Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency
Abstract
:1. Introduction
2. Methods
3. Aquaponics
3.1. Nomenclature in Aquaponics and Legislation
3.2. Aquaponic Systems Development
3.3. Recirculating Aquaculture Systems (RASs)
3.4. Hydroponic Components
4. Aquaponics Systems Performance
4.1. Fish Species, Feed, and Growth Indicators
4.2. Plant Species, Nutrients, Growth, and Indexes
4.3. Nitrifying Bacteria and Microflora
4.4. Water Quality, Consumption, and Use Efficiency in Aquaponics
5. Technology
5.1. Smart Aquaponic Systems
5.2. Internet of Things (IoT) Systems
5.3. Big Data
5.4. Artificial Intelligence (AI)
6. Economic Feasibility, Energy Consumption, and Benefits
6.1. Economic Feasibility
6.2. Energy Consumption
6.3. Social, Economic, and Environmental Benefits for Food Security
7. Case Studies
7.1. International Experiences
7.1.1. Freshwater Aquaponics
7.1.2. Marine and Brackish Aquaponics
7.1.3. Challenges Hindering the Implementation of Large-Scale Aquaponics
7.2. National Experiences
8. Constraints, Challenges, and Future Aspects
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, L.A.; Abu-Hashim, M.; Shaghaleh, H.; Elsadek, E.; Hamad, A.A.; Alhaj Hamoud, Y. A Comprehensive Review of the Multiple Uses of Water in Aquaculture-Integrated Agriculture Based on International and National Experiences. Water 2023, 15, 367. [Google Scholar] [CrossRef]
- Elsadek, E. Use of Automatic Control to Improve the Performance of Field Irrigation Systems; Damietta University: Damietta, Egypt, 2018. [Google Scholar]
- Elnemr, M.K.; El-Sheikha, A.M.; Elsadek, E.A. Determination of Optimal Location of Soil Moisture Sensing Devices for Trickle Irrigation Systems. Misr. J. Agric. Eng. 2019, 36, 157–174. [Google Scholar] [CrossRef]
- Franz Gouertoumbo, W.; Alhaj Hamoud, Y.; Guo, X.; Shaghaleh, H.; Ali Adam Hamad, A.; Elsadek, E. Wheat Straw Burial Enhances the Root Physiology, Productivity, and Water Utilization Efficiency of Rice under Alternative Wetting and Drying Irrigation. Sustainability 2022, 14, 16394. [Google Scholar] [CrossRef]
- Elsadek, E.; Zhang, K.; Mousa, A.; Ezaz, G.T.; Tola, T.L.; Shaghaleh, H.; Hamad, A.A.A.; Alhaj Hamoud, Y. Study on the In-Field Water Balance of Direct-Seeded Rice with Various Irrigation Regimes under Arid Climatic Conditions in Egypt Using the AquaCrop Model. Agronomy 2023, 13, 609. [Google Scholar] [CrossRef]
- Abu-hashim, M.; Shaban, K. Deficit irrigation management as strategy to adapt water scarcity-potential application on Mediterranean saline soils. Egypt Soil Sci. 2017, 5, 261–271. [Google Scholar]
- Ali, H.; Ahmed, N.; Abu-hashim, M. Potential effect of irrigation intervals and potassium phthalate on fennel plants grown in semi-arid regions. Egypt. J. Soil Sci. 2020, 60, 83–98. [Google Scholar] [CrossRef]
- Smit, B.; Pilifosova, O. Adaptation to Climate Change in the Context of Sustainable Development and Equity. Clim. Chang. Impacts Adapt. Vulnerability 2001, 8, 877. [Google Scholar]
- Zhang, L.; Dabipi, I.K.; Brown, W.L., Jr. Internet of Things Applications for Agriculture. In Internet of Things A to Z; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 507–528. ISBN 9781119456735. [Google Scholar]
- Tschirner, M.; Kloas, W. Increasing the Sustainability of Aquaculture Systems: Insects as Alternative Protein Source for Fish Diets. GAIA—Ecol. Perspect. Sci. Soc. 2017, 26, 332–340. [Google Scholar] [CrossRef]
- Lee, C.; Wang, Y.-J. Development of a Cloud-Based IoT Monitoring System for Fish Metabolism and Activity in Aquaponics. Aquac. Eng. 2020, 90, 102067. [Google Scholar] [CrossRef]
- Lova Raju, K.; Vijayaraghavan, V. IoT Technologies in Agricultural Environment: A Survey. Wirel. Pers. Commun. 2020, 113, 2415–2446. [Google Scholar] [CrossRef]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards Automated Aquaponics: A Review on Monitoring, IoT, and Smart Systems. J. Cleaner Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- Kish, Z. Food Sovereignty BT—Encyclopedia of Global Justice; Chatterjee, D.K., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 352–358. ISBN 978-1-4020-9160-5. [Google Scholar]
- Rakocy, J.E. Aquaponics—Integrating Fish and Plant Culture. In Aquaculture Production Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 344–386. ISBN 9781118250105. [Google Scholar]
- Lennard, W.A. Aquaponics: A Nutrient Dynamic Process and the Relationship to Fish Feeds. World Aquac. 2015, 46, 20–23. [Google Scholar]
- Wittman, H. Food Sovereignty: A New Rights Framework for Food and Nature? Environ. Soc. 2011, 2, 87–105. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Wuertz, S.; Körner, O.; Bläser, I.; Reuter, M.; Keesman, K.J. Decoupled Aquaponics Systems BT—Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 201–229. ISBN 978-3-030-15943-6. [Google Scholar]
- European Parliament & Council of the European Union (EU) 2018/848 Regulation. Organic production and labeling of organic products and repealing Council Regulation (EC) No 834/2007 (30 May). Off. J. Eur. Union OJEU 2018, OJL 150, 1–92. [Google Scholar]
- Joly, A.; Junge, R.; Bardocz, T. Aquaponics Business in Europe: Some Legal Obstacles and Solutions. Ecocycles 2015, 1, 3–5. [Google Scholar] [CrossRef]
- Mchunu, N.; Lagerwall, G.; Senzanje, A. Aquaponics in South Africa: Results of a National Survey. Aquac. Reports 2018, 12, 12–19. [Google Scholar] [CrossRef]
- BBC. Good Food What Does Organic Mean. Available online: https://www.bbcgoodfood.com/howto/guide/o (accessed on 15 September 2022).
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haïssam Jijakli, M.; Kotzen, B. Towards Commercial Aquaponics: A Review of Systems, Designs, Scales and Nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A New Concept for Aquaponic Systems to Improve Sustainability, Increase Productivity, and Reduce Environmental Impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef]
- Thorarinsdottir, R. Aquaponics Guidelines; University of Iceland: Haskolaprent, Iceland, 2015; p. 68. [Google Scholar] [CrossRef]
- Hu, Z.; Lee, J.W.; Chandran, K.; Kim, S.; Brotto, A.C.; Khanal, S.K. Effect of Plant Species on Nitrogen Recovery in Aquaponics. Bioresour. Technol. 2015, 188, 92–98. [Google Scholar] [CrossRef]
- Delaide, B.; Delhaye, G.; Dermience, M.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Plant and Fish Production Performance, Nutrient Mass Balances, Energy and Water Use of the PAFF Box, a Small-Scale Aquaponic System. Aquac. Eng. 2017, 78, 130–139. [Google Scholar] [CrossRef]
- Monsees, H.; Kloas, W.; Wuertz, S. Decoupled Systems on Trial: Eliminating Bottlenecks to Improve Aquaponic Processes. PLoS ONE 2017, 12, e0183056. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, F.; Goddek, S. Smarthoods: Aquaponics Integrated Microgrids. In Aquaponics Food Production Systems; Springer International Publishing: Cham, Switzerland, 2019; pp. 379–392. [Google Scholar]
- Altieri, M.A. Agroecology, Small Farms, and Food Sovereignty. Mon. Rev. 2009, 61, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Goddek, S.; Keesman, K.J. Improving Nutrient and Water Use Efficiencies in Multi-Loop Aquaponics Systems. Aquac. Int. 2020, 28, 2481–2490. [Google Scholar] [CrossRef]
- Gullian Klanian, M.; Delgadillo Diaz, M.; Aranda, J.; Rosales Juárez, C. Integrated Effect of Nutrients from a Recirculation Aquaponic System and Foliar Nutrition on the Yield of Tomatoes Solanum Lycopersicum L. and Solanum Pimpinellifolium. Environ. Sci. Pollut. Res. 2018, 25, 17807–17819. [Google Scholar] [CrossRef] [PubMed]
- Naegel, L.C.A. Combined Production of Fish and Plants in Recirculating Water. Aquaculture 1977, 10, 17–24. [Google Scholar] [CrossRef]
- Ebeling, J.M.; Timmons, M.B. Recirculating Aquaculture; Cayuga Aqua Ventures: Ithaca, NY, USA, 2010; ISBN 0971264627.
- Schmautz, Z.; Loeu, F.; Liebisch, F.; Graber, A.; Mathis, A.; Griessler Bulc, T.; Junge, R. Tomato Productivity and Quality in Aquaponics: Comparison of Three Hydroponic Methods. Water 2016, 8, 533. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Zechmeister, L.; Baganz, D.; Kloas, W.; Lehmann, B.; Scheibe, G.; Schmidt, U. Prospects and Challenges of Double Recirculating Aquaponic Systems (DRAPS) for Intensive Plant Production. Acta Hortic. 2018, 1227, 449–456. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.P.L.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.C.P.; et al. Nutrient Mineralization and Organic Matter Reduction Performance of RAS-Based Sludge in Sequential UASB-EGSB Reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Karimanzira, D.; Rauschenbach, T. An Intelligent Management System for Aquaponics. Automatisierungstechnik 2021, 69, 345–350. [Google Scholar] [CrossRef]
- Delaide, B.; Monsees, H.; Gross, A.; Goddek, S. Aerobic and Anaerobic Treatments for Aquaponic Sludge Reduction and Mineralisation BT—Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 247–266. ISBN 978-3-030-15943-6. [Google Scholar]
- Dijkgraaf, K.H.; Goddek, S.; Keesman, K.J. Modeling Innovative Aquaponics Farming in Kenya. Aquac. Int. 2019, 27, 1395–1422. [Google Scholar] [CrossRef]
- Lekang, O. (Ed.) Aquaculture Engineering, 1st ed.; Blackwell Publishing Ltd.: Hong Kong, China, 2007. [Google Scholar]
- Hart, E.R.; Webb, J.B.; Danylchuk, A.J. Implementation of Aquaponics in Education: An Assessment of Challenges and Solutions. Sci. Educ. Int. 2013, 24, 460–480. [Google Scholar]
- Goddek, S.; Espinal, C.; Delaide, B.; Jijakli, M.; Schmautz, Z.; Wuertz, S.; Keesman, K. Navigating towards Decoupled Aquaponic Systems: A System Dynamics Design Approach. Water 2016, 8, 303. [Google Scholar] [CrossRef]
- Wongkiew, S.; Hu, Z.; Chandran, K.; Lee, J.W.; Khanal, S.K. Nitrogen Transformations in Aquaponic Systems: A Review. Aquac. Eng. 2017, 76, 9–19. [Google Scholar] [CrossRef]
- Ngo Thuy Diem, T.; Konnerup, D.; Brix, H. Effects of Recirculation Rates on Water Quality and Oreochromis Niloticus Growth in Aquaponic Systems. Aquac. Eng. 2017, 78, 95–104. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Liang, S.; Wang, J.; Yan, R. Attempts to Improve Nitrogen Utilization Efficiency of Aquaponics through Nitrifies Addition and Filler Gradation. Environ. Sci. Pollut. Res. 2016, 23, 6671–6679. [Google Scholar] [CrossRef] [PubMed]
- Murray, F.; Bostock, J.; Fletcher, D. Review of Recirculation Aquaculture System Technologies and Their Commercial Application; University of Stirling Aquaculture: Stirling, UK, 2014. [Google Scholar]
- Goldman, J. So, You Want to Be a Fish Farmer? Available online: https://umaine.edu/cooperative-aquaculture/wp-content/uploads/sites/75/2015/11/So-You-Want-to-be-a-Fish-Farmer-by-Josh-Goldman.pdf (accessed on 4 August 2023).
- Warrer-Hansen, I. Potential for Land Based Salmon Grow-Out in Recirculating Aquaculture Systems (RAS) in Ireland; IFA Aquaculture: Dublin, Ireland, 2015. [Google Scholar]
- Heinsbroek, L.T.N.; Kamstra, A. Design and Performance of Water Recirculation Systems for Eel Culture. Aquac. Eng. 1990, 9, 187–207. [Google Scholar] [CrossRef]
- Ying, L.; Baoliang, L.; Ce, S.; Guoxiang, S. Recirculating Aquaculture Systems in China e Current Application and Prospects. Available online: https://www.readcube.com/articles/10.4172%2F2150-3508.1000134 (accessed on 4 August 2023).
- Dalsgaard, J.; Lund, I.; Thorarinsdottir, R.; Drengstig, A.; Arvonen, K.; Pedersen, P.B. Farming Different Species in RAS in Nordic Countries: Current Status and Future Perspectives. Aquac. Eng. 2013, 53, 2–13. [Google Scholar] [CrossRef]
- Bergman, K.; Henriksson, P.J.G.; Hornborg, S.; Troell, M.; Borthwick, L.; Jonell, M.; Philis, G.; Ziegler, F. Recirculating Aquaculture Is Possible without Major Energy Tradeoff: Life Cycle Assessment of Warmwater Fish Farming in Sweden. Environ. Sci. Technol. 2020, 54, 16062–16070. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Commercial Farming within the Urban Built Environment—Taking Stock of an Evolving Field in Northern Countries. Glob. Food Sec. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M. Recirculating Aquaculture, 3rd ed.; Ithaca Publishing Company LLC.: Ithaca, NY, USA, 2013. [Google Scholar]
- Maucieri, C.; Forchino, A.A.; Nicoletto, C.; Junge, R.; Pastres, R.; Sambo, P.; Borin, M. Life Cycle Assessment of a Micro Aquaponic System for Educational Purposes Built Using Recovered Material. J. Cleaner Prod. 2018, 172, 3119–3127. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; van Os, E.; Anseeuw, D.; van Havermaet, R.; Junge, R. Hydroponic Technologies BT—Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 77–110. ISBN 978-3-030-15943-6. [Google Scholar]
- Lennard, W.A.; Leonard, B. V A Comparison of Three Different Hydroponic Sub-Systems (Gravel Bed, Floating and Nutrient Film Technique) in an Aquaponic Test System. Aquac. Int. 2006, 14, 539–550. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Junge, R.; Schmautz, Z.; Sambo, P.; Borin, M. Hydroponic Systems and Water Management in Aquaponics: A Review. Ital. J. Agron. 2017, 11, 1–11. [Google Scholar] [CrossRef]
- Pattillo, A. An Overview of Aquaponic Systems: Aquaculture Components; NCRAC Technical Bulletins; IOWA State University: Ames, IA, USA, 2017; pp. 1–18. [Google Scholar]
- Forchino, A.A.; Lourguioui, H.; Brigolin, D.; Pastres, R. Aquaponics and Sustainability: The Comparison of Two Different Aquaponic Techniques Using the Life Cycle Assessment (LCA). Aquac. Eng. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Love, D.C.; Fry, J.P.; Li, X.; Hill, E.S.; Genello, L.; Semmens, K.; Thompson, R.E. Commercial Aquaponics Production and Profitability: Findings from an International Survey. Aquaculture 2015, 435, 67–74. [Google Scholar] [CrossRef]
- Silva, L.; Valdés-Lozano, D.; Escalante, E.; Gasca-Leyva, E. Dynamic Root Floating Technique: An Option to Reduce Electric Power Consumption in Aquaponic Systems. J. Clean. Prod. 2018, 183, 132–142. [Google Scholar] [CrossRef]
- Khandaker, M.; Kotzen, B. The Potential for Combining Living Wall and Vertical Farming Systems with Aquaponics with Special Emphasis on Substrates. Aquac. Res. 2018, 49, 1454–1468. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Masser, M.P.; Losordo, T.M. Recirculating Aquaculture Tank Production Systems: Aquaponics-Integrating Fish and Plant Culture; Oklahoma Cooperative Extension Service. Division of Agricultural Sciences and Natural Resources; Oklahoma State University: Stillwater, OK, USA, 2016. [Google Scholar]
- Love, D.C.; Uhl, M.S.; Genello, L. Energy and Water Use of a Small-Scale Raft Aquaponics System in Baltimore, Maryland, United States. Aquac. Eng. 2015, 68, 19–27. [Google Scholar] [CrossRef]
- Oladimeji, A.S.; Olufeagba, S.O.; Ayuba, V.O.; Sololmon, S.G.; Okomoda, V.T. Effects of Different Growth Media on Water Quality and Plant Yield in a Catfish-Pumpkin Aquaponics System. J. King Saud Univ. Sci. 2020, 32, 60–66. [Google Scholar] [CrossRef]
- Ru, D.; Liu, J.; Hu, Z.; Zou, Y.; Jiang, L.; Cheng, X.; Lv, Z. Improvement of Aquaponic Performance through Micro- and Macro-Nutrient Addition. Environ. Sci. Pollut. Res. 2017, 24, 16328–16335. [Google Scholar] [CrossRef]
- Palm, H.W.; Bissa, K.; Knaus, U. Significant Factors Affecting the Economic Sustainability of Closed Aquaponic Systems. Part II: Fish and Plant Growth. Aquac. Aquarium, Conserv. Legis. 2014, 7, 162–175. [Google Scholar]
- Roosta, H.R. Effects of Foliar Spray of K on Mint, Radish, Parsley and Coriander Plants in Aquaponic System. J. Plant Nutr. 2014, 37, 2236–2254. [Google Scholar] [CrossRef]
- Knaus, U.; Palm, H.W. Effects of the Fish Species Choice on Vegetables in Aquaponics under Spring-Summer Conditions in Northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 473, 62–73. [Google Scholar] [CrossRef]
- Obirikorang, K.A.; Sekey, W.; Gyampoh, B.A.; Ashiagbor, G.; Asante, W. Aquaponics for Improved Food Security in Africa: A Review. Front. Sustain. Food Syst. 2021, 5, 705549. [Google Scholar] [CrossRef]
- Saha, S.; Monroe, A.; Day, M.R. Growth, Yield, Plant Quality and Nutrition of Basil (Ocimum Basilicum L.) under Soilless Agricultural Systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- International Aquaculture Feed Formulation Database (IAFFD). Feed Ingredient Composition Database. 2018. Available online: https://www.iaffd.com/home.html?v=4.01 (accessed on 3 March 2022).
- Li, C.; Zhang, B.; Luo, P.; Shi, H.; Li, L.; Gao, Y.; Lee, C.T.; Zhang, Z.; Wu, W.-M. Performance of a Pilot-Scale Aquaponics System Using Hydroponics and Immobilized Biofilm Treatment for Water Quality Control. J. Clean. Prod. 2019, 208, 274–284. [Google Scholar] [CrossRef]
- Ibrahim, L.A.; Shaghaleh, H.; Abu-Hashim, M.; Elsadek, E.A.; Hamoud, Y.A. Exploring the Integration of Rice and Aquatic Species: Insights from Global and National Experiences. Water 2023, 15, 2750. [Google Scholar] [CrossRef]
- Bailey, D.S.; Ferrarezi, R.S. Valuation of Vegetable Crops Produced in the UVI Commercial Aquaponic System. Aquac. Rep. 2017, 7, 77–82. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M. Lettuce (Lactuca sativa L. Var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Rakocy, J.; Shultz, R.C.; Bailey, D.S.; Thoman, E.S. Aquaponic Production of Tilapia and Basil: Comparing a Batch and Staggered Cropping System. Acta Hortic. 2004, 648, 63–69. [Google Scholar] [CrossRef]
- Adler, P.R.; Harper, J.K.; Wade, E.M.; Takeda, F.; Summerfelt, S.T. Economic Analysis of an Aquaponic System for the Integrated Production of Rainbow Trout and Plants. Int. J. Recirc. Aquac. 2000, 1, 15–34. [Google Scholar] [CrossRef]
- Estrada-Perez, N.; Hernandez-Llamas, A.; Ruiz-Velazco, M.J.; Zavala-Leal, I.; Romero-Bañuelos, C.A.; Cruz-Crespo, E.; Juárez-Rossete, C.; Domínguez-Ojeda, D.; Campos-Mendoza, A. Stochastic Modelling of Aquaponic Production of Tilapia (Oreochromis niloticus) with Lettuce (Lactuca sativa) and Cucumber (Cucumis sativus). Aquac. Res. 2018, 49, 3723–3734. [Google Scholar] [CrossRef]
- Goddek, S.; Vermeulen, T. Comparison of Lactuca Sativa Growth Performance in Conventional and RAS-Based Hydroponic Systems. Aquac. Int. 2018, 26, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Buzby, K.M.; Lin, L.-S. Scaling Aquaponic Systems: Balancing Plant Uptake with Fish Output. Aquac. Eng. 2014, 63, 39–44. [Google Scholar] [CrossRef]
- Pinho, S.M.; Molinari, D.; de Mello, G.L.; Fitzsimmons, K.M.; Coelho Emerenciano, M.G. Effluent from a Biofloc Technology (BFT) Tilapia Culture on the Aquaponics Production of Different Lettuce Varieties. Ecol. Eng. 2017, 103, 146–153. [Google Scholar] [CrossRef]
- Pinho, S.M.; de Mello, G.L.; Fitzsimmons, K.M.; Emerenciano, M.G.C. Integrated Production of Fish (Pacu Piaractus Mesopotamicus and Red Tilapia Oreochromis Sp.) with Two Varieties of Garnish (Scallion and Parsley) in Aquaponics System. Aquac. Int. 2018, 26, 99–112. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-Scale Aquaponic Food Production: Integrated Fish and Plant Farming. FAO Fish. Aquac. Tech. Pap. 2014, 589, 1–288. [Google Scholar]
- Schmautz, Z.; Graber, A.; Jaenicke, S.; Goesmann, A.; Junge, R.; Smits, T.H.M. Microbial Diversity in Different Compartments of an Aquaponics System. Arch. Microbiol. 2017, 199, 613–620. [Google Scholar] [CrossRef]
- Bartelme, R.P.; McLellan, S.L.; Newton, R.J. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front. Microbiol. 2017, 8, 101. [Google Scholar] [CrossRef]
- Gilles, S.; Ismiño, R.; Sánchez, H.; David, F.; Núñez, J.; Dugué, R.; Darias, M.J.; Römer, U. An Integrated Closed System for Fish-Plankton Aquaculture in Amazonian Fresh Water. Animal 2014, 8, 1319–1328. [Google Scholar] [CrossRef]
- Zou, Y.; Hu, Z.; Zhang, J.; Xie, H.; Guimbaud, C.; Fang, Y. Effects of PH on Nitrogen Transformations in Media-Based Aquaponics. Bioresour. Technol. 2016, 210, 81–87. [Google Scholar] [CrossRef]
- Bartelme, R.P.; Oyserman, B.O.; Blom, J.E.; Sepulveda-Villet, O.J.; Newton, R.J. Stripping Away the Soil: Plant Growth Promoting Microbiology Opportunities in Aquaponics. Front. Microbiol. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- da Silva Cerozi, B.; Fitzsimmons, K. Use of Bacillus Spp. to Enhance Phosphorus Availability and Serve as a Plant Growth Promoter in Aquaponics Systems. Sci. Hortic. 2016, 211, 277–282. [Google Scholar] [CrossRef]
- Odema, M.; Adly, I.; Wahba, A.; Ragai, H. Smart Aquaponics System for Industrial Internet of Things (IIoT). In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017, Cairo, Egypt, 9–11 September 2017; Hassanien, A., Shaalan, K., Gaber, T., Tolba, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 639, pp. 844–854. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced Aquaponics: Evaluation of Intensive Tomato Production in Aquaponics vs. Conventional Hydroponics. Agric. Water Manage. 2016, 178, 335–344. [Google Scholar] [CrossRef]
- Sace, C.F.; Fitzsimmons, K.M. Vegetable Production in a Recirculating Aquaponic System Using Nile Tilapia (Oreochromis Niloticus) with and without Freshwater Prawn (Macrobrachium Rosenbergii). Acad. J. Agric. Res. 2013, 1, 236–250. [Google Scholar]
- Wada, T. Theory and Technology to Control the Nutrient Solution of Hydroponics. In Plant Factory Using Artificial Light; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 5–14. ISBN 978-0-12-813973-8. [Google Scholar]
- Stone, N.M.; Thomforde, H.K. Understanding Your Fish Pond Water Analysis Report. Available online: https://www.uaex.uada.edu/publications/PDF/FSA-9090.pdf (accessed on 14 June 2022).
- Bhatnagar, A.; Devi, P. Water Quality Guidelines for the Management of Pond Fish Culture. Int. J. Environ. Sci. 2013, 3, 1980–2009. [Google Scholar]
- Goddek, S.; Körner, O. A Fully Integrated Simulation Model of Multi-Loop Aquaponics: A Case Study for System Sizing in Different Environments. Agric. Syst. 2019, 171, 143–154. [Google Scholar] [CrossRef]
- Shaalan, M.; El-Mahdy, M.; Saleh, M.; El-Matbouli, M. Aquaculture in Egypt: Insights on the Current Trends and Future Perspectives for Sustainable Development. Rev. Fish. Sci. Aquac. 2018, 26, 99–110. [Google Scholar] [CrossRef]
- Danaher, J.J.; Shultz, C.R.; Rakocy, J.E.; Bailey, D.S.; Knight, L. Effect of a Parabolic Screen Filter on Water Quality and Production of Nile Tilapia (Oreochromis Niloticus) and Water Spinach (Ipomoea Aquatica) in a Recirculating Raft Aquaponic System. Int. J. Recirc. Aquac. 2011, 12, 35–53. [Google Scholar] [CrossRef]
- Rakocy, J.E.; Bailey, D.S.; Shultz, R.C.; Thoman, E.S. Update on Tilapia and Vegetable Production in the UVI Aquaponic System. In Proceedings of the New Dimensions on Farmed Tilapia: Proceedings of the Sixth International Symposium on Tilapia in Aquaculture, Manila, Philippines, 12–16 September 2004; pp. 12–16. [Google Scholar]
- Liang, J.-Y.; Chien, Y.-H. Effects of Feeding Frequency and Photoperiod on Water Quality and Crop Production in a Tilapia–Water Spinach Raft Aquaponics System. Int. Biodeterior. Biodegrad. 2013, 85, 693–700. [Google Scholar] [CrossRef]
- Liang, J.-Y.; Chien, Y.-H. Effects of Photosynthetic Photon Flux Density and Photoperiod on Water Quality and Crop Production in a Loach (Misgurnus Anguillicandatus)—Nest Fern (Asplenium Nidus) Raft Aquaponics System. Int. Biodeterior. Biodegrad. 2015, 102, 214–222. [Google Scholar] [CrossRef]
- Lennard, W.A.; Leonard, B. V A Comparison of Reciprocating Flow versus Constant Flow in an Integrated, Gravel Bed, Aquaponic Test System. Aquac. Int. 2004, 12, 539–553. [Google Scholar] [CrossRef]
- Hussain, T.; Verma, A.K.; Tiwari, V.K.; Prakash, C.; Rathore, G.; Shete, A.P.; Saharan, N. Effect of Water Flow Rates on Growth of Cyprinus Carpio Var. Koi (Cyprinus carpio L., 1758) and Spinach Plant in Aquaponic System. Aquac. Int. 2015, 23, 369–384. [Google Scholar] [CrossRef]
- McMurtry, M.R.; Sanders, D.C.; Cure, J.D.; Hodson, R.G. Effects of Biofilter/Culture Tank Volume Ratios on Productivity of a Recirculating Fish/Vegetable Co-Culture System. J. Appl. Aquac. 1997, 7, 33–51. [Google Scholar] [CrossRef]
- Castillo-Castellanos, D.; Zavala-Leal, I.; Ruiz-Velazco, J.M.J.; Radilla-García, A.; Nieto-Navarro, J.T.; Romero-Bañuelos, C.A.; González-Hernández, J. Implementation of an Experimental Nutrient Film Technique-Type Aquaponic System. Aquac. Int. 2016, 24, 637–646. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Beltagi, M.S. Food Production and Water Conservation in a Recirculating Aquaponic System in Saudi Arabia at Different Ratios of Fish Feed to Plants. J. World Aquac. Soc. 2008, 39, 510–520. [Google Scholar] [CrossRef]
- Danaher, J.J.; Shultz, R.C.; Rakocy, J.E.; Bailey, D.S. Alternative Solids Removal for Warm Water Recirculating Raft Aquaponic Systems. J. World Aquac. Soc. 2013, 44, 374–383. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panda, D.K.; Thakur, A.K.; Mohanty, S. Density-Dependent Water Use in Carp Polyculture: Impacts on Production Performance and Water Productivity. Aquaculture 2017, 470, 32–39. [Google Scholar] [CrossRef]
- Rupasinghe, J.W.; Kennedy, J.O.S. Economic Benefits of Integrating a Hydroponic-Lettuce System into a Barramundi Fish Production System. Aquac. Econ. Manag. 2010, 14, 81–96. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Ambast, S.K.; Panigrahi, P.; Mandal, K.G. Water Quality Suitability and Water Use Indices: Useful Management Tools in Coastal Aquaculture of Litopenaeus Vannamei. Aquaculture 2018, 485, 210–219. [Google Scholar] [CrossRef]
- Boyd, C.E.; Tucker, C.S. Water Quality Requirements in Pond Aquaculture Water Quality Management; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef]
- Lefers, R.; Alam, A.; Scarlett, F.; Leiknes, T. Aquaponics Water Use and Nutrient Cycling in a Seawater-Cooled Controlled Environment Agriculture System. Acta Hortic. 2020, 395–402. [Google Scholar] [CrossRef]
- El-Marsafawy, M.; Swelam, S.; Ghanem, A. Evolution of Crop Water Productivity in the Nile Delta over Three Decades (1985–2015). Water 2018, 10, 1168. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, J.; Huang, L.; Xu, D. Design of A Smart Monitoring and Control System for Aquaponics Based on OpenWrt BT. In Proceedings of the 5th International Conference on Information Engineering for Mechanics and Materials, Huhhot, China, 25–26 July 2015; Atlantis Press: Amsterdam, Netherlands; 2015; pp. 937–942. [Google Scholar]
- Pasha, A.K.; Mulyana, E.; Hidayat, C.; Ramdhani, M.A.; Kurahman, O.T.; Adhipradana, M. System Design of Controlling and Monitoring on Aquaponic Based on Internet of Things. In Proceedings of the 2018 4th International Conference on Wireless and Telematics (ICWT), Nusa Dua, Indonesia, 12–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Aishwarya, K.S.; Harish, M.; Prathibhashree, S.; Panimozhi, K. Survey on IoT Based Automated Aquaponics Gardening Approaches. In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; IEEE: New York, NY, USA, 2018; pp. 1495–1500. [Google Scholar]
- Zaini, A.; Kurniawan, A.; Herdhiyanto, A.D. Internet of Things for Monitoring and Controlling Nutrient Film Technique (NFT) Aquaponic. In Proceedings of the 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM), Surabaya, Indonesia, 26–27 November 2018; IEEE: New York, NY, USA, 2018; pp. 167–171. [Google Scholar]
- Shaout, A.; Scott, S.G. IoT Fuzzy Logic Aquaponics Monitoring and Control Hardware Real-Time System. In Proceedings of the Proceedings of the International Arab Conference on Information Technology, Yassmine Hammamet, Tunisia, 22–24 December 2017; pp. 22–24. [Google Scholar]
- Saaid, M.F.; Fadhil, N.S.M.; Ali, M.S.A.M.; Noor, M.Z.H. Automated Indoor Aquaponic Cultivation Technique. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; IEEE: New York, NY, USA, 2013; pp. 285–289. [Google Scholar]
- Ahmad, R.; Tichadou, S.; Hascoet, J.-Y. A Knowledge-Based Intelligent Decision System for Production Planning. Int. J. Adv. Manuf. Technol. 2017, 89, 1717–1729. [Google Scholar] [CrossRef]
- Kumar, N.H.; Baskaran, S.; Hariraj, S.; Krishnan, V. An Autonomous Aquaponics System Using 6LoWPAN Based WSN. In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Vienna, Austria, 22–24 August 2016; IEEE: New York, NY, USA, 2016; pp. 125–132. [Google Scholar]
- Aceto, G.; Persico, V.; Pescapé, A. A survey on information and communication technologies for Industry 4.0: State-of-the-art, taxonomies, perspectives, and challenges. IEEE Commun Surv Tutor. 2019, 21, 3467–3501. [Google Scholar] [CrossRef]
- Tyson, R.V.; Danyluk, M.D.; Simonne, E.H.; Treadwell, D.D. Sustainable aquaponic vegetable and fish co-production. Proc Fla. State Hortic. Soc. 2012, 125, 381–385. [Google Scholar]
- Lu, J.-Y.; Chang, C.-L.; Kuo, Y.-F. Monitoring Growth Rate of Lettuce Using Deep Convolutional Neural Networks. In Proceedings of the Agricultural and Food Sciences, Computer Science, Environmental Science, Boston, MA, USA, 7–10 July 2019; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2019; p. 1. [Google Scholar]
- Manju, M.; Karthik, V.; Hariharan, S.; Sreekar, B. Real Time Monitoring of the Environmental Parameters of an Aquaponic System Based on Internet of Things. In Proceedings of the 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 23–24 March 2017; IEEE: New York, NY, USA, 2017; pp. 943–948. [Google Scholar]
- Dutta, A.; Dahal, P.; Prajapati, R.; Tamang, P.; Kumar, E.S. IoT Based Aquaponics Monitoring System. In Proceedings of the 1st KEC Conference Proceedings, Lalitpur, Nepal, 27 September 2018; Volume 1, pp. 75–80. [Google Scholar]
- Elsokah, M.M.; Sakah, M. Next Generation of Smart Aquaponics with Internet of Things Solutions. In Proceedings of the 2019 19th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 24–26 March 2019; IEEE: New York, NY, USA, 2019; pp. 106–111. [Google Scholar]
- Sreelekshmi, B.; Madhusoodanan, K.N. Automated Aquaponics System. In Emerging Trends in Engineering, Science and Technology for Society, Energy and Environment; CRC Press: Boca Raton, FL, USA, 2018; pp. 719–724. [Google Scholar]
- Eneh, A.H.; Udanor, C.N.; Ossai, N.I.; Aneke, S.O.; Ugwoke, P.O.; Obayi, A.A.; Ugwuishiwu, C.H.; Okereke, G.E. Towards an improved internet of things sensors data quality for a smart aquaponics system yield prediction. MethodsX 2023, 11, 102436. [Google Scholar] [CrossRef]
- Nayak, P.; Kavitha, K.; Rao, C.M. IoT-Enabled Agricultural System Applications, Challenges and Security Issues, Studies in Big Data; Springer: Singapore, 2019; pp. 139–163. [Google Scholar]
- Abbasi, R.; Martinez, P.; Ahmad, R. An ontology model to represent aquaponics 4.0 system’s knowledge. Inf. Process Agric. 2022, 9, 514–532. [Google Scholar] [CrossRef]
- Wei, Y.; Li, W.; An, D.; Li, D.; Jiao, Y.; Wei, Q. Equipment and Intelligent Control System in Aquaponics: A Review. IEEE Access 2019, 7, 169306. [Google Scholar] [CrossRef]
- Abbasi, R.; Martinez, P.; Ahmad, R. Crop diagnostic system: A robust disease detection and management system for leafy green crops grown in an aquaponics facility. Artif. Intell. Agric. 2023, 10, 1–12. [Google Scholar] [CrossRef]
- Yang, X.; Cao, D.; Chen, J.; Xiao, Z.; Daowd, A. AI and IoT-based collaborative business ecosystem: A case in Chinese fish farming industry. Int. J. Technol. Manag. 2020, 82, 151–171. [Google Scholar] [CrossRef]
- Agossou, B.E.; Toshiro, T. IoT & AI based system for fish farming: Case study of Benin. In Proceedings of the Conference on Information Technology for Social Good, Roma Italy, 7–9 September 2021; pp. 259–264. [Google Scholar]
- Ahmed, M.; Rahaman, M.O.; Rahman, M.; Kashem, M.A. Analyzing the quality of water and predicting the suitability for fish farming based on IoT in the context of Bangladesh. In Proceedings of the 2019 International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 24–25 December 2019; pp. 24–25. [Google Scholar]
- Tokunaga, K.; Tamaru, C.; Ako, H.; Leung, P. Economics of Small-Scale Commercial Aquaponics in Hawai‘I. J. World Aquac. Soc. 2015, 46, 20–32. [Google Scholar] [CrossRef]
- Engle, C.R. Economics of Aquaponics; No. 5006; Southern Regional Aquaculture Center Publication: Stoneville, MS, USA, 2015. [Google Scholar]
- Morgenstern, R.; Lorleberg, W.; Biernatzki, R.; Boelhauve, M.; Braun, J.; Haberlah-Korr, V. Pilotstudie “Nachhaltige Aquaponik-Erzeugung Für Nordrhein-Westfalen.” Fachhochschule Südwestfalen, Soest; Fachhochschule Südwestfalen: Iserlohn, Germany, 2017; ISBN 978-3-940956-66-8. [Google Scholar]
- Lobillo-Eguíbar, J.; Fernández-Cabanás, V.M.; Bermejo, L.A.; Pérez-Urrestarazu, L. Economic Sustainability of Small-Scale Aquaponic Systems for Food Self-Production. Agronomy 2020, 10, 1468. [Google Scholar] [CrossRef]
- El Essawy, H.A.S. Aquaponics as a Sustainable Alternative to New Land Reclamation and Conventional Agriculture in Egypt; The American University in Cairo: Cairo, Egypt, 2017. [Google Scholar]
- Asciuto, A.; Schimmenti, E.; Cottone, C.; Borsellino, V. A Financial Feasibility Study of an Aquaponic System in a Mediterranean Urban Context. Urban For. Urban Green. 2019, 38, 397–402. [Google Scholar] [CrossRef]
- Joyce, A.; Goddek, S.; Kotzen, B.; Wuertz, S. Aquaponics: Closing the Cycle on Limited Water, Land and Nutrient Resources. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 19–34. ISBN 978-3-030-15943-6. [Google Scholar]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED lighting systems for horticulture: Business growth and global distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Roth, D. LEDs for energy efficient greenhouse lighting Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue leds. Int. J. Agric. Biol. Eng. 2020, 13, 33–40. [Google Scholar] [CrossRef]
- Gao, W.; He, D.; Ji, F.; Zhang, S.; Zheng, J. Effects of Daily Light Integral and LED Spectrum on Growth and Nutritional Quality of Hydroponic Spinach. Agronomy 2020, 10, 1082. [Google Scholar] [CrossRef]
- Jin, W.; Urbina, J.L.; Heuvelink, E.; Marcelis, L.F.M. Adding Far-Red to Red-Blue Light-Emitting Diode Light Promotes Yield of Lettuce at Different Planting Densities. Front. Plant Sci. 2021, 11, 609977. [Google Scholar] [CrossRef]
- Kong, Y.; Nemali, A.; Mitchell, C.; Nemali, K. Spectral quality of light can affect energy consumption and energy-use efficiency of electrical lighting in indoor lettuce farming. HortScience 2019, 54, 865–872. [Google Scholar] [CrossRef]
- Huber, B.M.; Louws, F.J.; Hernández, R. Impact of Different Daily Light Integrals and Carbon Dioxide Concentrations on the Growth, Morphology, and Production Efficiency of Tomato Seedlings. Front. Plant Sci. 2021, 12, 615853. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience 2019, 54, 1737–1744. [Google Scholar] [CrossRef]
- Zheng, J.F.; He, D.X.; Ji, F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. Int. J. Agric. Biol. Eng. 2019, 12, 26–31. [Google Scholar] [CrossRef]
- Olvera-Gonzalez, E.; Escalante-Garcia, N.; Myers, D.; Ampim, P.; Obeng, E.; Alaniz-Lumbreras, D.; Castaño, V. Pulsed led-lighting as an alternative energy savings technique for vertical farms and plant factories. Energies 2012, 14, 1603. [Google Scholar] [CrossRef]
- Gillani, S.A.; Abbasi, R.; Martinez, P.; Ahmad, R. Review on Energy Efficient Artificial Illumination in Aquaponics. Cleaner Circ. Bioecon. 2022, 2, 100015. [Google Scholar]
- Lund, H. The implementation of renewable energy systems. Lessons learned from the Danish case. Energy 2010, 35, 4003–4009. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Dos-Santos, M. Aquaponics and global food challenges. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 3–17. [Google Scholar]
- Halim, J. Akuaponik Pekarangan; Penebar Swadaya: Jakarta, Indonesia, 2018. [Google Scholar]
- Faber, M.; Witten, C.; Drimie, S. Community-Based Agricultural Interventions in the Context of Food and Nutrition Security in South Africa. S. Afr. J. Clin. Nutr. 2011, 24, 21–30. [Google Scholar] [CrossRef]
- Junge, R.; Bulc, T.G.; Anseeuw, D.; Yavuzcan Yildiz, H.; Milliken, S. Aquaponics as an Educational Tool. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 561–595. ISBN 978-3-030-15943-6. [Google Scholar]
- Lee, R.P. The Politics of International Agri-Food Policy: Discourses of Trade-Oriented Food Security and Food Sovereignty. Environ. Polit. 2013, 22, 216–234. [Google Scholar] [CrossRef]
- Declaration of the Forum for Food Sovereignty, Nyéléni 2007. Sélingué, Mali. Available online: http://ernaehrungsdenkwerkstatt.de/fileadmin/user_upload/EDWText/TextElemente/PHN-Texte/Nutrition_Policy/Recht_auf_Nahrung_Declaration_of_Nyeleni_2007.pdf (accessed on 4 August 2023).
- Windfuhr, M.; Jonsén, J. Food Sovereignty: Towards Democracy in Localized Food Systems; ITDG Publishing: Warwickshire, UK, 2005; ISBN 978-1-85339-610-6. [Google Scholar]
- Schiavoni, C. The Global Struggle for Food Sovereignty: From Nyéléni to New York. J. Peasant Stud. 2009, 36, 682–689. [Google Scholar]
- Laidlaw, J.; Magee, L. Towards Urban Food Sovereignty: The Trials and Tribulations of Community-Based Aquaponics Enterprises in Milwaukee and Melbourne. Local Environ. 2016, 21, 573–590. [Google Scholar] [CrossRef]
- Aanesen, M.; Mikkelsen, E. Cost-benefit analysis of aquaculture expansion in Arctic Norway. Aquac. Econ. Manag. 2020, 24, 20–42. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient Recycling from Fish Wastewater by Vegetable Production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Graber, A.; Antenen, N.; Junge, R. The Multifunctional Aquaponic System at ZHAW Used as Research and Training Lab. In Proceedings of the 3rd Conference VIVUS, Conference on Agriculture, Environmentalism, Horticulture, Floristics, Food Production and Processing, Strahinj, Carniola, Slovenia, 14–15 November; 2014; pp. 245–255. [Google Scholar]
- Graber, A.; Durno, M.; Gaus, R.; Mathis, A.; Junge, R. UF001 LokDepot, Basel: The First Commercial Rooftop Aquaponic Farm in Switzerland. In Proceedings of the International Conference on Vertical Farming and Urban Agriculture (VFUA 2014), Nottingham, UK, 9–10 September 2014; p. 30. [Google Scholar]
- Podgrajšek, B.; Schmautz, Z.; Krivograd Klemenčič, A.; Jarni, K.; Junge, R.; Griessler Bulc, T. Preliminary Monitoring of an Aquaponic System in Biotechnical Centre Naklo. Moje Pod. 2014, 5, 10–11. [Google Scholar]
- Körner, O.; Bisbis, M.B.; Baganz, G.F.M.; Baganz, D.; Staaks, G.B.O.; Monsees, H.; Goddek, S.; Keesman, K.J. Environmental Impact Assessment of Local Decoupled Multi-Loop Aquaponics in an Urban Context. J. Cleaner Prod. 2021, 313, 127735. [Google Scholar] [CrossRef]
- Benjamin, E.O.; Buchenrieder, G.R.; Sauer, J. Economics of Small-Scale Aquaponics System in West Africa: A SANFU Case Study. Aquac. Econ. Manag. 2021, 25, 53–69. [Google Scholar] [CrossRef]
- Frimpong, F.; Amponsah, S.K.; Danquah, E.O.; Agyeman, K.; Oteng-Darko, P.; Oppong, C.P.; Berdjour, A.; Bessah, E. Assessment of Aquaponics-Based Food Production System Effluents on the Performance of Maize. Int. J. Agric. Res. Rev. 2017, 5, 615–627. [Google Scholar]
- Gibellato, S. Feasibility Study of an Aquaponic Plant in Korhogo; Ca’ Foscari University of Venice: Venezia, Italy, 2020. [Google Scholar]
- Zipporah, G.; Waidbacher, H.; Zollitsch, W.; Drexler, S.; Liti, D. The Potential of Aquaponics as Food Production and Nutrient Recovery Systems in Kenya. In Proceedings of the International Scientific Days 2018. Towards Productive, Sustainable and Resilient Global Agriculture and Food Systems: Proceedings, Nitra, Slovak Republic, 16–17 May 2018; Wolters Kluwer ČR: Prague, Czech Republic, 2018; pp. 1154–1165. [Google Scholar]
- Oladimeji, S.A.; Okomoda, V.T.; Olufeagba, S.O.; Solomon, S.G.; Abol-Munafi, A.B.; Alabi, K.I.; Ikhwanuddin, M.; Martins, C.O.; Umaru, J.; Hassan, A. Aquaponics Production of Catfish and Pumpkin: Comparison with Conventional Production Systems. Food Sci. Nutr. 2020, 8, 2307–2315. [Google Scholar] [CrossRef]
- Mahkeswaran, R.; Ng, A.K. Smart and Sustainable Home Aquaponics System with Feature-Rich Internet of Things Mobile Application. In Proceedings of the 2020 6th International Conference on Control, Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; IEEE: New York, NY, USA, 2020; pp. 607–611. [Google Scholar]
- Haryanto; Ulum, M.; Ibadillah, A.F.; Alfita, R.; Aji, K.; Rizkyandi, R. Smart Aquaponic System Based Internet of Things (IoT). J. Phys. Conf. Ser. 2019, 1211, 012047. [Google Scholar] [CrossRef]
- Naser, B.A.A.-Z.; Saleem, A.L.; Ali, A.H.; Alabassi, S.; Al-Baghdadi, M.A.R.S. Design and Construction of Smart IoT-Based Aquaponics Powered by PV Cells. Int. J. Energy Environ. 2019, 10, 127–134. [Google Scholar]
- Khaoula, T.; Abdelouahid, R.A.; Ezzahoui, I.; Marzak, A. Architecture Design of Monitoring and Controlling of IoT-Based Aquaponics System Powered by Solar Energy. Procedia Comput. Sci. 2021, 191, 493–498. [Google Scholar] [CrossRef]
- Islam, R.; Faysal, S.M.; Amin, R.; Juliana, F.M.; Islam, M.J.; Alam, J.; Hossain, M.N.; Asaduzzaman, M. Assessment of PH and Total Dissolved Substances (TDS) in the Commercially Available Bottled Drinking Water. IOSR J. Nurs. Health Sci. 2017, 6, 35–40. [Google Scholar] [CrossRef]
- Samal, N.; Pati, U.C. Multi-Channel Data Acquisition and Data Logging for Green House Application. In Proceedings of the 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, India, 1–2 March 2014; IEEE: New York, NY, USA, 2014; pp. 1–5. [Google Scholar]
- Karimanzira, D.; Rauschenbach, T. Enhancing Aquaponics Management with IoT-Based Predictive Analytics for Efficient Information Utilization. Inf. Process. Agric. 2019, 6, 375–385. [Google Scholar] [CrossRef]
- Witzel, O.; Wilm, S.; Karimanzira, D.; Baganz, D. Controlling and regulation of integrated aquaponic production systems—An approach for a management execution system (MES). Inf. Process. Agric. 2019, 6, 326–334. [Google Scholar] [CrossRef]
- Kotzen, B.; Appelbaum, S. An Investigation of Aquaponics Using Brackish Water Resources in the Negev Desert. J. Appl. Aquac. 2010, 22, 297–320. [Google Scholar] [CrossRef]
- Appelbaum, S.; Kotzen, B. Further Investigations of Aquaponics Using Brackish Water Resources of the Negev Desert. Ecocycles 2016, 2, 26–35. [Google Scholar] [CrossRef]
- Nozzi, V.; Strofaldi, S.; Piquer, I.F.; Di Crescenzo, D.; Olivotto, I.; Carnevali, O. Amyloodinum Ocellatum in Dicentrarchus Labrax: Study of Infection in Salt Water and Freshwater Aquaponics. Fish Shellfish Immunol. 2016, 57, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Pantanella, E. Nutrition and Quality of Aquaponic Systems; Università Degli Studi Della Tuscia: Viterbo, Italy, 2012. [Google Scholar]
- Boxman, S.E.; Nystrom, M.; Ergas, S.J.; Main, K.L.; Trotz, M.A. Evaluation of Water Treatment Capacity, Nutrient Cycling, and Biomass Production in a Marine Aquaponic System. Ecol. Eng. 2018, 120, 299–310. [Google Scholar] [CrossRef]
- Chu, Y.-T.; Brown, P.B. Evaluation of Pacific Whiteleg Shrimp and Three Halophytic Plants in Marine Aquaponic Systems under Three Salinities. Sustainability 2020, 13, 269. [Google Scholar] [CrossRef]
- Maciel, E.; Domingues, P.; Domingues, M.R.M.; Calado, R.; Lillebø, A. Halophyte Plants from Sustainable Marine Aquaponics Are a Valuable Source of Omega-3 Polar Lipids. Food Chem. 2020, 320, 126560. [Google Scholar] [CrossRef]
- Oliveira, V.; Martins, P.; Marques, B.; Cleary, D.F.R.; Lillebø, A.I.; Calado, R. Aquaponics Using a Fish Farm Effluent Shifts Bacterial Communities Profile in Halophytes Rhizosphere and Endosphere. Sci. Rep. 2020, 10, 10023. [Google Scholar] [CrossRef]
- Kanial, S. Aquaponic Production of Nile Tilapia (Oreochromis Niloticus) and Bell Pepper (Capsicum Annuuml.) In Recirculating Water System. Egypt. J. Aquat. Biol. Fish. 2006, 10, 79–85. [Google Scholar] [CrossRef]
- Proksch, G.; Ianchenko, A.; Kotzen, B. Aquaponics in the Built Environment. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019; pp. 523–558. [Google Scholar] [CrossRef]
- Oliver, L.P.; Coyle, S.D.; Bright, L.A.; Shultz, R.C.; Hager, J.V.; Tidwell, J.H. Comparison of Four Artificial Light Technologies for Indoor Aquaponic Production of Swiss Chard, Beta vulgaris, and Kale, Brassica oleracea. J. World Aquac. Soc. 2018, 49, 837–844. [Google Scholar] [CrossRef]
- Turnšek, M.; Morgenstern, R.; Schröter, I.; Mergenthaler, M.; Hüttel, S.; Leyer, M. Commercial Aquaponics: A Long Road Ahead. In Aquaponics Food Production Systems; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Abbasi, R.; Yanes, A.R.; Villanuera, E.M.; Ahmad, R. Real-time Implementation of Digital Twin for Robot Based Production Line. In Proceedings of the Conference on Learning Factories (CLF), Graz, Austria, 1–2 July 2021; pp. 4–6. [Google Scholar]
- Bosma, R.H.; Lacambra, L.; Landstra, Y.; Perini, C.; Poulie, J.; Schwaner, M.J.; Yin, Y. The financial feasibility of producing fish and vegetables through aquaponics. Aquac. Eng. 2017, 78, 146–154. [Google Scholar] [CrossRef]
- Ghamkhar, R.; Hartleb, C.; Wu, F.; Hicks, A. Life cycle assessment of a cold weather aquaponic food production system. J. Clean. Prod. 2020, 244, 118767. [Google Scholar] [CrossRef]
- Fang, Y.; Hu, Z.; Zou, Y.; Fan, J.; Wang, Q.; Zhu, Z. Increasing economic and environmental benefits of media-based aquaponics through optimizing aeration pattern. J. Clean. Prod. 2017, 162, 1111–1117. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and resource use analysis of plant factories with energy technology options: A case study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Chen, P.; Zhu, G.; Kim, H.J.; Brown, P.B.; Huang, J.Y. Comparative life cycle assessment of aquaponics and hydroponics in the Midwestern United States. J. Clean. Prod. 2020, 275, 122888. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Li, J.; Xydis, G. Basil plants grown under intermittent light stress in a small-scaleindoor environment: Introducing energy demand reduction intelligent technologies. Food Control 2020, 118, 107389. [Google Scholar] [CrossRef]
- Essa, M.A.; Goda, A.; Hanafy, M.A.; El-Shebly, A.A.; Mohamed, R.A.; El-Ebiary, E.H. Small-Scale Fish Culture: Guiding Models of Aquaponics and Net-Enclosures Fish Farming in Egypt. Egypt. J. Aquat. Res. 2008, 34, 320–337. [Google Scholar]
- Goada, A.M.A.-S.; Essa, M.A.; Hassaan, M.S.; Sharawy, Z. Bio Economic Features for Aquaponic Systems in Egypt. Turkish J. Fish. Aquat. Sci. 2015, 15, 525–532. [Google Scholar] [CrossRef]
- Corner, R.; Fersoy, H.; Crespi, V. Integrated Agri-Aquaculture in Desert and Arid Lands—Learning from Case Studies from Algeria, Egypt and Oman; FAO Fisheries and Aquaculture Circular: Rome, Italy, 2020; ISBN 978-92-5-132405-9. [Google Scholar]
- van der Heijden, P.G.M.; Farrag, F.; Blom-Zandstra, G. Bustan Aquaponics: Egypt’s First Working Commercial Aquaponic Farm. Aquac. Eur. Mag. 2013, 38, 25–27. [Google Scholar]
- El-Essawy, H.; Nasr, P.; Sewilam, H. Aquaponics: A Sustainable Alternative to Conventional Agriculture in Egypt—A Pilot Scale Investigation. Environ. Sci. Pollut. Res. 2019, 26, 15872–15883. [Google Scholar] [CrossRef] [PubMed]
- Salem, L. Assessing Deep-Water Culture and Sand-Bed Aquaponics Systems for Lettuce (Lactuca Sativa) Yield and Water Consumption; The American University in Cairo: Cairo, Egypt, 2019. [Google Scholar]
- Afolabi, K.A. Productivity of Kale (Brassica Oleracea Var. Acephala) and Nile Tilapia (Oreochromis Niloticus) Culture in Aquaponic Systems; The American University in Cairo: Cairo, Egypt, 2020. [Google Scholar]
- Salama, S.; Kandil, A.; Elshenawy, M.; Abdelbaki, M.; Abulseoud, M. Evaluation of Mint and Sweet Basil Herbs Production Integrated into the Aquaponic Tilapia Production System. Arab Univ. J. Agric. Sci. 2020, 28, 563–573. [Google Scholar] [CrossRef]
- Hussein, M.; ELzayat, A.; Bauomi, M. Study of the Effects of Different Monosex Nile Tilapia (Oreochromis Niloticus) Fingerlings Densitieson Lettuce (Lactuca Sativa) and Water Quality in a Low-Techrecirculation Aquaponic System. Int. J. Dev. 2020, 9, 11–23. [Google Scholar] [CrossRef]
- Türker, H. Nutrient Dynamics of Different Plants in an Aquaponics Aquaculture System. Aquat. Sci. Eng. 2018, 33, 77–83. [Google Scholar] [CrossRef]
- Kimera, F.; Mugwanya, M.; Dawood, M.; Sewilam, H. Growth Response of Kale (Brassica Oleracea) and Nile Tilapia (Oreochromis Niloticus) under Saline Aqua-Sandponics-Vegeculture System. Sci. Rep. 2023, 13, 2427. [Google Scholar] [CrossRef]
- Goddek, S.; Keesman, K.J. The Necessity of Desalination Technology for Designing and Sizing Multi-Loop Aquaponics Systems. Desalination 2018, 428, 76–85. [Google Scholar] [CrossRef]
- Eichhorn, T.; Meixner, O. Factors Influencing the Willingness to Pay for Aquaponic Products in a Developed Food Market: A Structural Equation Modeling Approach. Sustainability 2020, 12, 3475. [Google Scholar] [CrossRef]
Main Finding | Reference |
---|---|
The initial instance of a DAS was introduced in Germany. | [33] |
In the DAS, plants favor a hydroponic (water) root zone pH of 5.8–6.2, whilst a pH of 6.5–9.0 is suitable for most aquatic organisms (USA). | [34] |
The inaugural documented DAS emerged in 2015 from the “Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany”—the system has been named aquaponics for tomato and fish free from emissions. | [35] |
Various hydroponic components were added to change their system from a CAS to a DAS. The benefit of utilizing various hydroponic components is to expand water quality stability and increase the versatility for cultivating and comparing various crop types. | [36] |
Various up-to-date DASs have been reported in Europe, including the Tilamur, IGB, and Inagro facilities. Among them, the NerBreen facility in Spain boasts an impressive area of 3500 m2. While it seems that aquaponics is gaining momentum with DASs, particularly in Europe, there are certain disadvantages associated with this system when compared to the CAS. The primary challenge faced by the DAS is the significant upfront construction costs involved. | [37] |
The re-mineralization and desalination loops were inserted in the design of DAS, whilst the nutrient loop was closed. The technical solution of the DAS involves a separate hydroponics section and aquaculture section, each optimized to provide specific benefits for plants and fish, respectively. This segregation allows for targeted management of the environment, promoting optimal growth and health for both components of the system. | [31,37] |
DRAPSs combine a hydroponic system (HS) and a Recirculating Aquaculture System (RAS) in a one-way setup with separate water circuits (multiple loops). This approach optimizes the RAS for fish production, ensuring animal welfare, while enabling the hydroponic system to regulate pH and adjust nutrient concentrations dynamically, creating an ideal environment for plant growth. | [28,36] |
DAPSs present greater potential for incorporation with renewable energy technologies. | [29] |
The double (dual) recirculation technology facilitates the establishment of ideal conditions for both fish and plants. | [38] |
Time Period | Key Developments | Reference |
---|---|---|
1950s | Initial research on RASs (Recirculating Aquaculture Systems) conducted in Japan | [47] |
1970s | The foundation of modern RASs laid through German programs focused on intensive carp production, along with developments in Australia | [48] |
Mid-1970s | Denmark nurtured the first commercial idea for a RAS as a means for commercial fish production | [49] |
1980 | Denmark witnessed the establishment of the first commercial RAS for European eel production | |
Early 1980s | The Netherlands adopted the RAS design and innovation for catfish production, while North America initiated innovative work on RASs | [50,51] |
1980s | China ventured into marine RAS development | [52] |
1980–1990s | Ongoing improvements in RASs were observed in various European countries such as Denmark, Iceland, Norway, and Finland | [53] |
2000–2020 | Continuous advancements in RASs were witnessed in Australia, Europe, and North America | [54] |
Parameter | Aquaculture | Nitrification | Hydroponic | Impacts | References |
---|---|---|---|---|---|
pH | 6.5–9.5 | 7.0–9.0 | 4.5–7.0 | At low pH levels, reduced plant reproduction, root injury, and nutrient deficiencies occur, while at high pH levels, plants experience nutrient deficiencies and potential ammonia buildup. | [96] |
Temperature | 5–32 °C | 17–34 °C | 18–30 °C | Risk of fish diseases increases at both low and high levels of temperature. | [86] |
Water level | 1000 L/20 kg | - | - | Fish stress leading to health issues at low levels; plant nutrient inadequacies at high levels. | |
Dissolved oxygen | 4–5 mg/L | 4–8 mg/L | >3 mg/L | At lower levels, occurrences include fungal growth, cessation of fish feeding, interrupted nitrification processes, and root death. | |
Total ammonia–nitrogen | 0–2 mg/L | <3 mg/L | <30 mg/L | At lower levels, there are no specified impacts, while at higher levels, toxicity to fish and detrimental health effects occur. | |
Nitrates | 50–100 ppm | - | - | At lower levels, plants may face nutrient deficiencies, whereas at higher levels, the concentration becomes harmful for fish. | |
Flow | - | - | 1–2 L/min | At lower levels, there is a reduction in nutrient accessibility, while no specific impacts are listed at higher levels. | |
Air temperature | - | - | 18–30 °C | At lower levels, there is incorrect crop transpiration, premature flowering, and decreased water efficiency. At higher levels, there is an alteration in the chemical composition of plants. | |
EC | 100–2000 mS/cm | - | - | At lower levels, there is nutrient loss and unbalanced systems, while at higher levels, it leads to water pollution and potential fish fatalities. | [97] |
Water hardness | 50–150 mg/LCaCO3 | - | - | At lower levels, fish experience stress, while at higher levels, there are elevated pH, reduced nitrification, and decreased nutrient uptake. | |
Alkalinity as CaCO3 | 50–150 mg/L | - | - | At lower levels, there are poor water conditions, inadequate acid neutralization, and a risk of high pH. At higher levels, there is ammonia toxicity leading to fish respiratory issues. | |
Nitrites | 0–1 mg/L | 0–1 mg/L | 0–1 mg/L | Detrimental effects are observed for fish, plants, and bacterial activity at both low and high levels. | |
Relative humidity | - | - | 50–80% | Curled and dry leaves along with mold growth are observed at lower levels, while at higher levels, there is a potential for plant organisms due to water scarcity. | [98] |
CO2 | - | - | 340–1300 ppm | At lower levels, plant photosynthesis is reduced, while at higher levels, there is an alteration in the chemical composition of plant tissues. |
Hydroponic Type | Fish Species | Plant Species | Water Flow | Water T (°C) | Water Consumption (%) | Reference |
---|---|---|---|---|---|---|
Floating * | O. niloticus | I. aquatica/water spinach | Constant | 27.4–27.5 | 1.40 | [101] |
1.50 | ||||||
26.1–26.3 | 1.60 | [102] | ||||
L. esculentum | 26.0–26.2 | 2.20 | [26] | |||
B. ampestris L. subsp. Chinensis | 0.70 | |||||
Oreochromis spp. | O. basilicum/Basil | 26.5–27.9 | 2.40 | [79] | ||
A. esculentus | 0.36 | [103] | ||||
O. niloticus, O. aureus | Crop succession for 2 years | >22 | 1.00 | [66] | ||
Oreochromis sp. | I. aquatica | Root in fish tank | 25.4–29.6 | 0.10 | [104] | |
M.s anguillicandatus | A. nidus | [105] | ||||
Medium-based * | M. peelii peelii | L. sativa | Reciprocal | 22.0 | 2.43–2.86 | [106] |
Constant | ||||||
C. carpio var. koi | B. vulgaris var. bengalensis | 22.0–26.9 | 4.00 | [107] | ||
C. carpio | B. chinensis | 1.20–1.80 | [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90] | |||
M. peelii peelii | L. sativa | 1.83 | [58] | |||
T. mossambicus x 0. niloticus | L. esculentum, C.sativus | >25 | 2.80 | [108] | ||
Tilapia mossambicus x 0. | niloticus L. esculentum | 2.08 | [117] | |||
2.42 | ||||||
2.84 | ||||||
3.89 | ||||||
NFT * | O. niloticus | L. esculentum | Constant | 22.0–29.1 | 3.83 | [24] |
C. sativus | 0.90 | [109] | ||||
L. sativa | 1.40 | [110] | ||||
M. peelii peelii | 1.97 | [58] |
Control | Technique or Method | Component | Time of Data Measurement | Data Acquisition | Control Unit | Effect | Reference |
---|---|---|---|---|---|---|---|
Smart monitoring and control system for aquaponics | OpenWRT and WRT nodes for data acquisition, mobile exchange, and interactive intelligence | Collect constant natural information | The system measures temperature, light, water level, oxygen, E. coli levels, and humidity | Components such as water pumps, air pumps, lamps, and feeding devices are controlled by a central unit | The system allows remote observation, monitoring, and control of the aquaponics system, enabling collaboration between humans and machines. | [118] | |
pH and water temperature are monitored and controlled through a web socket | Measurements are taken in the morning and afternoon for water temperature, pH, and level | The lights, water pumps, lamps, and fan | The system is designed to control more devices and monitor more parameters. IoT enables automatic water supply and fish food feeding. | [119] | |||
Internet of Things (IoT) | Automatic water supply; automatic fish food feeder | The water level is put away at fixed time periods in the monitoring | Temperature, water level, and moisture content | Oxygen pump, fish feeder; water pump and LED light | Aquaponics provides a cost-effective and water-efficient solution for vegetable production. | [120] | |
Source node; sink; database server; visualization on mobile application | Data are collected using ultrasonic, temperature, pH, and ammonia gas sensors | Automatic control of the component’s parameter with mobile application | The control unit manages parameters such as pH, temperature, ammonia gas levels, and water depth | Coolant, heater, control motor (for H3PO4 and KOH), fish feed actuator, and ammonia warning procedure | Controlled NFT aquaponic systems optimize vegetable growth compared to NFT hydroponics. | [121] | |
Fuzzy logic is employed with Arduino Uno, fuzz inference system, and relay control | Data are measured every 25 s for water, pH, luminance, and air/water temperature | Components include lights, heaters, and alarms | The system is accurate, low-maintenance, low-cost, and convenient. | [122] | |||
Arduino (Mega) | - | Water level; temperature; amount of food | Pump; feeder; dimmer | An Arduino Mega is used for a closed-control system, effectively maintaining fish health and promoting plant growth. | [123,124] |
SDGs | Contribution |
---|---|
SDG1 | Aquaponics offers income and food security using less land and water, is accessible in urban areas for impoverished communities. |
SDG2 | Aquaponics enhances food security and quality and mitigates health hazards by enabling year-round cultivation. |
SDG3 | Aquaponics produces fresh, healthy food without chemicals, promoting healthy lifestyles. |
SDG3 and SDG14 | Aquaponics ensures fish health, welfare, and end-user safety, reducing the need for anti-infective agents. |
SDG4 | Aquaponics provides learning and education facilities. |
SDG6 and SDG14 | Aquaponics minimizes water consumption, enhances water quality, and has cultural, educational, and tourism potential [137,140]. |
SDG7 | Aquaponics conserves energy and supports alternative energy sources. |
SDG8 | Aquaponics creates jobs and fosters entrepreneurship in aquaculture and hydroponics. |
SDG9 | Aquaponics combines industries and benefits from infrastructure and technological advancements. |
SDG10 | Aquaponics promotes equality by being inclusive of all ages and abilities. |
SDG11, SDG12 and SDG13 | Aquaponics reduces transportation needs, minimizes waste, and promotes sustainable consumption. |
SDG13 and SDG15 | Aquaponics conserves land and soil, producing high-quality food intensively and portably [138]. |
Country | Aquaponics Scale | Fish Species | Crop Grown | Fish Biomass | Crop Yield | Reference |
---|---|---|---|---|---|---|
Rakocy/Virgin Islands (UVI) | Commercial | Nile and red tilapia | Basil, lettuce, okra | Fish sales yield was USD 134,245/year and the productivity of water was 61.5 and 70.7 kg/m3 | 5.01–5.34 mt/year basil, | [102] |
Johns Hopkins University/Baltimore, Maryland, United States US | Small-raft system (10.3 m3) | 292 L H2O, 1.3 kg feed, and 159 kWh of energy (USD 12) | 104 L H2O, 0.5 kg feed, and 56 kWh energy (USD 6) | 1 kg increase in tilapia | 1 kg of crops | [66] |
ECF/Germany, 1.3 mill. EUR | 1800 m2 | Tilapia | Basil | - | Size 1000 m2 | [38] |
NerBreen/Spain, 2 mill. EUR | 6000 m2 | Lettuce, straw, barriers, tomatoes, and peppers | _ | Size 3000 m2 | ||
Nigeria | Small | Tilapia and African catfish | Spinach, eggplant, tomatoes, and maize | 27.9 kg/year | 3 kg/year | [175] |
Ghana | Commercial | Maize | _ | 2.3 t/ha | [176] | |
Cote d’lvoire | Small | Nile tilapia | Tomatoes | 60 kg/month | 81 kg/month | [177] |
Kenya | Amaranthus (Am), Cucurbita (Cu), and Artemisi (Ar) | - | 1.1 kg/m2 Am, 1.3 kg/m2 Cu, and 1.6 kg/m2 Ar | [178] | ||
Nigeria | catfish | Pumpkin | 160 kg/m3 | 43 kg/month | [179] |
Location | EC | Fish—Brackish | Plant—Brackish | Major Finding |
---|---|---|---|---|
Negev Desert—Israel [188,189] | Two studies: 1st EC 4708–6800 μS/cm 2nd EC (4000–8000 μS/cm) | Tilapia sp. (“red strain of Nile tilapia Oreochromis niloticus” × “blue tilapia O. aureus hybrids”) | “A. ampeloprasum”, “A. graveolens”, “B. oleracea v. gongylodes”, “B. oleracea v. capitata”, “Lactuca sativa”, “B. oleracea v. botrytis”, “B. vulgaris vulgaris”, “A. fistulosum”, “O. basilicum” and “N. officinale”. | Two separate research studies observed positive outcomes when cultivating various herbs and vegetables alongside Nile tilapia in brackish water systems. The fish exhibited robust health and growth throughout these experiments. |
Italy [190] | Reared in environments with 20 parts per thousand (ppt) salinity and freshwater conditions at 0 ppt | 45 “European sea bass juveniles” raised in a fish tank of 500 L in volume | Beta vulgaris (50 seedling/m2) Three aquaponics grow beds (2 m2) | Aquaponic systems integrating euryhaline fish with halophile plants allow for rapid adjustments to environmental variations. Beta vulgaris was grown successfully. |
Italy [191] | 10–30 g/L | Mullet (Mugil cephalus L.) | Salsola soda | Mullet performed well at salinity levels up to 20 g/L, while Salsola soda thrived at 10 g/L. Marine aquaponics showed promise. |
USA [192] | Salinity of 15 ppt | Red drum | Sesuvium portulacastrum and Batis maritima | Red drum production, edible halophytes, and improved drainage were achieved in marine aquaponics at a salinity of 15 ppt. Shrimp and halophytes thrived at this level too. |
USA [193] | Shrimp | triplex hortensis, Salsola komarovii, and nopusPlantago coro) | ||
Portugal [194,195] | Coastal lagoon salt marshes | Solea senegalensis | Salicornia ramosissima and Halimione portulacoides | Incorporating organic-rich effluents altered the lipid profile of halophytes in marine aquaponics, increasing glycolipids with n-3 fatty acids. Enrichment of halophyte-associated bacterial taxa enhanced nutrient cycling. |
Marine fish farm | Halimione portulacoides, Salicornia ramosissima and Sarcocornia perennis |
Aquaponics/Location | Main Findings/Outputs | Reference |
---|---|---|
Abassa, Sharkia Goveraorate, Agriculture Research Center | Hydroponics unit improved water quality for fish and yielded peppers meeting economic expectations. | [207] |
Small-scale-aquaponic/2006/National Institute of Oceanography and Fisheries (NIOF) | Healthier fish and crops with increased economic returns. | [208] |
“Integrated Multi-Trophic Aquaculture (IMTA)” and “nutrient film technique (NFT)” systems in Egypt had the best net income and economic surplus compared to traditional soil culture systems. | [209] | |
Bustan aquaponics farm—1000 m2 | The first commercial aquaponic system in Egypt producing pesticide-free tilapia fish and various lettuce types. | [210,211] |
Agrimatic Farms (one acre) | The second commercial aquaponic system integrating lettuce, mint, and basil with tilapia production. | [210] |
Al-Haggag aquaponic farms—(Harm City/6 October) | The third aquaponic commercial system utilizing waste material to feed insects and producing “mint”, “lemon”, “herbs”, and “olives”. | |
American University in Cairo | Aquaponics is a viable alternative to traditional farming. IAV (Integrated Aqua Vegaculture) system shows more potential than DWC system. | [212] |
Compared yields in DWC and sand-bed aquaponics systems in Egypt and found that DWC had higher yields with lower water use. | [213] | |
Small-scale aquaponic systems in Egypt can generate positive financial benefits within the first five years. | [214] | |
Ain Shams University and Agricultural Research Center | Basil has a higher capacity than mint to remove nutrients from fish culture water, improving fish yield. | [215] |
Al-Azhar University in Cairo | In aquaponics, having 20 fish per aquarium alongside lettuce plants is an ideal stocking density that supports both fish and plant production effectively. | [216] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Alhaj Hamoud, Y. Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water 2023, 15, 4310. https://doi.org/10.3390/w15244310
Ibrahim LA, Shaghaleh H, El-Kassar GM, Abu-Hashim M, Elsadek EA, Alhaj Hamoud Y. Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water. 2023; 15(24):4310. https://doi.org/10.3390/w15244310
Chicago/Turabian StyleIbrahim, Lubna A., Hiba Shaghaleh, Gamal Mohamed El-Kassar, Mohamed Abu-Hashim, Elsayed Ahmed Elsadek, and Yousef Alhaj Hamoud. 2023. "Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency" Water 15, no. 24: 4310. https://doi.org/10.3390/w15244310
APA StyleIbrahim, L. A., Shaghaleh, H., El-Kassar, G. M., Abu-Hashim, M., Elsadek, E. A., & Alhaj Hamoud, Y. (2023). Aquaponics: A Sustainable Path to Food Sovereignty and Enhanced Water Use Efficiency. Water, 15(24), 4310. https://doi.org/10.3390/w15244310