Irrigation Performance Assessment, Opportunities with Wireless Sensors and Satellites
Abstract
:1. Introduction
2. Irrigation Performance
- Sub-field;
- Field, orchard, farm, tertiary irrigation unit;
- Total irrigation system;
- Catchment, basin, aquifer, multiple irrigation systems;
- Supra/inter/national, trans-boundary basin, irrigated sector, markets and firms.
2.1. Performance Analysis Scheme
2.2. Performance Indicators
2.2.1. Classical Irrigation Efficiency
2.2.2. Effective Irrigation Efficiency
2.2.3. Relative Irrigation Supply
2.2.4. Water Delivery Performance
2.2.5. Water Productivity
2.3. Mosaic of Irrigation Performance
3. Quantifying Performance
3.1. Remote Sensing for Irrigation Performance Assessment
3.1.1. Consumed Fraction of Water
3.1.2. Biomass Production
3.1.3. Data Assimilation and Deep Learning
3.2. Networks with Connected Wireless Sensors
3.2.1. Supplied Water
3.2.2. Soil Water
3.2.3. Water Quality
3.2.4. Network Configuration
3.3. Irrigation Monitoring and Irrigators
4. Discussion
4.1. Daily Assessment
4.2. Weekly to Monthly Assessment
4.3. Seasonal Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
OSRS | Open-source remote sensing |
WSN | Wireless sensor networks |
Classical irrigation efficiency | |
Effective irrigation efficiency | |
IEM | Irrigation efficiency matrix |
BAIE | Basin allocated irrigation efficiency |
SLIE | Socialised localised irrigation efficiency |
W | Water supply |
T | Transpiration |
E | Evaporation |
I | Interception |
R | Return flow |
D | Deep percolation |
BC | Beneficial consumption |
NBC | Non-beneficial consumption |
RF | Recoverable fraction |
NRF | Non-recoverable fraction |
Crop evapotranspiration | |
Actual evapotranspiration | |
Effective precipitation | |
Conveyance efficiency | |
Application efficiency | |
Leaching requirement | |
Relative irrigation supply | |
Relative water supply | |
Crop water requirement | |
Water delivery performance | |
Water productivity | |
Reference evapotranspiration | |
Crop coefficient | |
EMR | Electromagnetic radiation |
VI | Vegetation indices |
VNIR | Visible and near-infrared |
MW | Microwave |
TH | Thermal |
LST | Land surface temperature |
LAI | Leaf area index |
fAPAR | Fraction absorbed photosynthetic radiation |
S-2 | Sentinel-2 |
S-3 | Sentinel-3 |
SEB | Surface energy balance |
PM | Penman-Monteith |
PT | Priestley-Taylor |
Surface temperature | |
NPP | Net primary production |
GPP | Gross primary production |
LUE | Light-use-efficiency |
ML | Machine-learning |
TSEB | Two-source energy balances |
CGLS | Copernicus Global Land Service |
DA | Data assimilation |
DL | Deep learning |
VWC | Volumetric water content |
FDR | Frequency domain reflectometry |
TDR | Time domain reflectometry |
EC | Electrical conductivity |
References
- Ertsen, M.W.; van der Spek, J. Modeling an irrigation ditch opens up the world. Hydrology and hydraulics of an ancient irrigation system in Peru. Phys. Chem. Earth Parts A/B/C 2009, 34, 176–191. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- UN. World Population Projected to Reach 9.8 Billion in 2050, and 11.2 Billion in 2100 | UN DESA | United Nations Department of Economic and Social Affairs. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (accessed on 12 January 2021).
- UN. Goal 6 | Department of Economic and Social Affairs. Available online: https://sdgs.un.org/goals/goal6 (accessed on 5 January 2021).
- van Halsema, G.E.; Vincent, L. Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism. Agric. Water Manag. 2012, 108, 9–15. [Google Scholar] [CrossRef]
- Lankford, B. Fictions, fractions, factorials and fractures; on the framing of irrigation efficiency. Agric. Water Manag. 2012, 108, 27–38. [Google Scholar] [CrossRef]
- Perry, C.J.; Steduto, P. Does Improved Irrigation Technology Save Water? A Review of the Evidence; FAO: Cairo, Egypt, 2017. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Boelens, R.; Vos, J. The danger of naturalizing water policy concepts: Water productivity and efficiency discourses from field irrigation to virtual water trade. Agric. Water Manag. 2012, 108, 16–26. [Google Scholar] [CrossRef]
- Lowder, S.K.; Skoet, J.; Raney, T. The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide. World Dev. 2016, 87, 16–29. [Google Scholar] [CrossRef]
- D’Odorico, P.; Rulli, M.C.; Dell’Angelo, J.; Davis, K.F. New frontiers of land and water commodification: Socio-environmental controversies of large-scale land acquisitions. Land Degrad. Dev. 2017, 28, 2234–2244. [Google Scholar] [CrossRef]
- Seckler, D. The New Era of Water Resources Management: From “Dry” to “Wet” Water Savings; Vol. Research Report 1; OCLC: 643562595; International Water Management Institute: Colombo, Sri Lanka, 1996. [Google Scholar]
- Willardson, L.S.; Allen, R.G.; Frederiksen, H.D. Elimination of Irrigation Efficiencies. In Proceedings of the Question 47 Irrigation Planning and Management Measures in Harmony with the Environment, Denver, Colorado, USA, 19–22 October 1994; p. 17. [Google Scholar]
- Israelsen, O.W.; Criddle, W.D.; Fuhriman, D.K.; Hansen, V.E. Bulletin No. 311—Water-Application Efficiencies in Irrigation. UAES Bull. 1944, 273. [Google Scholar]
- Keller, A.A.; Keller, J. Effective Efficiency: A Water Use Efficiency Concept for Allocating Freshwater Resources; Discussion Paper 22; Center for Economic Policy Studies, Winrock International: Arlington, VA, USA, 1995. [Google Scholar]
- Giordano, M.; Turral, H.; Scheierling, S.M.; Treguer, D.O.; McCornick, P.G. Beyond “More Crop per Drop”: Evolving Thinking on Agricultural Water Productivity; Technical Report; International Water Management Institute (IWMI): Colombo, Sri Lanka; The World Bank: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Lankford, B.; Closas, A.; Dalton, J.; López Gunn, E.; Hess, T.; Knox, J.W.; van der Kooij, S.; Lautze, J.; Molden, D.; Orr, S.; et al. A scale-based framework to understand the promises, pitfalls and paradoxes of irrigation efficiency to meet major water challenges. Glob. Environ. Chang. 2020, 65, 102182. [Google Scholar] [CrossRef]
- Koech, R.; Langat, P. Improving Irrigation Water Use Efficiency: A Review of Advances, Challenges and Opportunities in the Australian Context. Water 2018, 10, 1771. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. (Eds.) Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Number 56 in FAO Irrigation and Drainage Paper; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Parra, L.; Botella-Campos, M.; Puerto, H.; Roig-Merino, B.; Lloret, J. Evaluating Irrigation Efficiency with Performance Indicators: A Case Study of Citrus in the East of Spain. Agronomy 2020, 10, 1359. [Google Scholar] [CrossRef]
- Bos, M.G. Performance indicators for irrigation and drainage. Irrig. Drain. Syst. 1997, 11, 119–137. [Google Scholar] [CrossRef]
- Zafar, A.; Prathapar, S.; Bastiaanssen, W.; Awan, W.K.; Cai, X.; Manunta, P. Optimization of Canal Management Using Satellite Measurements; Series: ADB Briefs; Asian Development Bank: Manila, Philippines, 2021; ISBN 9789292627027/9789292627010. [Google Scholar] [CrossRef]
- Massari, C.; Modanesi, S.; Dari, J.; Gruber, A. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. [Google Scholar] [CrossRef]
- Vanino, S.; Nino, P.; De Michele, C.; Falanga Bolognesi, S.; D’Urso, G.; Di Bene, C.; Pennelli, B.; Vuolo, F.; Farina, R.; Pulighe, G.; et al. Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy. Remote Sens. Environ. 2018, 215, 452–470. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote Sensing for Precision Agriculture: Sentinel-2 Improved Features and Applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Chao, Z.; Liu, N.; Zhang, P.; Ying, T.; Song, K. Estimation methods developing with remote sensing information for energy crop biomass: A comparative review. Biomass Bioenergy 2019, 122, 414–425. [Google Scholar] [CrossRef]
- Swinnen, E.; Van Hoolst, R. Algorithm Theoretical Basis Document Dry Matter Productivity (DMP) Gross Dry Matter Productivity (GDMP) Collection 300 m, Version 1, Issue I1.12. Copernicus Global Land Operation ‘Vegetation and Energy’. 2019. Available online: https://land.copernicus.eu/en/technical-library/algorithm-theoretical-basis-document-dry-and-gross-dry-matter-productivity-version-1/@@download/file (accessed on 13 June 2024).
- FAO. WaPOR Database Methodology, 2nd ed.; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- ELeaf; VITO; ITC; WaterWatch; University of Twente. WaPOR Data Manual Evapotranspiration; FAO: Rome, Italy, 2020; Volume 2.2. [Google Scholar]
- Sun, Z.; Wang, X.; Zhang, X.; Tani, H.; Guo, E.; Yin, S.; Zhang, T. Evaluating and comparing remote sensing terrestrial GPP models for their response to climate variability and CO2 trends. Sci. Total Environ. 2019, 668, 696–713. [Google Scholar] [CrossRef]
- Pan, S.; Pan, N.; Tian, H.; Friedlingstein, P.; Sitch, S.; Shi, H.; Arora, V.K.; Haverd, V.; Jain, A.K.; Kato, E.; et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 2020, 24, 1485–1509. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Laipelt, L.; Henrique Bloedow Kayser, R.; Santos Fleischmann, A.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote. Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Hong, S.; Hendrickx, J.M.; Allen, R.G. Comparison of Remote Sensing Energy Balance Models: Sebal V.S. Metric. In Proceedings of the AGU Fall Meeting Abstracts ADS Bibcode: 2008AGUFM.H43G1094H, San Francisco, CA, USA, 15–19 December 2008; American Geophysical Union: Washington, DC, USA, 2008. [Google Scholar]
- Jaafar, H.H.; Ahmad, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2020, 238, 111034. [Google Scholar] [CrossRef]
- Kilic, A.; Allen, R.G.; Blankenau, P.; Revelle, P.; Ozturk, D.; Huntington, J. Global production and free access to Landsat-scale Evapotranspiration with EEFlux and eeMETRIC. In Proceedings of the 6th Decennial National Irrigation Symposium, San Diego, CA, USA, 6–8 December 2021; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2021. [Google Scholar] [CrossRef]
- Norman, J.; Kustas, W.; Humes, K. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Thorp, K.R. Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models. Remote Sens. Environ. 2015, 158, 281–294. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. 2007, 112, D10117. [Google Scholar] [CrossRef]
- Norman, J.M.; Anderson, M.C.; Kustas, W.P.; French, A.N.; Mecikalski, J.; Torn, R.; Diak, G.R.; Schmugge, T.J.; Tanner, B.C.W. Remote sensing of surface energy fluxes at 101-m pixel resolutions: Remote sensing of surface energy fluxes. Water Resour. Res. 2003, 39, 1221. [Google Scholar] [CrossRef]
- Fisher, J.B.; Lee, B.; Purdy, A.J.; Halverson, G.H.; Dohlen, M.B.; Cawse-Nicholson, K.; Wang, A.; Anderson, R.G.; Aragon, B.; Arain, M.A.; et al. ECOSTRESS: NASA’s Next Generation Mission to Measure Evapotranspiration From the International Space Station. Water Resour. Res. 2020, 56, e2019WR026058. [Google Scholar] [CrossRef]
- Anderson, M.C. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 2021, 252, 112189. [Google Scholar] [CrossRef]
- Running, S.W.; Mu, Q.; Zhao, M.; Moreno, A. User’s Guide MODIS Global Terrestrial Evapotranspiration (ET) Product NASA Earth Observing System MODIS Land Algorithm (For Collection 6.1). Version 1.1. MODIS Land Team. 2021. Available online: https://www.ntsg.umt.edu/project/modis/user-guides/mod16c61usersguidev11mar112021.pdf (accessed on 13 June 2024).
- Pelgrum, H.; Miltenburg, I.J.; Cheema, M.J.M.; Klaasse, A. ETLook: A novel continental evapotranspiration algorithm. In Proceedings of the Remote Sensing and Hydrology, Jackson Hole, WY, USA, 27–30 September 2010. [Google Scholar]
- Bastiaanssen, W.G.M.; Cheema, M.J.M.; Immerzeel, W.W.; Miltenburg, I.J.; Pelgrum, H. Surface energy balance and actual evapotranspiration of the transboundary Indus Basin estimated from satellite measurements and the ETLook model: Energy balance and et of the indus basin. Water Resour. Res. 2012, 48, W11512. [Google Scholar] [CrossRef]
- FAO WaPOR. 2021. Available online: https://wapor.apps.fao.org/home/WAPOR_2/1 (accessed on 22 June 2021).
- Priestley, C.H.B.; Taylor, R.J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Fisher, J.B. Level-3 Evapotranspiration L3(ET_PT-JPL) Algorithm Theoretical Basis Document; NASA: Pasadena, CA, USA, 2018. [Google Scholar]
- Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modelling High-Resolution Actual Evapotranspiration through Sentinel-2 and Sentinel-3 Data Fusion. Remote Sens. 2020, 12, 1433. [Google Scholar] [CrossRef]
- DHI GRAS; IRTA; Sandholt. User Manual for Sen-ET Plugin; V1.1.0; ESA: Paris, France, 2020; Available online: https://www.esa-sen4et.org/static/media/sen-et-user-manual-v1.1.0.5d1ac526.pdf (accessed on 12 June 2024).
- Martens, B.; Miralles, D.G.; Lievens, H.; van der Schalie, R.; de Jeu, R.A.M.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- GLEAM Global Land Evaporation Amsterdam Model. 2023. Available online: https://www.gleam.eu/ (accessed on 19 January 2023).
- Tang, R.; Li, Z.L.; Tang, B. An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Nugraha, A.S.A.; Kamal, M.; Murti, S.H.; Widyatmanti, W. Development of the triangle method for drought studies based on remote sensing images: A review. Remote Sens. Appl. Soc. Environ. 2023, 29, 100920. [Google Scholar] [CrossRef]
- OpenET Filling the Biggest Gap in Water Management. 2023. Available online: https://openetdata.org/ (accessed on 19 January 2023).
- Lagouarde, J.P.; Bhattacharya, B.; Crébassol, P.; Gamet, P.; Babu, S.S.; Boulet, G.; Briottet, X.; Buddhiraju, K.; Cherchali, S.; Dadou, I.; et al. The Indian-French Trishna Mission: Earth Observation in the Thermal Infrared with High Spatio-Temporal Resolution. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4078–4081. [Google Scholar] [CrossRef]
- Koetz, B.; Bastiaanssen, W.; Berger, M.; Defourney, P.; Del Bello, U.; Drusch, M.; Drinkwater, M.; Duca, R.; Fernandez, V.; Ghent, D.; et al. High Spatio- Temporal Resolution Land Surface Temperature Mission—A Copernicus Candidate Mission in Support of Agricultural Monitoring. In Proceedings of the IGARSS 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8160–8162. [Google Scholar] [CrossRef]
- Airbus. The Copernicus LSTM Expansion mission moves a step closer to helping climate change adaptation. Airbus. 7 November 2022. Available online: https://www.airbus.com/en/newsroom/stories/2022-11-the-copernicus-lstm-expansion-mission-moves-a-step-closer-to-helping (accessed on 24 January 2023).
- Smets, B.; Swinnen, E.; Van Hoolst, R. Product User Manual Dry Matter Productivity (DMP) Gross Dry Matter Productivity (GDMP), Version 1, Issue I1.22. Copernicus Global Land Operations ‘Vegetation and Energy’. 2019. Available online: https://land.copernicus.eu/en/technical-library/product-user-manual-dry-and-gross-dry-matter-productivity-version-1/@@download/file (accessed on 12 June 2024).
- Li, X.; Xiao, J.; Fisher, J.B.; Baldocchi, D.D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 2021, 258, 112360. [Google Scholar] [CrossRef]
- Deb, P.; Abbaszadeh, P.; Moradkhani, H. An ensemble data assimilation approach to improve farm-scale actual evapotranspiration estimation. Agric. For. Meteorol. 2022, 321, 108982. [Google Scholar] [CrossRef]
- Luo, L.; Sun, S.; Xue, J.; Gao, Z.; Zhao, J.; Yin, Y.; Gao, F.; Luan, X. Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation. Agric. Syst. 2023, 210, 103711. [Google Scholar] [CrossRef]
- Jin, X.; Kumar, L.; Li, Z.; Feng, H.; Xu, X.; Yang, G.; Wang, J. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 2018, 92, 141–152. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Chia, M.Y.; Huang, Y.F.; Koo, C.H.; Fung, K.F. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy 2020, 10, 101. [Google Scholar] [CrossRef]
- Bahrami, H.; Homayouni, S.; Safari, A.; Mirzaei, S.; Mahdianpari, M.; Reisi-Gahrouei, O. Deep Learning-Based Estimation of Crop Biophysical Parameters Using Multi-Source and Multi-Temporal Remote Sensing Observations. Agronomy 2021, 11, 1363. [Google Scholar] [CrossRef]
- Abioye, E.A.; Abidin, M.S.Z.; Mahmud, M.S.A.; Buyamin, S.; Ishak, M.H.I.; Rahman, M.K.I.A.; Otuoze, A.O.; Onotu, P.; Ramli, M.S.A. A review on monitoring and advanced control strategies for precision irrigation. Comput. Electron. Agric. 2020, 173, 105441. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jimenez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An Overview on the Recent Trends on Sensors and IoT Systems for Irrigation in Precision Agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Boman, B.; Shukla, S. Water Measurement for Agricultural Irrigation and Drainage Systems: Circular 1495/CH153, 10/2006. EDIS 2006, 2006, 1–12. [Google Scholar] [CrossRef]
- YSI. Water Level Measurement, Sensors, Monitoring Applications; YSI: Yellow Springs, OH, USA, 2023; Available online: https://www.ysi.com/parameters/level (accessed on 24 February 2023).
- RSHydro. Open Channel Flow Meters & Flow Measurement Specialists; RSHydro: Bromsgrove, UK, 2023; Available online: https://www.rshydro.co.uk/flow-meters/open-channel-flowmeter/ (accessed on 24 February 2023).
- Muhammad, A.; Haider, B.; Ahmad, Z. IoT Enabled Analysis of Irrigation Rosters in the Indus Basin Irrigation System. Procedia Eng. 2016, 154, 229–235. [Google Scholar] [CrossRef]
- Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of four soil moisture sensor types under field conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [Google Scholar] [CrossRef]
- Sharma, V. Soil Moisture Sensors for Irrigation Scheduling; University of Minnesota Extension: St Paul, MN, USA, 2019; Available online: https://extension.umn.edu/irrigation/soil-moisture-sensors-irrigation-scheduling (accessed on 19 April 2023).
- Hardie, M. Review of Novel and Emerging Proximal Soil Moisture Sensors for Use in Agriculture. Sensors 2020, 20, 6934. [Google Scholar] [CrossRef] [PubMed]
- Jalilvand, E.; Tajrishy, M.; Ghazi Zadeh Hashemi, S.A.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Bauder, T.A.; Waskom, R.M.; Sutherland, P.L.; Davis, J.G. Irrigation Water Quality Criteria; Fact Sheet No. 0.506; Colorado State University: Fort Collins, CO, USA, 2014. [Google Scholar]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- De Baerdemaeker, J. Artificial Intelligence in the Agri-Food Sector: Applications, Risks and Impacts; OCLC: 1376263180; European Parliament: Brussels, Belgium, 2023. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Bogena, H.; Herbst, M.; Huisman, J.; Rosenbaum, U.; Weuthen, A.; Vereecken, H. Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability. Vadose Zone J. 2010, 9, 1002–1013. [Google Scholar] [CrossRef]
- Bogena, H.R.; Weuthen, A.; Huisman, J.A. Recent Developments in Wireless Soil Moisture Sensing to Support Scientific Research and Agricultural Management. Sensors 2022, 22, 9792. [Google Scholar] [CrossRef]
1. Field | 2. Farm | 3. Scheme | 4. Catchment |
---|---|---|---|
crop consumption water delivered to field | farm consumption water delivered to farm | scheme consumption water diverted from source | beneficial water consumption effective supply |
water delivered to field crop consumption | water delivered to farm water delivered to field | water diverted from source water delivered to farm | |
field agricultural output field water use | farm agricultural output farm water use | scheme agricultural output scheme water use | |
water delivered to farm water intended to be delivered | water delivered to farms water intended to be delivered | ||
water delivered to farm farm crop water requirement | water delivered to farms scheme crop water requirement |
Type | Model/ Product | Main OSRS Data | Output Resolution | Comments |
---|---|---|---|---|
SEB | geeSEBAL | Landsat LST | spatial: 30 m temporal: daily | Cloud-based implementation |
eeMETRIC | Landsat LST | spatial: 30 m temporal: monthly | Cloud-based implementation | |
ALEXI/ DisALEXI | ECOSTRESS LST | spatial: 30 m temporal: 1–5 days | Limited to CONUS Separation of E and T Capture Diurnal cycle | |
PM | ETLook | MODIS VNIR and LST Proba-V VNIR Landsat LST | spatial: 250, 100 and 30 m temporal: decadal | Separation of E, T, and infiltration |
PT | PT-JPL | ECOSTRESS LST | spatial: 70 m temporal: 1–5 days | Separation of E and T Capture of the Diurnal cycle |
Sen-ET | S-2 VNIR S-3 LST | spatial: 20 m temporal: decadal | Separation of E, T, and infiltration |
Product | Main OSRS Data | Output Resolution | Comments |
---|---|---|---|
CGLS DMP | PROBA-V fAPAR | spatial: 300 m | fAPAR sharpening may yield finer outputs |
FAO WAPOR | PROBA-V, S-2 and Landsat fAPAR | spatial: 250, 100 and 30 m | Soil water content stress factor |
Spatial Scale | ||||
Field/Farm | (Sub-)Sector/Scheme | Water Resource | ||
Temporal Scale | Daily | , | - | |
Weekly to monthly | , | , , | ||
Seasonal | , , | , , |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carthy, B.; Somers, B.; Wyseure, G. Irrigation Performance Assessment, Opportunities with Wireless Sensors and Satellites. Water 2024, 16, 1762. https://doi.org/10.3390/w16131762
Carthy B, Somers B, Wyseure G. Irrigation Performance Assessment, Opportunities with Wireless Sensors and Satellites. Water. 2024; 16(13):1762. https://doi.org/10.3390/w16131762
Chicago/Turabian StyleCarthy, Brian, Ben Somers, and Guido Wyseure. 2024. "Irrigation Performance Assessment, Opportunities with Wireless Sensors and Satellites" Water 16, no. 13: 1762. https://doi.org/10.3390/w16131762
APA StyleCarthy, B., Somers, B., & Wyseure, G. (2024). Irrigation Performance Assessment, Opportunities with Wireless Sensors and Satellites. Water, 16(13), 1762. https://doi.org/10.3390/w16131762