Are Water Level Fluctuations and Pelagic Water Quality in Lake Kinneret Directly Related? Perspectives of Nutrient Dynamics
Abstract
:1. Introduction
- Water surface—169.5 km2;
- Maximum depth—48 m;
- Lake Volume—4471 × 106 m3
1.1. Data Sources
- (1)
- Kinneret Limnological Laboratory, IOLR; Nutrient concentration data (1969–2001) includes all collected samples from all sampling stations (A, C, D, F, G, H, K), all discrete depths (Meters: 1, 3, 5, 10, 15, 20, 30, 40), all dates: Total Nitrogen—35,352 samples; Total Phosphorus—41,916 samples; Nitrate—35,489 samples; Ammonium—42,182 samples; Sulfate. 27,093 samples;
- (2)
- Mekorot—National Water Supply Company;
- (3)
- Israel Hydrological Service;
- (4)
- National Water Authority;
- (5)
- TAHAL—Water Planning for Israel.
1.2. Methods
1.3. Statistical Methods
1.4. Results
2. Discussion
3. Nutrient Dynamics and Seasonality of WLF
3.1. Chloride Concentration and Salt Load
3.2. Nitrogen and Phosphorus
4. Conclusive Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serruya, C. Chapter: C: Morphometric characteristics. In Lake Kinneret Monographiae Biologicae; Dr. Junk bv Publishers: Hague, The Netherlands; Boston, MA, USA; London, UK, 1978; Volume 32, pp. 124–132. [Google Scholar]
- Ziegel, E.; Chudinov, M.; Atzmon, B.; Soibelman, Y.; Stortz-Peres, Y. Chapter—Kinneret. In Seasonal Rainfall Summary, 2021/2022 and Its Major Hydrological Characteristics; Report HIS/25/2922; Department of Surface Water and Hydrometeorology: Tel Aviv, Israel, 2022; pp. 23–30. (in Hebrew) [Google Scholar]
- Gafny, S.; Gasith, A.; Goren, M. Effect of water level fluctuation on the shore spawning of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kinneret, Israel. J. Fish Biol. 1992, 41, 863–871. [Google Scholar] [CrossRef]
- Gasith, A.; Gafny, S. Effects of water level fluctuation on the structure and function of the littoral zone. In Large Lakes: Ecological Structure and Function; Tilzer, M.M., Serruya, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 156–171. [Google Scholar]
- Gasith, A.; Goren, M.; Gafny, S. Ecological consequences of lowering Lake Kinneret water level: Effect on breeding success of the Kinneret Sardine. In Preservation of Our World in the Wake of Change: Proceedings of the 6th International Conference of the Israeli Society for Ecology and Environmental Quality Sciences, Jerusalem, Israel, 30 June–4 July 1996; Steinberger, Y., Ed.; IEEQS: Jerusalem, Israel, 1996; pp. 569–573. [Google Scholar]
- Ostrovsky, I.; Rimmer, A.; Agnon, Y.; Koren, N. Sediment resuspension in the hypolimnion of Lake Kinneret (Israel): The impact of water level fluctuation. Ver. Int. Ver. Limnol. 2006, 29, 1625–1629. [Google Scholar]
- Serruya, C.; Pollingher, U. Lowering of water level and algal biomass in Lake Kinneret. Hydrobiologia 1977, 54, 73–80. [Google Scholar] [CrossRef]
- Zohary, T.; Ostrovsky, I. Ecological impact of excessive water level fluctuations in stratified freshwater lakes. Inl. Waters 2011, 1, 47–59. [Google Scholar] [CrossRef]
- Gophen, M. Historical Review on Water Level Changes in Lake Kinneret (Israel) and Incomparable Perspectives. Water 2023, 15, 837. [Google Scholar] [CrossRef]
- Aroviita, J.; Heiki, H. The impact of water-level regulation on littoral macroinvertebrate assemblages in boreal lakes. Hydrobiologia 2008, 613, 45–56. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Rothaupt, K.-O.; Mortl, M.; Cantonati; Oth, L.T.; Fischer, P. Ecological effects of water-level fluctuations in lakes: An urgent issue. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Wei, A.H.; Chow-Fraser, P. Synergistic impact of water level fluctuation and invasion of Glyceria on Typha in a freshwater marsh of Lake Ontario. Aquat. Bot. 2006, 84, 63–69. [Google Scholar] [CrossRef]
- Smith, B.D.; Maitland, P.S.; Pennock, S.M. A comparative-study of water level regimes and littoral benthic communities in Scottish lochs. Biol. Conserv. 1987, 39, 291–316. [Google Scholar] [CrossRef]
- Bond, N.R.; Lake, P.S.; Arthington, A.H. The impacts of drought on freshwater ecosystems: An Australian perspective. Hydrobiologia 2008, 600, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Brauns, M.; Garcia, X.F.; Pusch, M.T. Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia 2008, 613, 5–12. [Google Scholar] [CrossRef]
- Hofmann, H.; Lorke, A.; Peeters, F. Temporal scales of water-level fluctuations in lakes and their ecological implications. Hydrobiologia 2008, 613, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Leira, M.; Cantonati, M. Effects of water-level fluctuations on lakes: An annotated bibliography. Hydrobiologia 2008, 613, 171–184. [Google Scholar] [CrossRef]
- Nowlin, W.H.; Davies, J.M.; Nordin, R.N.; Mazumder, A. Effects of water level fluctuation and short-term climate variation on thermal and stratification regimes of a British Columbia reservoir and lake. Lake Reserv. Manag. 2004, 20, 91–109. [Google Scholar] [CrossRef]
- Lu, J.S.; Bunn, E.; Burford, M.A. Nutrient release and uptake by littoral macrophytes during water level fluctuations. Sci. Total Environ. 2018, 622, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Gophen, M.; Smith, V.H.; Nishri, A.; Threlkeld, S.T. Nitrogen Deficiency, Phosphorus Sufficiency, and the Invasion of Lake Kinneret, Israel, by N2-Fixing Cyanobacterium Aphanizomenon ovalisporum. Aquat. Sci. 1999, 1, 1–14. [Google Scholar] [CrossRef]
- Gownaris, J.; Rountos, K.J.; Kaufman, L.; Kolding, J.; Lwiza, K.M.M.; Pikitch, E.K. Water level fluctuations and the ecosystem functioning of lakes. J. Great Lakes Res. 2018, 44, 1154–1163. [Google Scholar] [CrossRef]
- Gophen, M. The Replacement of Peridinium by Cyanobacteria in Lake Kinneret (Israel): A Commentary Review. Open J. Mod. Hydrol. 2019, 9, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Probst, W.N.; Stoll, S.; Peters, L.; Fischer, P.; Eckmann, R. Lake water level increase during spring affects the breeding success of bream Abramis brama (L.). Hydrobiologia 2009, 632, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Hazan, D.; Stein, M.; Agnon, A.; Marco, S.; Nadel, D.; Negendank, J.F.W.; Schwabe, M.; Neev, D. The late Pleistocene-Holocene Limnological History of Lake Kinneret (Sea of Galilee). Quat. Res. 2005, 63, 60–77. [Google Scholar] [CrossRef]
- Vossel, H.; Roeser, P.; Litt, T.; Reed, J.M. Lake Kinneret Israel: New insight into Holocene regional Palaeo-climate variability based on high-resolution multi-proxy analysis. Holocene 2018, 2018, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jul-Larsen, E.; Kolding, J.; Overå, R.; Nielsen, J.R.; van Zwieten, P.A.M. Management, Co-Management or No Management? Major Dilemmas in Southern African Freshwater Fisheries 2. Case Studies; FAO Fisheries Technical Paper, No. 426/2; Food & Agriculture Organization of the United Nations: Rome, Italy, 2003; p. 271.
- Chow-Fraser, P.; Lougheed, V.; Le Thiec, V.; Crosbie, B.; Simser, L.; Lord, J. Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Wetl. Ecol. Manag. 1998, 6, 19–42. [Google Scholar] [CrossRef]
- Li, Q.; Xiao, J.; Ou, T.; Han, M.; Wang, J.; Chen, J.; Li, Y.; Salmaso, N. Impact of water level fluctuations on the development of phytoplankton in a large subtropical reservoir: Implications for the management of cyanobacteria. Environ. Sci. Pollut. Res. Int. 2018, 25, 1306–1318. [Google Scholar] [CrossRef]
- Bakker, E.S.; Hilt, S. Impact of water-level fluctuations on cyanobacterial blooms: Options for management. Aquat. Ecol. 2016, 50, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Lopes, P.M.; Bini, L.M.; Declerck, S.A.; Farjalla, V.F.; Vieira, L.C.; Bonecker, C.C.; Lansac-Toha, F.A.; Esteves, F.A.; Bozelli, R.L. Correlates of zooplankton beta diversity in tropical lake systems. PLoS ONE 2014, 9, 109581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evtimova, V.V.; Donohue, I. Water-level fluctuations regulate the structure and functioning of natural lakes. Freshw. Biol. 2016, 61, 251–264. [Google Scholar] [CrossRef]
- Ganor, E.; Foner, H.A.; Gravenhost, G. The Amount and Nature of the Dustfall on Lake Kinneret (the Sea of Galilee), Israel: Flux and fractionation. Atmos. Environ. 2003, 37, 4301–4315. [Google Scholar] [CrossRef]
- Serruya, C.; Gophen, M.; Pollingher, U. Lake Kinneret: Carbon Flow Patterns and Ecosystem Management. Arch. Hydrobiol. 1980, 88, 265–302. [Google Scholar]
- Hadas, O.; Pinkas, R.; Malinsky-Rushanskiy, N.; Nishri, A.; Kaplan, A.; Rimmer, A.; Sukenik, A. Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel. Freshw. Biol. 2012, 57, 1365–2427. [Google Scholar] [CrossRef]
- Rimmer, A.; Lichinsky, Y. A Model for the Design of Salt Concentration and Production in Lake Kinneret; Final Report, T13/2007, Submitted to the Governmental Authority of Se-wage and Water; Kinneret Limnological Laboratory, IOLR: Horvat Kur, Israel, 2007; p. 25. (in Hebrew) [Google Scholar]
- Simon, E.; Mero, F. The Salination Mechanism of Lake Kinneret. J. Hydrol. 1992, 138, 327–343. [Google Scholar] [CrossRef]
- Gvirzman, H.; Garven, G.; Gvirtzman, G. Hydrogeological Modeling of the Saline Hot Springs at the Sea of Galilee, Israel. Water Resour. Res. 1997, 33, 913–926. [Google Scholar] [CrossRef] [Green Version]
Nutrient | r2 | P (S; NS) |
---|---|---|
Chloride (ppm) | 0.4419 | 0.0002 (S) |
Salt load (103 ton) | 0.0816 | 0.2788 (NS) |
Ammonium (ppm) | 0.1133 | 0.0555 (NS) |
Total Nitrogen (ppm) | 0.1586 | 0.0217 (S) |
Nitrate (ppm) | 0.2240 | 0.0054 (S) |
Total Phosphorus (ppm) | 0.3852 | 0.0009 (S) |
Ortho-Phosphate (ppm) | 0.2918 | 0.0030 (S) |
Sulfate (ppm) | 0.0046 | 0.7089 (NS) |
Nutrient | Mean | Maximum | Minimum |
---|---|---|---|
Total Phosphorus | 0.022 | 0.029 (1998, 1999) | 0.012 (1972) |
Total Nitrogen | 0.711 | 1.287 (1974) | 0.481 (1989) |
Nitrate | 0.094 | 0.380 (1992) | 0.029 (1990) |
Ammonium | 0.161 | 0.262 (1991) | 0.091 (1997) |
Chloride | 229 | 274 (2001) | 201 (1988) |
Sulfate | 54 | 59 (1970) | 49 (1999, 1988, 1989, 1987) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gophen, M. Are Water Level Fluctuations and Pelagic Water Quality in Lake Kinneret Directly Related? Perspectives of Nutrient Dynamics. Water 2023, 15, 1473. https://doi.org/10.3390/w15081473
Gophen M. Are Water Level Fluctuations and Pelagic Water Quality in Lake Kinneret Directly Related? Perspectives of Nutrient Dynamics. Water. 2023; 15(8):1473. https://doi.org/10.3390/w15081473
Chicago/Turabian StyleGophen, Moshe. 2023. "Are Water Level Fluctuations and Pelagic Water Quality in Lake Kinneret Directly Related? Perspectives of Nutrient Dynamics" Water 15, no. 8: 1473. https://doi.org/10.3390/w15081473
APA StyleGophen, M. (2023). Are Water Level Fluctuations and Pelagic Water Quality in Lake Kinneret Directly Related? Perspectives of Nutrient Dynamics. Water, 15(8), 1473. https://doi.org/10.3390/w15081473