Using Methods to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems
Abstract
:1. Introduction
2. Assessment of the Possibility of Using pH, Thermometry and Electrophysical Methods to Evaluate the Structure of Water and Water-Containing Systems
3. Using pH to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems
4. Using Thermometry to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems
5. Using Electrophysical Parameters to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savostikova, O.N. Hygienic assessment of the effect of structural changes in water on its physicochemical and biological properties. In Abstract of the Dissertation for the Degree of Candidate of Medical Sciences; Research Institute of Human Ecology and Environmental Hygiene, Russian Academy of Medical Sciences: Moscow, Russia, 2008; p. 26. [Google Scholar]
- Rakhmanin, Y.A.; Kondratov, V.K. Water Is a Cosmic Phenomenon; Russian Academy of Medical Sciences: Moscow, Russia, 2002; p. 427. [Google Scholar]
- Farashchuk, N.F.; Rakhmanin, Y.A. Water Is the Structural Basis for Adaptation; Russian Academy of Medical Sciences: Smolensk, Russia; Moscow, Russia, 2004; p. 172. [Google Scholar]
- Lindinger Michael, I. Structured water: Effects on animals. J. Anim. Sci. 2021, 99, skab063. [Google Scholar] [CrossRef] [PubMed]
- Kordonskaya, M.A.; Kondakov, A.M.; Egorov, V.V. Influence of water structure on the chemical reactions rate. Biotechnology 2014, 4, 43–45. [Google Scholar]
- Malenkov, G.G. Structure and dynamics of liquid water. J. Struct. Chem. 2006, 47, 5–35. [Google Scholar] [CrossRef]
- Roy, R.; Tiller, W.A.; Bell, I.; Hoover, M.R. The structure of liquid water; novel insights from materials research; potential relevance to homoeopathy. Mater. Res. Innov. 2005, 9, 577–608. [Google Scholar] [CrossRef]
- Syroeshkin, A.V.; Smirnov, A.N.; Goncharuk, V.V.; Uspenskaya, E.V.; Nikolaev, G.M.; Popov, P.I.; Karamzina, T.V.; Samsoni-Todorov, A.O.; Lapshin, V.B. Water as a heterogeneous structure. Electron. J. Investig. Russ. 2006, 843–854. Available online: http://zhurnal.ape.relarn.ru/articles/2006/088.pdf (accessed on 7 July 2021).
- Ho, M.-W. Large Supramolecular Water Clusters Caught on Camera. A Review. Water 2013, 6, 1–12. [Google Scholar] [CrossRef]
- Lo, S.-Y.; Geng, X.; Gann, D. Evidence for the existence of stable-water-clusters at room temperature and normal pressure. Phys. Lett. A 2009, 373, 3872–3876. [Google Scholar] [CrossRef]
- Oka, K.; Shibue, T.; Sugimura, N.; Watabe, Y.; Winther-Jensen, B.; Nishide, H. Long-lived water clusters in hydrophobic solvents investigated by standard NMR techniques. Sci. Rep. 2019, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, A.; Morgenstern, K. Ice nanoclusters at hydrophobic metal surfaces. Nat. Mater. 2007, 6, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Goncharuk, V.V.; Smirnov, V.N.; Syroeshkin, A.V. Clusters and giant geterophasic clusters of water. Chem. Technol. Water 2007, 29, 3–17. [Google Scholar]
- Goncharuk, V.V.; Orekhova, E.A.; Malyarenko, V.V. Influence of temperature on water clusters. Chem. Technol. Water 2008, 30, 150–158. [Google Scholar] [CrossRef]
- Smirnov, A.N.; Syroeshkin, A.V. Supranadmolecular complexes of water. Ros. Chem. J. 2004, 48, 125–135. [Google Scholar]
- Zenin, S.V. Biological and energy-informational properties of water. Water Sci. 2007, 25. [Google Scholar]
- Sidorenko, G.; Brilly, M.; Laptev, B.; Gorlenko, N.; Antoshkin, L.; Vidmar, A.; Kryžanowski, A. The Role of Modification of the Structure of Water and Water-Containing Systems in Changing Their Biological, Therapeutic, and Other Properties Overview. Water 2021, 13, 2441. [Google Scholar] [CrossRef]
- Postnov, S.E.; Podchernyaeva, R.Y.; Mezentseva, M.V. Unusual properties of the boundary layer water. Bull. Russ. Acad. Nat. Sci. 2009, 3, 12–15. [Google Scholar]
- Postnov, S.E.; Mezentseva, M.V.; Podchernyaeva, R.Y.; Danlybaeva, G.A.; Surgucheva, I.M.; Grinkevich, O.M.; Lopatina, O.A.; Baklanova, O.V. New approaches in biomedical technology based on boundary layer water. Biomed. Radio Eng. 2009, 1, 3–15. [Google Scholar]
- Ulashchik, V.S. Molecular aspects of the action of therapeutic physical factors (introduction to the problem). Med. News 2003, 1, 30–38. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. Assessment of changes in the structure of water and aqueous solutions at a distance of 5–50,000 microns from a solid surface (in the wall layer) using dielectrometry and resonance methods. Water Purif. Water Treat. Water Supply 2020, 7, 16–21. [Google Scholar]
- Laptev, B.I.; Sidorenko, G.N.; Gorlenko, N.P.; SarkisovYSAntoshkin, L.V. Assessment of changes in the structure of aqueous solutions in near-wall layers using dielectrometry and resonance methods. Bull. New Med. Technol. Electron. Period. 2015, 2, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Ulashchik, B.C. Water is a key molecule in the action of therapeutic physical factors. Vopr. Kurortol. Physiother. Exerc. Ther. 2002, 1, 3–9. [Google Scholar]
- Ulashchik, B.C. Combined physiotherapy: New methods and devices. Health 2011, 2, 25–30. [Google Scholar]
- Ulashchik, B.C. Physiotherapy. Universal Medical Encyclopedia. Moskow Knizhnyy Dom 2008, 640, 493–496. [Google Scholar]
- Sidorenko, G.N.; Kuzmenko, O.V.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. Assessment of the mechanisms of action and the effectiveness of the combined action of photo- and magnetic therapy. Bull. New Med. Technol. Electron. Period. 2020, 14, 100–109. [Google Scholar] [CrossRef]
- Aksenov, S.I. Water and Its Role in the Regulation of Biological Processes; Institute for Computer Research: Moscow, Russia, 2008; p. 212. [Google Scholar]
- Lukyanitsa, V.V. Primary mechanism of action in EHF-therapy. Med. J. 2013, 43, 94–99. [Google Scholar]
- Sidorenko, G.N.; Konovalov, A.I.; Laptev, B.I. On the role of water structure in the mechanism of complex action of the magnetic field, natural healing factors and highly diluted solutions. Bull. New Med. Technol. 2017, 1, 71–81. [Google Scholar] [CrossRef]
- Britova, A.A.; Adamko, I.V.; Bachurina, V.L. Water activation by laser radiation, magnetic field and their combination. Bull. Novgorod State Univ. 1998, 7, 11–14. [Google Scholar]
- Veprikov, Y.V. Influence of laser and magnetic activation of water on the value of the hydrogen index. Izvestiyavuzov. N. Cauc. Reg. Nat. Sci. 2014, 3, 44–49. [Google Scholar]
- Gorlenko, N.P.; Sarkisov, Y.S.; Syryamkin, V.I.; Naumova, L.B.; Pavlova, A.N.; Laptev, B.I. Wave mechanism of structure formation in cement compositions. IOP Conf. Ser. Mater. Sci. Eng. 2019, 597, 1–5. [Google Scholar] [CrossRef]
- Pasko, O.A. Influence of pre-sowing stimulation of cucumber seeds on yield. Agric. Sci. 2011, 8, 20–22. [Google Scholar]
- Ramsey, C.L. Magnetized Seeds and Structured Water: Effects on Resilience of Velvet Bean Seedlings (Mucuna pruriens) under Deficit Irrigation. J. Basic Appl. Sci. 2023, 19, 249. [Google Scholar] [CrossRef]
- Stemler, A.J. Rotational Direction of a Weak Magnetic Field Selectively Targets Chiral Clusters in Liquid Water and Modifies Its Chemical Reactivity. J. Water Chem. Technol. 2023, 45, 544–551. [Google Scholar] [CrossRef]
- Gorlenko, N.P.; Laptev, B.I.; Sarkisov, Y.S.; Zhuravlev, V.A.; Sidorenko, G.N.; Prishchepa, I.A. The Role of Water and Aqueous Solutions in the Formation of Induction Periods of Hydration and Structure Formation of Cement Stone. Phys. Wave Phen. 2023, 31, 206–215. [Google Scholar] [CrossRef]
- Alattar, E.; Radwan, E.; Elwasife, K. Improvement in growth of plants under the effect of magnetized water. AIMS Biophys. 2022, 9, 346–387. [Google Scholar] [CrossRef]
- Safronov, V.N.; Kugaevskaya, S.A. Optimization of the properties of cement composites with various technological methods of preparation of cyclic magnetic activation of mixing water. Vestn. TSASU 2014, 1, 85–99. [Google Scholar]
- Pasko, O.A. Physical and chemical changes in tap water during its treatment in various ways. Water Chem. Ecol. 2010, 7, 40–45. [Google Scholar]
- Levitsky, E.F.; Laptev, B.I.; Sidorenko, G.N. Electromagnetic Fields in Balneology and Physiotherapy. Tomsk Russia 2000, 113, 202–214. [Google Scholar]
- Laptev, B.I.; Sidorenko, G.N.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V.; Kulchenko, A.K. Electrical properties of water under external influences. Water Purif. Water Treat. Water Supply 2014, 9, 20–27. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. Assessment of structure formation processes in water and water-containing media using electrophysical methods and thermometry. Bull. TGASU 2019, 2, 202–214. [Google Scholar] [CrossRef]
- Laptev, B.I.; Sidorenko, G.N.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. Assessment of the structure of water using thermometry and electrophysical research methods. Bull. New Med. Technol. 2016, 23, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. Possibilities of electrophysical research methods and thermometry for assessing the structure of water-containing media (solutions, plant and animal objects). Bull. New Med. Technol. Electron. J. 2016, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Kochetkova, T.D.; Antoshkin, L.V. Variability of properties of water and water-containing systems under various external influences. Bull. of TSU Chem. 2020, 51–68. [Google Scholar] [CrossRef]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. Evaluation of changes in the structure of aqueous solutions of sodium chloride with a decrease in temperature from 10 °C to 1 °C. In Proceedings of the Collection of Articles of the XXIV International Scientific and Practical Conference, Petrozavodsk, Russia, 7–24 April 2023; pp. 201–211. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. The use of low-energy effects to improve the properties of water. Water Purif. Water Treat. Water Supply 2018, 4, 18–21. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. Comparative evaluation of the structure of solutions of sodium chloride, potassium chloride, magnesium chloride, calcium chloride, iron chloride, and iron hydroxide sols using dielectrometry and resonance methods. In Proceedings of the Collection of Articles Based on Materials of the IX International Scientific and Practical Conference, St. Petersburg, Russia, 16–18 November 2017; pp. 8–14. [Google Scholar] [CrossRef]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Antoshkin, L.V. A new method for assessing the structure of water and aqueous solutions when the measuring cell is connected to the oscillatory circuit of the generator of sinusoidal oscillations. Water Purif. Water Treat. Water Supply 2020, 11, 12–18. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. Assessment of changes in the structure of water and water systems under various influences. Bull. New Med. Technol. 2016, 23, 203–212. [Google Scholar] [CrossRef]
- Musienko, K.S.; Ignatova, T.M.; Glazkova, V.V. Study of the influence of physical fields on the physical and chemical properties of water. Biomed. Eng. Electron. 2014, 2, 1–7. [Google Scholar]
- Matvievsky, A.A. Cement composites based on magnetically and electrochemically activated mixing water. In Abstract of the Dissertation for the Degree of Candidate of Technological Sciences; Mordovia Publishing House: Saransk, Russia, 2010; p. 24. [Google Scholar]
- Sarkisov, Y.S.; Gorlenko, N.P.; Safronov, V.N.; Kovaleva, M.A.; Rakhmanova, I.A.; Tsvetkov, N.A. Geonics: From water geochemistry to the creation of high-quality mixing fluid for cement systems. Fundam. Res. 2017, 7, 71–76. [Google Scholar]
- Epstein, E.A.; Rybakov, V.A. Magnetic activation of water in the building materials industry. The use of magnetic water in the production of tongue-and-groove plates. Eng. Constr. Mag. 2009, 4, 32–38. [Google Scholar]
- Sarkisov, Y.S.; Gorlenko, N.P.; Safronov, V.N.; Kugaevskaya, S.A.; Kovaleva, M.A.; Ermilova, T.A.; Afanasiev, D.A. Temperature responses of water and aqueous solutions to the external influence of a magnetic field. Bull. TGASU Chem. 2015, 2, 20–29. [Google Scholar] [CrossRef]
- Safronov, V.N.; Kugaevskaya, S.A. Time factor in the technology of cyclic magnetic activation of water mixing mineral binders. Bull. TGASU 2013, 1, 163–171. [Google Scholar]
- Safronov, V.N.; Petrov, G.G.; Kugaevskaya, S.A.; Shchetinov, E.Y.; Gorlenko, N.P. The influence of the holding time before the closure of magnetised water on the properties of cement composites. Bull. TSASU Chem. 2010, 4, 139–149. [Google Scholar]
- Gorlenko, N.P.; Laptev, B.I.; Sarkisov, Y.S.; Sidorenko, G.N.; Kulchenko, A.K. Influence of electromagnetic fields on the properties of mixing fluid of cement systems. In Proceedings of the International Scientific Conference of Young Scientists, Tomsk, Russia, 15–16 October 2014; pp. 137–145. [Google Scholar]
- Pomazkin, V.A.; Makaeeva, A.A. Magnetically activated water in construction technologies. Bull. OSU 2001, 1, 109–114. [Google Scholar]
- Abdelaziz, A.M.; Elshokali, A.M. Abdelbagi Impact of magnetised water on elements contents in plants seeds. Int. J. Sci. Res. Innov. Technol. 2014, 1, 12–21. [Google Scholar]
- Hozayn, M.; Abdallah, M.M.; Abd El-Monem, A.A.; El-Saady, A.A.; Darwish, M.A. Applications of magnetic technology in agriculture: A novel tool for improving crop productivity (1): Canola. Afr. J. Agric. Res. 2016, 11, 441–449. [Google Scholar] [CrossRef]
- Lukyanitsa, V.V. Influence of laser radiation on the optical density and structure of water. The main component of the human body. In Proceedings of the International Scientific and Technical Conference, Minsk, Belarus, 11–13 June 2014; pp. 46–48. [Google Scholar]
- Baturov, L.N.; Govor, I.N.; Obukhov, A.S.; Plotnichenko, V.G.; Dianov, E.M. Detection of nonequilibrium phase transitions in water. JETP Lett. 2011, 93, 92–94. [Google Scholar] [CrossRef]
- Kuznetsov DM Smirnov, A.N.; Syroeshkin, A.V. Acoustic emission during phase transformations in the aquatic environment. Ros. Chem. Mag. 2008, 52, 114–121. [Google Scholar]
- Belyanin, V.; Romanova, E. Life, the water molecule and the golden proportion. Sci. Life 2004, 10, 2–9. [Google Scholar]
- Trincher, K. About water and warm-bloodedness. SANUM-Post 1991, 15, 21–26. [Google Scholar]
- Sidorenko, G.N.; Laptev, B.I.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. Assessment of changes in the structural and energy state of water during cooling and heating using thermometry and electrophysical research methods. Bull. Tomsk State Univ. Chem. 2017, 7, 80–93. [Google Scholar] [CrossRef]
- Uspenskaya, E.V. Study of the Structure of Water at the Supramolecular Level for the Development of New Methods of Standardisation and Quality Control of Mineral Waters and Liquid Dosage Forms. Chemical Sciences. Ph.D. Dissertation, RUDN University, Moscow, Russia, 2007; 27p. [Google Scholar]
- Baranov, A.V.; Petrov, V.I.; Fedorov, A.V. Investigation of NaCl microimpurities on the dynamics of cluster formation in liquid water: Low-frequency Raman spectroscopy. JETP Lett. 1993, 57, 356–359. [Google Scholar]
- Laptev, B.I.; Sidorenko, G.N.; Gorlenko, N.P.; Sarkisov, Y.S.; Antoshkin, L.V. The processes of structural formation in water and aqueous solutions. Water Ecol. Probl. Solut. 2012, 50, 26–33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidorenko, G.; Brilly, M.; Laptev, B.; Gorlenko, N.; Antoshkin, L.; Vidmar, A.; Kryžanowski, A. Using Methods to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems. Water 2024, 16, 1381. https://doi.org/10.3390/w16101381
Sidorenko G, Brilly M, Laptev B, Gorlenko N, Antoshkin L, Vidmar A, Kryžanowski A. Using Methods to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems. Water. 2024; 16(10):1381. https://doi.org/10.3390/w16101381
Chicago/Turabian StyleSidorenko, Galina, Mitja Brilly, Boris Laptev, Nikolay Gorlenko, Leonid Antoshkin, Andrej Vidmar, and Andrej Kryžanowski. 2024. "Using Methods to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems" Water 16, no. 10: 1381. https://doi.org/10.3390/w16101381
APA StyleSidorenko, G., Brilly, M., Laptev, B., Gorlenko, N., Antoshkin, L., Vidmar, A., & Kryžanowski, A. (2024). Using Methods to Assess the Structure of Water and Water-Containing Systems to Improve the Properties of Living and Non-Living Systems. Water, 16(10), 1381. https://doi.org/10.3390/w16101381