Extreme Rainfall Events Triggered Loess Collapses and Landslides in Chencang District, Shanxi, China, during June–October 2021
Abstract
:1. Introduction
2. Chencang District Description
2.1. Topography and Geology
2.2. Rainfall
2.3. NDVI of Chencang District
3. Materials and Methodology
3.1. Field Investigations and Remote Sensing Technology
3.2. Ethylene Glycol-Diethyl Ether Method and Shear Test
3.3. Two Typical Loess Properties
4. Results
4.1. Field Investigation of Loess
4.2. Distribution of Geological Disasters Induced by Extreme Continuous Intense Rainfall
4.3. Deformation Characteristics of Geological Disasters
5. Discussion
5.1. Failure Mechanism of Geological Disasters under Rainfalls
5.2. Local Intensity–Duration (I–D) Threshold
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, G.; Yang, X.; Chen, W.; Chen, H.; Zhang, J.C.; Tao, Z.G. Characteristics of failure area and failure mechanism of a landslide in Yingjiang County, Yunnan, China. Landslides 2021, 18, 721–735. [Google Scholar] [CrossRef]
- Vasu, N.N.; Lee, S.R.; Pradhan, A.M.S.; Kim, Y.T.; Kang, S.H.; Lee, D.H. A new approach to temporal modelling for landslide hazard assessment using an extreme rainfall induced-landslide index. Eng. Geol. 2016, 215, 36–49. [Google Scholar] [CrossRef]
- Zhou, C.; Ai, D.; Huang, W.; Xu, H.; Ma, L.; Chen, L.; Wang, L. Emergency Survey and Stability Analysis of a Rainfall-Induced Soil-Rock Mixture Landslide at Chongqing City, China. Front. Earth Sci. 2021, 9, 774200. [Google Scholar] [CrossRef]
- Wang, Y.L.; Ren, C.; Li, Y.H.; Zhu, Y.B.; Zhang, H.; Liu, Q.; Yang, Q.; Ma, Y. The construction of a new geological hazard prevention mechanism in Shanxi Province. J. Northwest Univ. Nat. Sci. Ed. 2020, 50, 403–410. [Google Scholar]
- Chang, Z.; Shun, H. Mechanical properties and disaster-causing mechanism of loess in Ili, Xinjiang, China. J. Eng. Geol. 2023, 31, 1247–1260. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Y.; Gao, X.; Huang, H.; Liu, D.; Hui, X. Study on permeability and collapsibility characteristics of sandy loess in northern Loess Plateau, China. J. Hydrol. 2021, 603, 126883. [Google Scholar] [CrossRef]
- Feng, L.; Lin, H.; Zhang, M.; Guo, L.; Jin, Z.; Liu, X. Development and evolution of Loess vertical joints on the Chinese Loess Plateau at different spatiotemporal scales. Eng. Geol. 2020, 265, 105372. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Zhan, H.; Li, P.; Qiu, H.; Hu, S. Moisture content effect on the creep behavior of loess for the catastrophic Baqiao landslide. Catena 2020, 187, 104371. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X.; Wang, N.; Yang, D.; Wang, D.; Ma, S.; Song, Z.; Cao, M. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China. Catena 2022, 217, 106518. [Google Scholar] [CrossRef]
- Zhou, C.; Hu, Y.; Xiao, T.; Ou, Q.; Wang, L. Analytical model for reinforcement effect and load transfer of pre-stressed anchor cable with bore deviation. Constr. Build. Mater. 2023, 379, 131219. [Google Scholar] [CrossRef]
- Zhou, C.; Huang, W.; Ai, D.; Xu, H.; Yuan, J.; Kou, L.; Luo, X. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: July 13, 2020, Niuerwan landslide. Landslides 2022, 19, 2397–2407. [Google Scholar] [CrossRef]
- Zhou, C.; Ma, W.C.; Sui, W.H. Tranparent soil model test of a landslide with umbrella-shaped anchors and different slope angles in response to rapid drawdown. Eng. Geol. 2022, 307, 106765. [Google Scholar] [CrossRef]
- Leng, Y.; Peng, J.; Wang, S.; Lu, F. Development of water sensitivity index of loess from its mechanical properties. Eng. Geol. 2021, 208, 105918. [Google Scholar] [CrossRef]
- Jennings, J.E.; Knight, K. The prediction of total heave from the double oedometer test. In Proceedings of the Symposium on Expansive Clays, Johannesburg, South Africa, 24 September 1957; South African Institute of Civil Engineers: Johannesburg, South Africa, 1957; pp. 13–19. [Google Scholar]
- Lee, H.; Jeon, S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 2011, 48, 979–999. [Google Scholar] [CrossRef]
- Pei, X.J.; Zhang, X.C.; Guo, B.; Wang, G.H.; Zhang, F.Y. Experimental case study of seismically induced loess liquefaction and landslide. Eng. Geol. 2017, 223, 23–30. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Furuya, G.; Yang, J. Pore-pressure generation and fluidization in a loess landslide triggered by the 1920 Haiyuan earthquake, China: A case study. Eng. Geol. 2014, 174, 36–45. [Google Scholar] [CrossRef]
- Zhu, Y.R.; Qiu, H.J.; Yang, D.D.; Liu, Z.; Ma, S.; Pei, Y.; He, J.; Du, C.; Sun, H. Pre- and post-failure spatiotemporal evolution of loess landslides: A case study of the Jiangou landslide in Ledu, China. Landslides 2021, 18, 3475–3484. [Google Scholar] [CrossRef]
- Peng, J.B.; Wang, S.K.; Wang, Q.Y.; Zhuang, J.; Huang, W.; Zhu, X.; Leng, Y.; Ma, P. Distribution and genetic types of loess landslides in China. Eng. Geol. 2019, 170, 329–350. [Google Scholar] [CrossRef]
- Liu, K.; Ye, W.; Jing, H. Shear Strength and Microstructure of Intact Loess Subjected to Freeze-Thaw Cycling. Adv. Mater. Sci. Eng. 2021, 2021, 173603. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, W.; Sun, X.; Huang, Y.; Liu, L. Experimental Study on the Effects of Freeze–Thaw Cycles on Strength and Microstructure of Xining Region Loess in China. Buildings 2022, 12, 795. [Google Scholar] [CrossRef]
- Xu, J.; Ren, J.; Wang, Z.; Wang, S.; Yuan, J. Strength behaviors and meso-structural characters of loess after freeze-thaw. Cold Reg. Sci. Technol. 2018, 148, 104–120. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Ren, C.; Wang, S.; Vanapalli, S.K.; Chen, G. Influence of freeze-thaw cycles on microstructure and hydraulic conductivity of saline intact loess. Cold Reg. Sci. Technol. 2021, 181, 103183. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, W.; He, Y.; Pijush, S. A comprehensive review of machine learning-based methods in landslide susceptibility mapping. Geol. J. 2023, 58, 2283–2301. [Google Scholar] [CrossRef]
- Jing, J.J.; Wu, Z.J.; Yan, W.J.; Ma, W.; Liang, C.; Lu, Y.; Chen, D. Experimental study on progressive deformation and failure mode of loess fill slopes under freeze-thaw cycles and earthquakes. Eng. Geol. 2022, 310, 106896. [Google Scholar] [CrossRef]
- Stotts, S.; O’Neal, M.; Pizzuto, J.; Hupp, C. Exposed tree root analysis as a dendrogeomorphic approach to estimating bank retreat at the South River, Virginia. Geomorphology 2014, 223, 10–18. [Google Scholar] [CrossRef]
- Lan, H.J.; Wang, D.J.; He, S.T.; Fang, Y.C.; Chen, W.L.; Zhao, P.; Qi, Y.C. Experimental study on the effects of tree planting on slope stability. Landslides 2020, 17, 1021–1035. [Google Scholar] [CrossRef]
- Jiang, X.D.; Hou, T.S.; Guo, S.L.; Chen, Y. Influence of cracks on loess collapse under heavy rainfall. Catena 2023, 223, 106959. [Google Scholar] [CrossRef]
- Peng, J.B.; Sun, P.; Igwe, O. Loess caves, a special kind of geohazard on loess plateau, northwestern China. Eng. Geol. 2018, 236, 79–88. [Google Scholar] [CrossRef]
- Daley, J.S.; Spencer, J.R.; Brooks, A.P.; Stout, J.C.; Thwaites, R. Direct rain splash and downwearing of internal surfaces as an important erosion process in alluvial gully development. Catena 2023, 221, 106760. [Google Scholar] [CrossRef]
- Golkarian, A.; Khosravi, K.; Panahi, M.; Clague, J.J. Spatial variability of soil water erosion: Comparing empirical and intelligent techniques. Geosci. Front. 2023, 14, 101456. [Google Scholar] [CrossRef]
- Wang, G.; Sassa, K. Post-failure mobility of saturated sands in undrained load-controlled ring shear tests. Can. Geotech. J. 2002, 39, 821–837. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, G. Study of the 1920 Haiyuan earthquake-induced landslides in loess (China). Eng. Geol. 2007, 94, 76–88. [Google Scholar] [CrossRef]
- Omran, A.; Fahmida, K.; Schröder, D.; Arnous, M.O.; El-Rayes, A.E.; Hochschild, V. GIS-based rockfall hazard zones modeling along the coastal Gulf of Aqaba Region, Egypt. Earth Sci. Inf. 2021, 14, 691–709. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Harilal, G.T.; Madhu, D.; Ramesh, M.V.; Pullarkatt, D. Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides 2019, 16, 2395–2408. [Google Scholar] [CrossRef]
Type | Location | Developing Strata | Volume (m³) | Reason | Hazards | Time of Occurrence | |
---|---|---|---|---|---|---|---|
No. 1 | Landslide | E 107°01′23.59″ N 34°33′21.52″ | Quaternary loess | 60 | Excavation (house) | 5 h 8 peoples | 5 October |
No. 2 | Collapse | E 107°01′28.75″ N 34°31′17.28″ | Quaternary loess | 100 | Excavation (house) | 5 h, 2 people | 29 September |
No. 3 | Landslide | E 106°59′54.71″ N 34°32′35.26″ | Quaternary loess | 200 | Excavation (house) | 15 h, 30 people and 1 road | 5 October |
No. 4 | Landslide | E 107°04′24.09″ N 34°32′34.01″ | Quaternary loess | 100 | Excavation (house) | 21 h, 85 people | 30 September |
No. 5 | Landslide | E 107°04′24.09″ N 34°32′34.01″ | Quaternary loess | 100 | Excavation (house) | 25 houses, 90 people, 1 road | 28 September |
No. 6 | Collapse | E 107°08′16.63″ N 34°32′11.56 | Quaternary loess | 20 | Excavation (house) | 1 house, 1 people | 27 September |
No. 7 | Collapse | E 107°07′49.34″ N 34°32′03.09″ | Quaternary loess | 20 | Excavation (house) | 1 house, 3 peoples | 28 September |
No. 8 | Landslide | E 107°07′49.65″ N 31°30′56.47″ | Quaternary loess | 50 | Excavation (road) | 1 house, 3 peoples | 28 September |
No. 9 | Collapse | E 107°07′45.55″ N 31°30′14.06″ | Quaternary loess | 100 | Excavation (house) | 1 house, 2 peoples | 10 October |
No. 10 | Collapse | E 107°09′16.84″ N 34°33′34.60″ | Quaternary loess | 20 | Excavation (house) | 6 h, 24 people | 29 September |
No. 11 | Collapse | E 107°15′51.18″ N 34°29′10.04″ | Quaternary loess | 40 | Excavation (house) | 16 houses, 20 peoples | 26 September |
No. 12 | Collapse | E 107°15′51.18″ N 34°29′10.04″ | Quaternary loess | 20 | Excavation (house) | 10 houses, 8 peoples | 5 October |
No. 13 | Collapse | E 107°16′11.60″ N 34°28′51.55″ | Quaternary loess | 40 | Excavation (house) | 10 houses, 8 peoples | 26 September |
No. 14 | Collapse | E 107°29′08″ N 34°20′03″ | Quaternary loess | 200 | Excavation (road) | 1 road | 26 September |
No. 15 | Collapse | E 106°53′6.46″ N 34°49′31.17″ | Quaternary loess | 400 | Excavation (house) | 17 houses, 30 peoples | 4 October |
No. 16 | Collapse | E 106°54′17.30″ N 34°49′26.13″ | Quaternary loess | 200 | Excavation (house) | 9 houses, 22 peoples | 4 October |
No. 17 | Ground fissure | E 106°53′48.79″ N 35°02′21.09″ | Quaternary loess | Excavation (road) | 1 road | 5 October | |
No. 18 | Collapse | E 106°57′57.17″ N 34°21′31.12″ | Quaternary loess | 200 | Excavation (house) | 1 house, 2 peoples | First: 5 October Second: 7 October |
No. 19 | Landslide | E 106°56′53.88″ N 34°22′28.15″ | Quaternary loess | 400 | Excavation (house) | 21 houses, 37 peoples | 26 September |
No. 20 | Landslide | E 106°55′0.88″ N 34°22′28.15″ | Quaternary loess | 400 | Excavation (house) | 21 houses, 37 peoples | 26 September |
No. 21 | Landslide | E 106°52′53.13″ N 34°22′28.15″ | Quaternary loess | 400 | Excavation (house) | 21 houses, 37 peoples | 26 September |
No. 22 | Landslide | E 106°41′15″ N 34°24′14″ | Quaternary residual gravel soil | Rainfall | 2 houses, 8 peoples | 6 October | |
No.23 | Landslide | E 106°41′45.47″ N 34°24′43.10″ | Quaternary loess | 500 | Excavation (house) | 4 houses, 17 peoples | 26 September |
No.24 | Landslide | E 106°39′34.47″ N 34°23′20.68″ | Quaternary loess | 100 | Excavation (road) | 64 houses, 234 peoples | 6 October |
No.25 | Ground fissure | E 106°42′16.06″ N 34°23′17.20″ | Quaternary loess | Excavation (house) | 8 houses, 20 peoples | 6 October | |
No.26 | slump | E 106°39′49.49″ N 34°22′59.91″ | Quaternary loess | 700 | Excavation (house) | 1 house, 8 peoples | 26 September |
No.27 | Landslide | E 106°32′0.88″ N 34°32′28.15″ | Quaternary loess | 400 | Excavation (house) | 21 houses, 37 peoples | 26 September |
No.28 | Landslide | E 106°30′6.84″ N 34°32′2 0.93″ | Quaternary loess | 2000 | Excavation (road) | 36 h, 49 people | - |
No.29 | Landslide | E 106°27′11″ N 34°32′00″ | Quaternary loess and gneiss | 20 | Excavation (house) | 40 houses, 200 peoples | 4 October |
No.30 | Landslide | E 106°26′0.88″ N 34°32′28.15″ | Quaternary loess | Excavation (house) | 3 houses | - |
Soil Samples | Soil | Particle Size Grading (mm %) | |||
---|---|---|---|---|---|
>0.075 | 0.075~0.005 | <0.005 | <0.002 | ||
S1 | Sanmen Formation stiff clay | 5.37~13.30 (Average = 9.18) | 39.29~58.04 (49.58) | 30.20~52.85 (42.24) | 21.89~45.25 (33.62) |
S2 | 3.19~12.80 (7.97) | 48.09~54.92 (52.56) | 27.31~48.72 (39.47) | 24.43~43.56 (33.33) | |
S3 | 1.51~21.21 (9.74) | 46.53~68.46 (56.04) | 31.12~44.32 (34.23) | 21.87~36.75 (28.99) | |
S3 | Hipparion Red clay | 0.08~3.41 (1.54) | 45.02~62.71 (55.2) | 37.12~54.40 (43.3) | 30.24~48.04 (37.1) |
Soil Sample | Unsaturated State (w = 18%) | Saturated State | ||||||
---|---|---|---|---|---|---|---|---|
Peak | Residual | Peak | Residual | |||||
C/kPa | φ(°) | C/kPa | φ(°) | C/kPa | φ(°) | C/kPa | φ(°) | |
Sanmen Formation stiff clay | 128.2 | 34.9 | 36.1 | 22.7 | 98.5 | 28.1 | 32.6 | 17.4 |
Hipparion Red clay | 115.1 | 34.3 | 48.9 | 21.2 | 75.6 | 26.4 | 29.4 | 15.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Xia, Z.; Chen, D.; Miao, L.; Hu, S.; Yuan, J.; Huang, W.; Liu, L.; Ai, D.; Xu, H.; et al. Extreme Rainfall Events Triggered Loess Collapses and Landslides in Chencang District, Shanxi, China, during June–October 2021. Water 2024, 16, 2279. https://doi.org/10.3390/w16162279
Zhou C, Xia Z, Chen D, Miao L, Hu S, Yuan J, Huang W, Liu L, Ai D, Xu H, et al. Extreme Rainfall Events Triggered Loess Collapses and Landslides in Chencang District, Shanxi, China, during June–October 2021. Water. 2024; 16(16):2279. https://doi.org/10.3390/w16162279
Chicago/Turabian StyleZhou, Chang, Zhao Xia, Debin Chen, Leqian Miao, Shenghua Hu, Jingjing Yuan, Wei Huang, Li Liu, Dong Ai, Huiyuan Xu, and et al. 2024. "Extreme Rainfall Events Triggered Loess Collapses and Landslides in Chencang District, Shanxi, China, during June–October 2021" Water 16, no. 16: 2279. https://doi.org/10.3390/w16162279
APA StyleZhou, C., Xia, Z., Chen, D., Miao, L., Hu, S., Yuan, J., Huang, W., Liu, L., Ai, D., Xu, H., & Xiao, C. (2024). Extreme Rainfall Events Triggered Loess Collapses and Landslides in Chencang District, Shanxi, China, during June–October 2021. Water, 16(16), 2279. https://doi.org/10.3390/w16162279