Y.M.; Xu, S.D.; Jin, Y. Evaluation on ecological restoration capability of revetment in inland restricted channel. KSCE J. Civ. Eng. 2016, 20, 2548–2558. [Google Scholar] [CrossRef]
- Liu, H.H.; Yang, S.F.; Cao, M.X. Advances in ‘golden waterway’ regulation technologies of Yangtze River. Adv. Eng. Sci. 2017, 49, 17–27. (In Chinese) [Google Scholar] [CrossRef]
- Schmitt, K.; Schäffer, M.; Koop, J.; Symmank, L. River bank stabilisation by bioengineering: Potentials for ecological diversity. J. Appl. Water Eng. Res. 2018, 6, 262–273. [Google Scholar] [CrossRef]
- Tang, V.T.; Fu, D.F.; Binh, T.N.; Rene, E.R.; Sang, T.T.T.; Singh, R.P. An investigation on performance and structure of ecological revetment in a sub-tropical area: A case study on Cuatien River, Vinh City, Vietnam. Water 2018, 10, 636. [Google Scholar] [CrossRef]
- Xu, C.H.; Bu, H.B.; Cheng, W.H.; Chen, Z.Q. Development and application of ecological protection bank for inland waterway. Port Waterw. Eng. 2009, 432, 107–110. (In Chinese) [Google Scholar]
- Cao, M.X.; Shen, X.; Ying, H.H. Study on ecological structures of waterway regulation in the Yangtze River below Nanjing. Port Waterw. Eng. 2018, 538, 1–11. (In Chinese) [Google Scholar]
- Chen, X.Y. Regulation method and construction thoughts of deep-water channel of the Yangtze River below Nanjing city. Port Waterw. Eng. 2011, 461, 99–105. (In Chinese) [Google Scholar]
- Dong, M.; Wang, Y.F.; Kong, F.Z. Survey and Analysis Methods for Terrestrial Biocommunity; China Standard Press: Beijing, China, 1997. (In Chinese) [Google Scholar]
- Vance, E.D.; Brookes, P.C.J. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 1987, 19, 703–704. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 1993, 57, 1071–1076. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhang, L.; Liang, L.N.; Song, N.N.; Liu, D.S.; Wang, J.C. Effects of straw returning on the stability of soil organic carbon in wheat-maize rotation systems. J. Agro-Environ. Sci. 2020, 39, 1774–1782. (In Chinese) [Google Scholar]
- Margalef, D.R. Information theory in ecology. Soc. Gen. Syst. Res. 1957, 3, 36–71. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Pielou, E.C. Ecological Diversity; John Wiley & Sons Inc: New York, NY, USA, 1975. [Google Scholar]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragment and flow regulation of the world’s large river system. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Symmank, L.; Natho, S.; Scholz, M.; Schröder, U.; Raupach, K.; Schulz-Zunkel, C. The impact of bioengineering techniques for riverbank protection on ecosystem services of riparian zones. Ecol. Eng. 2020, 158, 106040. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Zhao, H.L.; Zhang, T.H.; Zhao, X.Y. Dynamics of species diversity of communities in restoration processes in Horqin sandy land. Acta Phytoecol. Sin. 2004, 28, 86–92. (In Chinese) [Google Scholar]
- Wang, Y.; Ding, Y.R.; Fan, B.L. Study on river regime evolution and ecological revetment for Jingjiang reach after impoundment of TGP. Resour. Environ. Yangtze Basin 2011, 20 (Suppl. S1), 117–122. (In Chinese) [Google Scholar]
- Zhan, L.T.; Chen, Y.M.; Bouazza, A. Combination of Porous Ecological Concrete and Geocell in Riverbank Protection; Springer Singapore Pte. Limited: Singapore, 2018; pp. 280–287. [Google Scholar]
- Nakamura, F.; Seo, J.I.; Akasaka, T.; Swanson, F.J. Large wood, sediment, and flow regimes: Their interactions and temporal changes caused by human impacts in Japan. Geomorphology 2017, 279, 176–187. [Google Scholar] [CrossRef]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) management of floodplain vegetation: The effect of invasive species on vegetation roughness and flood levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Gu, B.; Wang, L. Species diversity of plant community and the niche of dominant species in Beichuan after earthquake engineering. Chin. J. Ecol. 2019, 38, 309–320. (In Chinese) [Google Scholar]
- Cavaillé, P.; Ducasse, L.; Breton, V.; Dommanget, F.; Tabacchi, E.; Evette, A. Functional and taxonomic plant diversity for riverbank protection works: Bioengineering techniques close to natural banks and beyond hard engineering. J. Environ. Manag. 2015, 151, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Li, J.P.; Xuan, H.; Wang, X.X.; Li, T. Comprehensive evaluation on implement effect of ecological riverbank project in deep waterway regulation of Yangtze River. Yangtze River 2022, 53, 211–217. (In Chinese) [Google Scholar]
- Li, J.P.; Wu, L.; Liu, S.; Xuan, H.; Wang, X.X. Terrestrial vegetation restoration of ecological riverbank in the deep waterway regulation scheme of Yangtze River. J. Yangtze River Sci. Res. Inst. 2021, 38, 31–37. (In Chinese) [Google Scholar]
- Wollny, J.T.; Otte, A.; Harvolk-Schöning, S. Riparian plant species composition alternates between species from standing and flowing water bodies—Results of field studies upstream and downstream of weirs along the German rivers Lahn and Fulda. Ecol. Eng. 2019, 139, 105576. [Google Scholar] [CrossRef]
- Wang, L.; Ge, M.T.; Chen, N.G.; Ding, J.H.; Shen, X.W. An evaluation model of riparian landscape: A case in rural Qingxi Area, Shanghai. Land 2022, 11, 1512. [Google Scholar] [CrossRef]
Types of Riverbank | MGR | LGBVR | TRR | CSs |
---|---|---|---|---|
(Mean ± SE) | (Mean ± SE) | (Mean ± SE) | (Mean ± SE) | |
Numbers of sampling sites | 12 | 2 | 9 | 2 |
Numbers of species | 8 | 6 | 6 | 12 |
Margalef index (d) | 0.37 ± 0.14 a | 0.65 ± 0.00 a | 0.47 ± 0.04 a | 0.45 ± 0.01 a |
Shannon–Weaver index (H’) | 0.66 ± 0.24 a | 1.08 ± 0.17 a | 0.92 ± 0.07 a | 0.48 ± 0.01 a |
Pielou index (J) | 0.82 ± 0.08 a | 0.78 ± 0.12 a | 0.80 ± 0.07 a | 0.44 ± 0.01 b |
Biomass (g·m−2) | 74.53 ± 27.08 b | 1225.01 ± 200.33 a | 11.47 ± 4.79 b | 368.34 ± 25.48 ab |
Latin names of dominant species | Kalimeris indica, Cardamine hirsute | Phragmites australis, Cardamine hirsute | Veronica anagallis-aquatica | Phragmites australis, Achyranthes aspera, Polygonum hydropiper, etc. |
Types of Riverbank | MGR | LGBVR | TRR | CSs |
---|---|---|---|---|
(Mean ± SE) | (Mean ± SE) | (Mean ± SE) | (Mean ± SE) | |
Numbers of sampling sites | 12 | 2 | 9 | 2 |
pH | 7.52 ± 0.08 a | 7.64 ± 0.11 a | 7.53 ± 0.15 a | 7.29 ± 0.25 a |
EC(μs·cm−1) | 109.1 ± 8.6 ab | 151.7 ± 19.9 a | 111.4 ± 8.2 ab | 91.4 ± 1.0 b |
>2.00 mm (%) | 5.4 ± 0.3 a | 4.8 ± 0.1 a | 4.9 ± 0.3 a | 5.5 ± 1.4 a |
2.00–0.25 mm (%) | 26.1 ± 0.5 a | 27.4 ± 0.2 a | 25.7 ± 0.4 a | 27.8 ± 2.8 a |
0.25–0.053 mm (%) | 45.9 ± 0.9 a | 45.7 ± 0.5 a | 46.7 ± 0.8 a | 45.7 ± 2.6 a |
<0.053 mm (%) | 22.7 ± 0.4 a | 22.1 ± 0.8 a | 22.7 ± 0.7 a | 21.1 ± 1.2 a |
Types of Riverbank | MGR | LGBVR | TRR | CSs |
---|---|---|---|---|
(Mean ± SE) | (Mean ± SE) | (Mean ± SE) | (Mean ± SE) | |
Numbers of sampling sites | 12 | 2 | 9 | 2 |
NH4+-N (mg·kg−1) | 1.97 ± 0.12 b | 2.71 ± 0.52 a | 1.95 ± 0.15 b | 2.04 ± 0.06 ab |
NO3-N(mg·kg−1) | 2.35 ± 0.18 a | 3.04 ± 0.08 a | 2.42 ± 0.30 a | 3.29 ± 1.06 a |
TN (mg·kg−1) | 4.32 ± 0.19 b | 5.75 ± 0.43 a | 4.38 ± 0.30 b | 5.33 ± 1.12 ab |
AP (mg·kg−1) | 18.13 ± 1.65 a | 21.97 ± 3.41 a | 18.93 ± 1.54 a | 21.68 ± 2.39 a |
AK (mg·kg−1) | 315.37 ± 15.15 a | 339.55 ± 41.33 a | 341.74 ± 21.25 a | 315.88 ± 40.68 a |
Types of Riverbank | MGR | LGBVR | TRR | CSs |
---|---|---|---|---|
(Mean ± SE) | (Mean ± SE) | (Mean ± SE) | (Mean ± SE) | |
Numbers of sampling sites | 12 | 2 | 9 | 2 |
MBC (mg·kg−1) | 596.23 ± 27.56 b | 803.67 ± 47.67 ac | 671.16 ± 28.56 ab | 704.90 ± 107.40 ab |
MBN (mg·kg−1) | 33.12 ± 1.53 a | 32.88 ± 3.90 a | 37.29 ± 1.59 a | 39.16 ± 5.97 a |
MBP (mg·kg−1) | 6.58 ± 0.07 a | 6.60 ± 0.20 a | 6.52 ± 0.07 a | 6.65 ± 0.15 a |
MBC/TOC | 0.010 ± 0.000 c | 0.014 ± 0.001 a | 0.012 ± 0.001 b | 0.012 ± 0.001 abc |
MBC/MBN | 18.000 ± 0.000 b | 24.970 ± 4.415 a | 18.000 ± 0.000 b | 18.000 ± 0.000 b |
N | Biomass | pH | EC | NH4+-N | NO3−-N | TN | AP | AK | TOC | MBC | MBN | MBP | MBC/TOC | MBC/MBN | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 1.000 | ||||||||||||||
Biomass | 0.251 | 1.000 | |||||||||||||
pH | 0.406 | −0.291 | 1.000 | ||||||||||||
EC | −0.481 | −0.308 | −0.225 | 1.000 | |||||||||||
NH4+-N | 0.067 | −0.124 | −0.064 | −0.237 | 1.000 | ||||||||||
NO3--N | 0.219 | −0.145 | 0.231 | −0.028 | −0.038 | 1.000 | |||||||||
TN | 0.225 | −0.192 | 0.165 | −0.152 | 0.509 | 0.841 ** | 1.000 | ||||||||
AP | −0.143 | −0.034 | −0.022 | −0.078 | −0.075 | −0.020 | −0.058 | 1.000 | |||||||
AK | −0.491 | −0.383 | −0.187 | 0.643 * | −0.273 | 0.047 | −0.108 | −0.185 | 1.000 | ||||||
TOC | 0.001 | 0.340 | −0.145 | −0.310 | 0.054 | 0.007 | 0.035 | −0.276 | −0.487 | 1.000 | |||||
MBC | 0.401 | 0.480 | −0.180 | 0.061 | 0.138 | 0.016 | 0.088 | 0.112 | −0.356 | −0.159 | 1.000 | ||||
MBN | 0.360 | 0.536 * | −0.245 | 0.027 | −0.039 | −0.017 | −0.036 | 0.142 | −0.323 | −0.100 | 0.966 ** | 1.000 | |||
MBP | 0.112 | −0.203 | 0.372 | −0.185 | 0.267 | 0.065 | 0.201 | 0.105 | 0.029 | −0.253 | −0.403 | −0.509 | 1.000 | ||
MBC/TOC | 0.367 | 0.289 | −0.113 | 0.161 | 0.125 | 0.010 | 0.077 | 0.160 | −0.143 | −0.487 | 0.938 ** | 0.882 ** | −0.270 | 1.000 | |
MBC/MBN | 0.234 | −0.104 | 0.201 | 0.137 | 0.674 ** | 0.126 | 0.474 | −0.089 | −0.194 | −0.251 | 0.333 | 0.079 | 0.301 | 0.402 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, X.; Wu, L. Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River. Water 2024, 16, 2350. https://doi.org/10.3390/w16162350
Li J, Wang X, Wu L. Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River. Water. 2024; 16(16):2350. https://doi.org/10.3390/w16162350
Chicago/Turabian StyleLi, Jinpeng, Xuexia Wang, and Lei Wu. 2024. "Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River" Water 16, no. 16: 2350. https://doi.org/10.3390/w16162350
APA StyleLi, J., Wang, X., & Wu, L. (2024). Research on Sediment Deposition Characteristics and the Vegetation Restoration of Ecological Riverbanks in the Deep Waterway Regulation Scheme of Yangtze River. Water, 16(16), 2350. https://doi.org/10.3390/w16162350