Enhanced Low-Energy Chemical Oxygen Demand (COD) Removal in Aeration-Free Conditions through Pulse-Rotating Bio-Contactors Enriched with Glycogen-Accumulating Organisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Wastewater Treatment Procedures
2.3. Synthetic Wastewater
2.4. Analytical Procedures
2.4.1. Polyhydroxyalkanoate Analysis
2.4.2. Glycogen Analysis
2.4.3. Microbial Community Structure Analysis
2.5. Histochemical Staining
2.6. Routine Analysis and Monitoring
3. Results and Discussion
3.1. Overall COD Removal Performance of P-RBC
3.2. Evolution of Anaerobic COD Removal Capacity by Biofilm from P-RBC
3.3. Investigation of the COD Removal Mechanism
3.3.1. Investigation of the Changes in PHAs and Glycogen Content during the COD Removal
3.3.2. Microbial Community Structure Analysis
3.3.3. Sudan Black B Staining Analysis
3.4. Effect of Operational Parameters on COD Removal Performance and GAO Enrichment
3.4.1. Effect of Rotating Frequency
3.4.2. Effect of HRT
3.5. Practical Applications
3.5.1. COD Removal at Low Temperature
3.5.2. High Concentrations of Organic Loading
3.5.3. Various Types of Carbon Sources
3.5.4. Energy Consumption Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehariya, S.; Goswami, R.K.; Karthikeysan, O.P.; Verma, P. Microalgae for High-Value Products: A Way towards Green Nutraceutical and Pharmaceutical Compounds. Chemosphere 2021, 280, 130553. [Google Scholar] [CrossRef] [PubMed]
- WWAP. The United Nations World Water Development Report 2017: Wastewater: The Untapped Resources; The United Nations Educational, Scientific and Cultural Organization: Paris, France, 2017. [Google Scholar]
- Zhang, M.; Dong, H.; Zhao, L.; Wang, D.; Meng, D. A Review on Fenton Process for Organic Wastewater Treatment Based on Optimization Perspective. Sci. Total Environ. 2019, 670, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, A.; Snyder, S. Wastewater Treatment and Reuse: Past, Present, and Future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef]
- Kamyab, H.; Khademi, T.; Chelliapan, S.; SaberiKamarposhti, M.; Rezania, S.; Yusuf, M.; Farajnezhad, M.; Abbas, M.; Jeon, B.H.; Ahn, Y. The Latest Innovative Avenues for the Utilization of Artificial Intelligence and Big Data Analytics in Water Resource Management. Results Eng. 2023, 20, 101566. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Xie, Y.; Rong, X.; Liu, Z.; Xiao, X.; Liang, Z.; Jiang, S.; Wei, J.; Wu, Z. A Sustainable Bio-Carrier Medium for Wastewater Treatment: Modified Basalt Fiber. J. Clean. Prod. 2019, 225, 472–480. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, V.; Ormeci, B.; Hussain, A.; Cheng, L.; Venkiteshwaran, K. Anaerobic–Aerobic Treatment of Wastewater and Leachate: A Review of Process Integration, System Design, Performance and Associated Energy Revenue. J. Environ. Manag. 2023, 327, 116898. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, Z.; Jatoi, A.S.; Nadeem, S.; Anjum, A.; Imam, S.M.; Jangda, H. Comparative Analysis of Conventional to Biomass-Derived Adsorbent for Wastewater Treatment: A Review. Biomass Convers. Biorefinery 2024, 14, 45–76. [Google Scholar] [CrossRef]
- Wolff, D.; Helmholz, L.; Castronovo, S.; Ghattas, A.-K.; Ternes, T.A.; Wick, A. Micropollutant Transformation and Taxonomic Composition in Hybrid MBBR–A Comparison of Carrier-Attached Biofilm and Suspended Sludge. Water Res. 2021, 202, 117441. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Hossain, I.; Cheng, L. High—Strength Wastewater Treatment Using Microbial Biofilm Reactor: A Critical Review. World J. Microbiol. Biotechnol. 2020, 36, 75. [Google Scholar] [CrossRef]
- Englande, A.J.; Krenkel, P.; Shamas, J. Wastewater Treatment & Water Reclamation. Ref. Modul. Earth Syst. Environ. Sci. 2015. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Kazemi, H.; Mirbagheri, S.A.; Rockaway, T.D. Integrated Approach to Treatment of High-Strength Organic Wastewater by Using Anaerobic Rotating Biological Contactor. J. Environ. Eng. 2018, 144, 04017102. [Google Scholar] [CrossRef]
- Zulkifli, M.; Hasan, H.A.; Abdullah, S.R.S.; Muhamad, M.H. A Review of Ammonia Removal Using a Biofilm-Based Reactor and Its Challenges. J. Environ. Manag. 2022, 315, 115162. [Google Scholar] [CrossRef] [PubMed]
- Flavigny, R.M.-G.; Cord-Ruwisch, R. Organic Carbon Removal from Wastewater by a PHA Storing Biofilm Using Direct Atmospheric Air Contact as Oxygen Supply. Bioresour. Technol. 2015, 187, 182–188. [Google Scholar] [CrossRef]
- Miao, L.; Wang, S.; Li, B.; Cao, T.; Zhang, F.; Wang, Z.; Peng, Y. Effect of Carbon Source Type on Intracellular Stored Polymers during Endogenous Denitritation (ED) Treating Landfill Leachate. Water Res. 2016, 100, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Dan, Q.; Peng, Y.; Wang, B.; Wang, Q.; Sun, T. Side-Stream Phosphorus Famine Selectively Strengthens Glycogen Accumulating Organisms (GAOs) for Advanced Nutrient Removal in an Anaerobic-Aerobic-Anoxic System. Chem. Eng. J. 2021, 420, 129554. [Google Scholar] [CrossRef]
- Hassard, F.; Biddle, J.; Cartmell, E.; Jefferson, B.; Tyrrel, S.; Stephenson, T. Rotating Biological Contactors for Wastewater Treatment–a Review. Process Saf. Environ. Prot. 2015, 94, 285–306. [Google Scholar] [CrossRef]
- Waqas, S.; Bilad, M.R.; Man, Z.B.; Klaysom, C.; Jaafar, J.; Khan, A.L. An Integrated Rotating Biological Contactor and Membrane Separation Process for Domestic Wastewater Treatment. Alexandria Eng. J. 2020, 59, 4257–4265. [Google Scholar] [CrossRef]
- Tabraiz, S.; Haydar, S.; Hussain, G. Evaluation of a Cost-Effective and Energy-Efficient Disc Material for Rotating Biological Contactors (RBC), and Performance Evaluation under Varying Condition of RPM and Submergence. Desalin. Water Treat. 2016, 57, 20439–20446. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Eltawab, R.; Iqbal Hossain, M.; Zhou, X.; Cheng, L. Membrane Aerated Biofilm Reactor System Driven by Pure Oxygen for Wastewater Treatment. Bioresour. Technol. 2024, 393, 130130. [Google Scholar] [CrossRef] [PubMed]
- Smolders, G.J.F.; van der Meij, J.; van Loosdrecht, M.C.M.; Heijnen, J.J. Model of the Anaerobic Metabolism of the Biological Phosphorus Removal Process: Stoichiometry and PH Influence. Biotechnol. Bioeng. 1994, 43, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Pane, V.E.; Criddle, C.S. Metabolic Model of Nitrite Reduction to Nitrous Oxide Coupled to Alternating Consumption and Storage of Glycogen and Polyhydroxyalkanoate. Bioresour. Technol. Reports 2020, 9, 100370. [Google Scholar] [CrossRef]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems; Crc Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Xie, D.; Gao, M.; Yang, M.; Wu, C.; Meng, J.; Xu, M.; Wang, Q.; Liu, S.; Sun, X. Nitrate-Rich Wastewater Discharged from a Bio-Trickling Filter Can Be Reused as a Moisture Conditioning Agent for Organic Waste Composting. Environ. Technol. Innov. 2021, 24, 101932. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, Z.; Zhu, L.; Yu, H.; Dai, X.; Xu, X.; Alvarez, P.J.J. Gradient Reduced Aeration in an Enhanced Aerobic Granular Sludge Process Optimizes the Dominant Microbial Community and Its Function. Environ. Sci. Water Res. Technol. 2018, 4, 680–688. [Google Scholar] [CrossRef]
- Hossain, M.I. Evaluation and Validation of Passive Aeration Simultaneous Nitrification and Denitrification (PASND) in a Biofilm Reactor for Low-Energy Wastewater Treatment. Ph.D. Thesis, Murdoch University, Pittsburgh, PA, USA, 2017. [Google Scholar]
- Rizvi, H.; Ahmad, N.; Abbas, F.; Bukhari, I.H.; Yasar, A.; Ali, S.; Yasmeen, T.; Riaz, M. Start-up of UASB Reactors Treating Municipal Wastewater and Effect of Temperature/Sludge Age and Hydraulic Retention Time (HRT) on Its Performance. Arab. J. Chem. 2015, 8, 780–786. [Google Scholar] [CrossRef]
- Luo, Y.; Yao, J.; Wang, X.; Zheng, M.; Guo, D.; Chen, Y. Efficient Municipal Wastewater Treatment by Oxidation Ditch Process at Low Temperature: Bacterial Community Structure in Activated Sludge. Sci. Total Environ. 2020, 703, 135031. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Ahammad, S.Z. Performance Evaluation and Microbial Community Structure of a Modified Trickling Filter and Conventional Activated Sludge Process in Treating Urban Sewage. Sci. Total Environ. 2022, 853, 158331. [Google Scholar] [CrossRef] [PubMed]
- Harb, M.; Wei, C.-H.; Wang, N.; Amy, G.; Hong, P.-Y. Organic Micropollutants in Aerobic and Anaerobic Membrane Bioreactors: Changes in Microbial Communities and Gene Expression. Bioresour. Technol. 2016, 218, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.I.; Cheng, L.; Cord-Ruwisch, R. Energy Efficient COD and N-Removal from High-Strength Wastewater by a Passively Aerated GAO Dominated Biofilm. Bioresour. Technol. 2019, 283, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vazquez, C.M.; Hooijmans, C.M.; Brdjanovic, D.; Gijzen, H.J.; van Loosdrecht, M.C.M. Temperature Effects on Glycogen Accumulating Organisms. Water Res. 2009, 43, 2852–2864. [Google Scholar] [CrossRef] [PubMed]
- Filipe, C.D.M.; Daigger, G.T.; Grady, C.P.L. A Metabolic Model for Acetate Uptake under Anaerobic Conditions by Glycogen Accumulating Organisms: Stoichiometry, Kinetics, and the Effect of PH. Biotechnol. Bioeng. 2001, 76, 17–31. [Google Scholar] [CrossRef]
- Ding, J.; Gao, X.; Peng, Y.; Peng, Y.; Zhang, Q.; Li, X.; Wang, S. Anaerobic Duration Optimization Improves Endogenous Denitrification Efficiency by Glycogen Accumulating Organisms Enhancement. Bioresour. Technol. 2022, 348, 126730. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, J.; Oehmen, A.; Le, C.; Geng, Y.; Zhou, Y. Butyrate Can Support PAOs but Not GAOs in Tropical Climates. Water Res. 2021, 193, 116884. [Google Scholar] [CrossRef]
- McIlroy, S.J.; Albertsen, M.; Andresen, E.K.; Saunders, A.M.; Kristiansen, R.; Stokholm-Bjerregaard, M.; Nielsen, K.L.; Nielsen, P.H. ’Candidatus Competibacter’-Lineage Genomes Retrieved from Metagenomes Reveal Functional Metabolic Diversity. ISME J. 2014, 8, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Ren, T.; Chi, Y.; Wang, Y.; Shi, X.; Jin, X.; Jin, P. Diversified Metabolism Makes Novel Thauera Strain Highly Competitive in Low Carbon Wastewater Treatment. Water Res. 2021, 206, 117742. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vazquez, C.M.; Song, Y.; Hooijmans, C.M.; Brdjanovic, D.; Moussa, M.S.; Gijzen, H.J.; van Loosdrecht, M.C.M. Temperature Effects on the Aerobic Metabolism of Glycogen-accumulating Organisms. Biotechnol. Bioeng. 2008, 101, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, G.R.; Banfield, J.F.; Keller, J.; Bond, P.L.; Blackall, L.L. Glycogen-Accumulating Organisms in Laboratory-Scale and Full-Scale Wastewater Treatment Processes b BThe GenBank Accession Numbers for the Sequences Reported in This Paper Are given in Methods. Microbiology 2002, 148, 3353–3364. [Google Scholar] [CrossRef] [PubMed]
- Cortez, S.; Teixeira, P.; Oliveira, R.; Mota, M. Rotating Biological Contactors: A Review on Main Factors Affecting Performance. Rev. Environ. Sci. Bio/Technol. 2008, 7, 155–172. [Google Scholar] [CrossRef]
- Saratale, R.G.; Cho, S.-K.; Saratale, G.D.; Kumar, M.; Bharagava, R.N.; Varjani, S.; Kadam, A.A.; Ghodake, G.S.; Palem, R.R.; Mulla, S.I.; et al. An Overview of Recent Advancements in Microbial Polyhydroxyalkanoates (PHA) Production from Dark Fermentation Acidogenic Effluents: A Path to an Integrated Bio-Refinery. Polymers 2021, 13, 4297. [Google Scholar] [CrossRef] [PubMed]
- Venkateswar Reddy, M.; Kotamraju, A.; Venkata Mohan, S. Bacterial Synthesis of Polyhydroxyalkanoates Using Dark Fermentation Effluents: Comparison between Pure and Enriched Mixed Cultures. Eng. Life Sci. 2015, 15, 646–654. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Randall, A.A.; Gu, G. Anaerobic Metabolic Models for Phosphorus- and Glycogen-Accumulating Organisms with Mixed Acetic and Propionic Acids as Carbon Sources. Water Res. 2008, 42, 3745–3756. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, C.; Shen, Z.; Yang, Y.; Qiu, Z.; Li, C.; Xue, B.; Zhang, X.; Yang, X.; Wang, S.; et al. Ethylmalonyl-CoA Pathway Involved in Polyhydroxyvalerate Synthesis in Candidatus Contendobacter. AMB Express 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Costley, S.C.; Wallis, F.M. Effect of Flow Rate on Heavy Metal Accumulation by Rotating Biological Contactor (RBC) Biofilms. J. Ind. Microbiol. Biotechnol. 2000, 24, 244–250. [Google Scholar] [CrossRef]
- Farghaly, A.; Enitan, A.M.; Kumari, S.; Bux, F.; Tawfik, A. Polyhydroxyalkanoates Production from Fermented Paperboard Mill Wastewater Using Acetate-Enriched Bacteria. Clean Technol. Environ. Policy 2016, 19, 935–947. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, H.; Wang, X. Dynamic Synthesis of Polyhydroxyalkanoates by Bacterial Consortium from Simulated Excess Sludge Fermentation Liquid. Bioresour. Technol. 2013, 140, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.; Piculell, M.; Modin, O.; Langenheder, S.; Persson, F.; Hermansson, M. Thickness Determines Microbial Community Structure and Function in Nitrifying Biofilms via Deterministic Assembly. Sci. Rep. 2019, 9, 5110. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wu, H.; Wei, G.; Zhu, S.; Qiu, G.; Wei, C. Simultaneous Decarbonization and Phosphorus Removal by Tetrasphaera Elongata with Glucose as Carbon Source under Aerobic Conditions. Bioresour. Technol. 2024, 393, 130048. [Google Scholar] [CrossRef]
- Wang, H.-C.; Cui, D.; Han, J.-L.; Cheng, H.-Y.; Liu, W.-Z.; Peng, Y.-Z.; Chen, Z.-B.; Wang, A.-J. A2O-MBR as an Efficient and Profitable Unconventional Water Treatment and Reuse Technology: A Practical Study in a Green Building Residential Community. Resour. Conserv. Recycl. 2019, 150, 104418. [Google Scholar] [CrossRef]
- Gu, J.; Xu, G.; Liu, Y. An Integrated AMBBR and IFAS-SBR Process for Municipal Wastewater Treatment towards Enhanced Energy Recovery, Reduced Energy Consumption and Sludge Production. Water Res. 2017, 110, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, V.; Bansal, A.; Jha, M.K. Studies on Pollution Removal Capability of an Advanced Activated Sludge Treatment for Industrial Wastewater. In Proceedings of the Chemical Engineering Congress, Batu Ferringhi, Malaysia, 17–19 July 2019. [Google Scholar]
- Sodhi, V.; Bansal, A.; Jha, M.K. Excess Sludge Disruption and Pollutant Removal from Tannery Effluent by Upgraded Activated Sludge System. Bioresour. Technol. 2018, 263, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, J.; Wang, S.; Zhang, M.; Liu, Y. Performance, Membrane Fouling Control and Cost Analysis of an Integrated Anaerobic Fixed-Film MBR and Reverse Osmosis Process for Municipal Wastewater Reclamation to NEWater-like Product Water. J. Memb. Sci. 2020, 593, 117442. [Google Scholar] [CrossRef]
Process | Energy Consumption Per Unit of Water Volume Treatment (kWh/m3) | ECOD (kWh/kg COD) | References |
---|---|---|---|
P-RBC | 0.09 | 0.19 | This study, 1× |
P-RBC | 0.09 | 0.10 | This study, 2× |
P-RBC | 0.09 | 0.05 | This study, 4× |
P-RBC | 0.09 | 0.02 | This study, 10× |
RBC | 0.18 | 0.83 | [18] |
A2O | 0.37 | 0.51 | [51] |
SBR | 0.50 | 0.82 | [52] |
Oxidation Ditch | 0.17 | 0.58 | [53] |
CASS | 0.30 | 1.12 | [54] |
MBR | 0.60 | 1.00 | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Deng, G.; Zhang, C.; Yang, Y.; Abdelfattah, A.; Eltawab, R.; Jia, H. Enhanced Low-Energy Chemical Oxygen Demand (COD) Removal in Aeration-Free Conditions through Pulse-Rotating Bio-Contactors Enriched with Glycogen-Accumulating Organisms. Water 2024, 16, 1417. https://doi.org/10.3390/w16101417
Cheng L, Deng G, Zhang C, Yang Y, Abdelfattah A, Eltawab R, Jia H. Enhanced Low-Energy Chemical Oxygen Demand (COD) Removal in Aeration-Free Conditions through Pulse-Rotating Bio-Contactors Enriched with Glycogen-Accumulating Organisms. Water. 2024; 16(10):1417. https://doi.org/10.3390/w16101417
Chicago/Turabian StyleCheng, Liang, Guihuan Deng, Chaoqun Zhang, Yao Yang, Abdallah Abdelfattah, Reham Eltawab, and Hui Jia. 2024. "Enhanced Low-Energy Chemical Oxygen Demand (COD) Removal in Aeration-Free Conditions through Pulse-Rotating Bio-Contactors Enriched with Glycogen-Accumulating Organisms" Water 16, no. 10: 1417. https://doi.org/10.3390/w16101417
APA StyleCheng, L., Deng, G., Zhang, C., Yang, Y., Abdelfattah, A., Eltawab, R., & Jia, H. (2024). Enhanced Low-Energy Chemical Oxygen Demand (COD) Removal in Aeration-Free Conditions through Pulse-Rotating Bio-Contactors Enriched with Glycogen-Accumulating Organisms. Water, 16(10), 1417. https://doi.org/10.3390/w16101417