Distinct Diazotrophic Communities in Water and Sediment of the Sub-Lakes in Poyang Lake, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sample Collection, and Physicochemical Analysis
2.2. Physicochemical Analysis
2.3. DNA Extraction, Sequencing, and Quantitative PCR Analysis
2.4. Data Processing and Analyses
3. Results
3.1. Diazotrophic Alpha Diversity and Abundance
3.2. Comparison of Composition of Water and Sediment Diazotrophic Communities
3.3. Comparison of Co-Occurrence Network of Water and Sediment Diazotrophic Communities
3.4. Assembly Mechanisms of Water and Sediment Diazotrophic Communities
4. Discussion
4.1. Diazotrophic Composition in the Water and Sediment of the Sub-Lakes
4.2. Distinct Diazotrophic Communities in the Water and Sediment of the Sub-Lakes
4.3. Deterministic Processes Dominate the Community Assembly of Diazotrophs in Both the Water and Sediment of the Sub-Lakes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.L.; Xu, L.G.; Wan, R.G.; Chen, Y.W. Seasonal variations of soil microbial biomass within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Catena 2016, 137, 483–493. [Google Scholar] [CrossRef]
- Hui, F.; Bing, X.U.; Huang, H.; Qian, Y.U.; Gong, P. Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery. Int. J. Remote Sens. 2008, 29, 5767–5784. [Google Scholar] [CrossRef]
- Zhao, J.K.; Li, J.F.; Yan, H.; Zheng, L.; Dai, Z.J. Analysis on the water exchange between the main stream of the Yangtze River and the Poyang Lake. Procedia Environ. Sci. 2011, 10, 2256–2264. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M.; Chen, X.L.; Cai, X.B.; Tian, L.Q.; Gan, W.X. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Xu, G.H.; Qin, Z.W. Flood estimation methods for Poyang Lake area. J. Lake Sci. 1998, 10, 31–36. [Google Scholar]
- Hu, B.J.; Hu, X.R.; Nie, X.; Zhang, X.K.; Wu, N.C.; Hong, Y.J.; Qin, H.M. Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors in a sub-lake of Lake Poyang, China. Peerj 2019, 7, e7590. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.P.; Zhang, Z.F.; Liu, Y.Z.; Ji, W.T.; Ge, G. The functionand significanceof the Shallow-Lakesin the Poyang Lake wetland ecosystem. Jiangxi Hydraul. Sci. Technol. 2015, 41, 317–323. [Google Scholar]
- Hu, Z.P.; Ge, G.; Liu, C.L. Response of wintering migratory birds to hydrological processes in Poyang Lake. J. Nat. Resour. 2014, 29, 1770–1779. [Google Scholar]
- Qi, S.H.; Liu, Y.; Yu, X.B.; Liao, F.Q. Effect of “Lake enclosed in autumn” on the hanitat of winter bird in Poyang Lake. Resour. Environ. Yangtze Basin 2011, 20, 18–21. [Google Scholar]
- Zhang, B.; Wang, J.H. Preliminary opinions on fishery natural resources, protection and utilization in Poyang Lake. Freshw. Fish. 1982, 3, 1–5. [Google Scholar]
- Capone, D.G.; Burns, J.A.; Montoya, J.P.; Subramaniam, A.; Mahaffey, C.; Gunderson, T.; Michaels, A.F.; Carpenter, E.J. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob. Biogeochem. Cycles 2005, 19, GB2024. [Google Scholar] [CrossRef]
- Dong, Y.R.; Sanford, R.A.; Connor, L.; Chee-Sanford, J.; Wimmer, B.T.; Iranmanesh, A.; Shi, L.; Krapac, I.G.; Locke, R.A.; Shao, H.B. Differential structure functional gene response to geochemistry associated with the suspended attached shallow aquifer microbiomes from the Illinois Basin, I.L. Water Res. 2021, 202, 117431. [Google Scholar] [CrossRef] [PubMed]
- Kapili, B.J.; Barnett, S.E.; Buckley, D.H.; Dekas, A.E. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. Isme J. 2020, 14, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Hallstrom, S.; Benavides, M.; Salamon, E.R.; Evans, C.W.; Potts, L.J.; Granger, J.; Tobias, C.R.; Moisander, P.H.; Riemann, L. Pelagic N2 fixation dominated by sediment diazotrophic communities in a shallow temperate estuary. Limnol. Oceanogr. 2022, 67, 364–378. [Google Scholar] [CrossRef]
- Hou, L.J.; Wang, R.; Yin, G.Y.; Liu, M.; Zheng, Y.L. Nitrogen fixation in the intertidal sediments of the Yangtze estuary: Occurrence and environmental implications. J. Geophys. Res.-Biogeosci. 2018, 123, 936–944. [Google Scholar] [CrossRef]
- Wang, G.Q.; Xia, X.H.; Liu, S.D.; Wang, J.F.; Zhang, S.B. Low diffusive nitrogen loss of urban inland waters with high nitrogen loading. Sci. Total Environ. 2021, 789, 148023. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, Q.; Long, X.E.; Li, Z.L.; Liu, D.X.; Ye, D.H.; He, C.Q.; Liu, X.Y.; Väänänen, K.; Chen, X.P. Anthropogenic activities drive the microbial community and its function in urban river sediment. J. Soils Sediments 2016, 16, 716–725. [Google Scholar] [CrossRef]
- Moutinho, F.H.M.; Marafao, G.A.; Calijuri, M.D.; Moreira, M.Z.; Marcarelli, A.M.; Cunha, D.G.F. Environmental factors and thresholds for nitrogen fixation by phytoplankton in tropical reservoirs. Int. Rev. Hydrobiol. 2021, 106, 5–17. [Google Scholar] [CrossRef]
- Wang, L.N.; Yu, Z.; Yang, J.; Zhou, J. Diazotrophic bacterial community variability in a subtropical deep reservoir is correlated with seasonal changes in nitrogen. Environ. Sci. Pollut. Res. 2015, 22, 19695–19705. [Google Scholar] [CrossRef]
- Tian, L.Q.; Yan, Z.S.; Wang, C.H.; Xu, S.Q.; Jiang, H.L. Habitat heterogeneity induces regional differences in sediment nitrogen fixation in eutrophic freshwater lake. Sci. Total Environ. 2021, 772, 145594. [Google Scholar] [CrossRef]
- Wang, L.N.; Xing, P.; Li, H.B.; Zhou, L.J.; Wu, Q.L.L. Distinct intra-lake heterogeneity of diazotrophs in a deep oligotrophic mountain lake. Microb. Ecol. 2020, 79, 840–852. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, F.; Chen, Y.W.; Zou, W.X.; Zhu, Z.G. Diazotrophic community in the sediments of Poyang Lake in response to water level fluctuations. Front. Microbiol. 2024, 15, 1324313. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.T.; Grantz, E.M. N2 fixation exceeds internal nitrogen loading as a phytoplankton nutrient source in perpetually nitrogen-limited reservoirs. Freshw. Sci. 2013, 32, 849–861. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.M.; Xiang, X.; Wang, R.C.; Tian, W. Vertical variation of nitrogen fixers and ammonia oxidizers along a sediment profile in the dajiuhu peatland, central China. J. Earth Sci. 2019, 30, 397–406. [Google Scholar] [CrossRef]
- Zehr, J.P.; Church, M.J.; Moisander, P.H. Diversity, distribution and biogeochemical significance of nitrogen-fixing microorganisms in anoxic and suboxic ocean environments. In Past and Present Water Column Anoxia; Neretin, L.N., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 337–369. [Google Scholar]
- Geisler, E.; Rahav, E.; Bar-Zeev, E. Contribution of heterotrophic diazotrophs to N2 fixation in a eutrophic river: Free-living vs. aggregate-associated. Front. Microbiol. 2022, 13, 779820. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.Q.; Jiang, H.L.; Bai, L.L.; Wang, C.L.; Xu, S.Q. Biological nitrogen fixation in sediments of a cyanobacterial bloom-occurring bay in one eutrophic shallow lake: Occurrence and related environmental factors. J. Geophys. Res.-Biogeosci. 2021, 126, e2021JG006342. [Google Scholar] [CrossRef]
- Fernandez, L.; Peura, S.; Eiler, A.; Linz, A.M.; McMahon, K.D.; Bertilsson, S. Diazotroph genomes and their seasonal dynamics in a stratified humic bog lake. Front. Microbiol. 2020, 11, 1500. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Qu, X.D.; Peng, W.Q.; Yu, Y.; Zhang, M. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. Peerj 2019, 7, e7318. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.L.; Zhang, L.; Zhang, Y.L.; Zhang, B.; Zhao, Z.H.; Zhang, Y.B.; Li, M.; Jiang, X.Y. Nitrogen fixation occurring in sediments: Contribution to the nitrogen budget of lake Taihu, China. J. Geophys. Res.-Biogeosci. 2018, 123, 2661–2674. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Li, H.B.; Xue, J.Y.; Luo, W.L.; Xing, P.; Wu, Q.L. Phosphorus-driven regime shift from heterotrophic to autotrophic diazotrophs in a deep alpine lake. Water Res. 2024, 248, 120848. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.A.; Liu, B.G.; Qian, K.M.; Chen, Y.W.; Gao, J.F. Cyanobacteria in the complex river-connected Poyang Lake: Horizontal distribution and transport. Hydrobiologia 2016, 768, 95–110. [Google Scholar] [CrossRef]
- Wang, L.Q.; Liang, T. Distribution characteristics of phosphorus in the sediments and overlying water of Poyang Lake. PLoS ONE 2015, 10, e0125859. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.C.; Tu, Q.Y. The Standard Methods for Observation and Analysis in Lake Eutrophication, 2nd ed.; Chinese Environmental Science Press: Beijing, China, 1990. (In Chinese) [Google Scholar]
- Kjeldahl, J. Neue methode zur bestimmung des stickstoffs in organischen Körpern. Z. Für Anal. Chem. 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Zehr, J.P.; McReynolds, L.A. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl. Environ. Microbiol. 1989, 55, 2522–2526. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, S.Y.; Liu, Y.; Li, B.K.; Wang, B.; Peng, Y.Z. Long-term effect of pH on short-chain fatty acids accumulation and microbial community in sludge fermentation systems. Bioresour. Technol. 2015, 197, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.T.; Sun, Y.; Deng, L.T.; Meng, Q.X.; Jiang, X.; Bello, A.; Sheng, S.Y.; Han, Y.; Zhu, H.F.; Xu, X.H. Insight to key diazotrophic community during composting of dairy manure with biochar and its role in nitrogen transformation. Waste Manag. 2020, 105, 190–197. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, Y.H.; Yang, Y.F.; He, Z.L.; Luo, F.; Zhou, J.Z. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the Third International Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Guimerà, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef]
- Chen, W.D.; Ren, K.X.; Isabwe, A.; Chen, H.H.; Liu, M.; Yang, J. Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 2019, 7, 138. [Google Scholar]
- Mo, Y.Y.; Peng, F.; Gao, X.F.; Xiao, P.; Logares, R.; Jeppesen, E.; Ren, K.X.; Xue, Y.Y.; Yang, J. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 2021, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Pei, J.; Zhao, L.; Ahmad, B.; Huang, L.F. Fighting climate change: Soil bacteria communities and topography play a role in plant colonization of desert areas. Environ. Microbiol. 2021, 23, 6876–6894. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X.; Han, M.Z.; Li, X.; Ginawi, A.; Ning, K.; Yan, Y.J. Niche and neutrality work differently in microbial communities in fluidic and non-fluidic ecosystems. Microb. Ecol. 2020, 79, 527–538. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, J.; Yang, J.; Yu, X.Q.; Liu, L.M. Vertical distribution of diazotrophic bacterial community associated with temperature and oxygen gradients in a subtropical reservoir. Hydrobiologia 2014, 741, 69–77. [Google Scholar] [CrossRef]
- Liu, X.H.; Li, P.; Wang, H.L.; Han, L.L.; Yang, K.; Wang, Y.H.; Jiang, Z.; Cui, L.; Kao, S.J. Nitrogen fixation and diazotroph diversity in groundwater systems. Isme J. 2023, 17, 2023–2034. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Meng, Z.H.; Chen, K.; Hu, F.F.; Liu, L.; Zhu, T.B.; Yang, D.G. Comparing diversity patterns and processes of microbial community assembly in water column and sediment in Lake Wuchang, China. Peerj 2023, 11, e14592. [Google Scholar] [CrossRef]
- Ren, Z.; Qu, X.D.; Peng, W.Q.; Yu, Y.; Zhang, M. Nutrients drive the structures of bacterial communities in sediments and surface waters in the river-lake system of Poyang Lake. Water 2019, 11, 930. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Liu, J.J.; Yao, Q.; Jin, J.; Liu, X.B.; Wang, G.H. Comparative analysis of bacterial community compositions between sediment and water in different types of wetlands of northeast China. J. Soils Sediments 2019, 19, 3083–3097. [Google Scholar] [CrossRef]
- Perkins, T.L.; Clements, K.; Baas, J.H.; Jago, C.F.; Jones, D.L.; Malham, S.K.; McDonald, J.E. Sediment composition influences spatial variation in the abundance of human pathogen indicator bacteria within an estuarine environment. PLoS ONE 2014, 9, e112951. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Zhang, C.W.; Peng, Y.Y.; Zhang, H.X.; Shi, L.D.; Wei, G.S.; Hubert, C.R.J.; Wang, Y.; Greening, C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat. Commun. 2022, 13, 4885. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.W.; Zhong, Q.P.; Han, X.G.; Hu, R.W.; Liu, X.Y.; Xu, W.J.; Wu, Y.J.; Huang, W.M.; Zhou, Z.Y.; Zhuang, W.; et al. Depth-dependent variability of biological nitrogen fixation and diazotrophic communities in mangrove sediments. Microbiome 2021, 9, 212. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.C.; Carpenter, E.J.; Coles, V.J.; Yager, P.L.; Goes, J.; Montoya, J.P. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Oceanogr. 2017, 62, 618–631. [Google Scholar] [CrossRef]
- Chen, W.D.; Wen, D.H. Archaeal and bacterial communities assembly and co-occurrence networks in subtropical mangrove sediments under Spartina alterniflora invasion. Environ. Microbiome 2021, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Li, J.B.; Li, C.N.; Kou, Y.P.; Yao, M.J.; He, Z.L.; Li, X.Z. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. Fems Microbiol. Ecol. 2020, 96, fiaa030. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.Y.; Wang, Q.; Simon, P.N.; Liu, J.Y.; Liu, L.C.; Dai, X.Z.; Zhang, X.H.; Kuang, J.L.; Igarashi, Y.; Pan, X.J.; et al. Distinct network interactions in particle-associated and free-living bacterial communities during a Microcystis aeruginosa bloom in a plateau lake. Front. Microbiol. 2017, 8, 1202. [Google Scholar] [CrossRef]
- Zhou, J.Z.; Deng, Y.; Luo, F.; He, Z.L.; Tu, Q.C.; Zhi, X.Y. Functional molecular ecological networks. Mbio 2010, 1, e00169-10. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.Y.; Chen, H.H.; Yang, J.R.; Liu, M.; Huang, B.Q.; Yang, J. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. Isme J. 2018, 12, 2263–2277. [Google Scholar] [CrossRef]
- Cao, J.L.; Liu, Z.Y.; Zhao, H.Y.; Lai, F.Y.; Han, Y.; Lin, X.G. Effects of copper oxide nanoparticles on soil diazotrophic communities in maize rhizosphere. J. Soils Sediments 2023, 23, 1760–1774. [Google Scholar] [CrossRef]
- Dai, X.L.; Song, D.L.; Guo, Q.K.; Zhou, W.; Liu, G.R.; Ma, R.P.; Liang, G.Q.; He, P.; Sun, G.; Yuan, F.S.; et al. Predicting the influence of fertilization regimes on potential N fixation through their effect on free-living diazotrophic community structure in double rice cropping systems. Soil Biol. Biochem. 2021, 156, 108220. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, X.; Li, X.Y.; Li, F.L.; Su, Z.C.; Zhang, H.W. Community composition and co-occurrence patterns of diazotrophs along a soil profile in paddy fields of three soil types in China. Microb. Ecol. 2021, 82, 961–970. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Liang, C.; Chen, L.J.; Wang, H.T.; Xu, Q.S.; Jiang, Y.J.; Sun, B. Coupling bacterial community assembly to microbial metabolism across soil profiles. Msystems 2020, 5, e00298-20. [Google Scholar] [CrossRef] [PubMed]
- Morrison-Whittle, P.; Goddard, M.R. Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. Isme J. 2015, 9, 2003–2011. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Z.; Ning, D.L. Stochastic community assembly: Does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.Q.; Deng, Y.; Jiang, H.L. Comparing the benthic nitrogenase activity and diazotrophic community assembly of three large river-connected freshwater lakes in eastern China. J. Environ. Sci. 2025, 150, 134–148. [Google Scholar] [CrossRef]
- Feng, M.M.; Adams, J.M.; Fan, K.K.; Shi, Y.; Sun, R.B.; Wang, D.Z.; Guo, X.S.; Chu, H.Y. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 2018, 126, 151–158. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, Q.K.; Shen, C.C.; Yang, F.T.; Wang, J.C.; Ge, Y. Significant dose effects of fertilizers on soil diazotrophic diversity, community composition, and assembly processes in a long-term paddy field fertilization experiment. Land Degrad. Dev. 2021, 32, 420–429. [Google Scholar] [CrossRef]
- Ding, X.W.; Liu, K.H.; Yan, Q.Y.; Liu, X.Y.; Chen, N.; Wang, G.L.; He, S. Sugar and organic acid availability modulate soil diazotroph community assembly and species co-occurrence patterns on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 2021, 105, 8545–8560. [Google Scholar] [CrossRef]
- Qin, M.Y.; Xu, H.M.; Zhao, D.Y.; Zeng, J.; Wu, Q.L.L. Aquaculture drives distinct patterns of planktonic and sedimentary bacterial communities: Insights into co-occurrence pattern and assembly processes. Environ. Microbiol. 2022, 24, 4079–4093. [Google Scholar] [CrossRef]
- Rong, X.Y.; Zhou, X.B.; Li, X.Z.; Yao, M.J.; Lu, Y.X.; Xu, P.; Yin, B.F.; Li, Y.G.; Aanderud, Z.T.; Zhang, Y.M. Biocrust diazotrophs and bacteria rather than fungi are sensitive to chronic low N deposition. Environ. Microbiol. 2022, 24, 5450–5466. [Google Scholar] [CrossRef] [PubMed]
Network Properties | Water | Sediment |
---|---|---|
No. of nodes | 158 | 266 |
No. of edges | 219 | 342 |
No. of positive edges | 106 | 168 |
No. of negative edges | 113 | 174 |
Average clustering coefficient (avgCC) | 0.108 | 0.118 |
Average degree (avgK) | 2.772 | 2.571 |
Modularity (no. of modules) | 0.753 (23) | 0.783 (41) |
Average path distance (GD) | 7.426 | 5.966 |
Habitat | Observed C-Score | Simulated C-Score | p | SES |
---|---|---|---|---|
Water | 1.601 | 1.588 | <0.001 | 3.391 |
Sediment | 1.612 | 1.606 | 0.015 | 3.175 |
Environmental Factors | Phylum Level | Genus Level | ||
---|---|---|---|---|
r | p | r | p | |
WT | −0.07 | 0.529 | −0.24 | 0.886 |
pH | −0.24 | 0.925 | −0.03 | 0.542 |
DO | −0.15 | 0.794 | 0.13 | 0.200 |
EC | 0.01 | 0.414 | 0.04 | 0.374 |
TN | −0.08 | 0.570 | 0.03 | 0.422 |
NH4-N | 0.21 | 0.166 | −0.04 | 0.559 |
PO4-P | 0.10 | 0.317 | −0.01 | 0.494 |
TP | 0.05 | 0.346 | 0.41 | 0.014 * |
CODMn | −0.12 | 0.717 | 0.003 | 0.452 |
Environmental Factors | Phylum Level | Genus Level | ||
---|---|---|---|---|
r | p | r | p | |
pH | 0.41 | 0.059 | 0.34 | 0.082 |
EC | 0.19 | 0.067 | 0.23 | 0.068 |
TN | 0.45 | 0.036 * | 0.25 | 0.149 |
TP | −0.27 | 0.978 | −0.24 | 0.952 |
OM | 0.42 | 0.039 * | 0.37 | 0.066 |
N:P | 0.55 | 0.016 * | 0.41 | 0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zhu, Z.; Liu, L.; Qin, Y.; Jiang, Y.; Liu, J.; Zou, W.; Wang, F.; Chen, Y. Distinct Diazotrophic Communities in Water and Sediment of the Sub-Lakes in Poyang Lake, China. Water 2024, 16, 2277. https://doi.org/10.3390/w16162277
Wu Q, Zhu Z, Liu L, Qin Y, Jiang Y, Liu J, Zou W, Wang F, Chen Y. Distinct Diazotrophic Communities in Water and Sediment of the Sub-Lakes in Poyang Lake, China. Water. 2024; 16(16):2277. https://doi.org/10.3390/w16162277
Chicago/Turabian StyleWu, Qiang, Zhigang Zhu, Longlingfeng Liu, Yin Qin, Yufang Jiang, Jinfu Liu, Wenxiang Zou, Fei Wang, and Yuwei Chen. 2024. "Distinct Diazotrophic Communities in Water and Sediment of the Sub-Lakes in Poyang Lake, China" Water 16, no. 16: 2277. https://doi.org/10.3390/w16162277
APA StyleWu, Q., Zhu, Z., Liu, L., Qin, Y., Jiang, Y., Liu, J., Zou, W., Wang, F., & Chen, Y. (2024). Distinct Diazotrophic Communities in Water and Sediment of the Sub-Lakes in Poyang Lake, China. Water, 16(16), 2277. https://doi.org/10.3390/w16162277